inorganic compounds
Na3DyCl6
aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de
Single crystals of the title compound, trisodium hexachloridodysprosate, Na3DyCl6, were obtained as a by-product of synthesis using dysprosium(III) chloride and sodium chloride among others. The monoclinic structure with its typical β angle close to 90° [90.823 (4)°] is isotypic with the mineral cryolite (Na3AlF6) and the high-temperature structure of the Na3MCl6 series, with M = Eu–Lu, Y and Sc. The isolated, almost perfect [DyCl6]3− octahedra are interconnected via two crystallographically different Na+ cations: while one Na+ resides on centres of symmetry (as well as Dy3+) and also builds almost perfect, isolated [NaCl6]5− octahedra, the other Na+ is surrounded by seven chloride anions forming a distorted [NaCl7]6− trigonal prism with just one cap as close secondary contact.
Related literature
The first structural descriptions of the Na3MCl6 series (M = Eu–Lu, Y and Sc) on a single crystal in the cryolite-type structure (Hawthorne &, Ferguson, 1975) were given for M = Er by Meyer et al. (1987), for M = Ho by Böcker et al. (2001) and for M = Y by Liao & Dronskowski (2004). For the correlation between the two temperature-dependent phases, see: Meyer (1984); Meyer et al. (1987); Wickleder & Meyer (1995). For a planned synthesis of Dy2NCl3, compare with those for Gd2NCl3 (Schwanitz-Schüller & Simon, 1985) and Y2NCl3 (Meyer et al., 1989).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811014498/hp2006sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811014498/hp2006Isup2.hkl
Colourless and transparent single crystals of Na3DyCl6 were obtained as by-product from the reaction of sodium azide (NaN3), dysprosium metal (Dy) and its the corresponding trichloride (DyCl3) in presence of sodium chloride (NaCl) as
originally designed to produce Dy2NCl3 in analogy to Gd2NCl3 (Schwanitz-Schüller et al., 1985) and Y2NCl3 (Meyer et al., 1989) instead. The reaction mixture was placed into a torch- sealed evacuated fused-silica vessel, which was heated at 1143 K for seven days, followed by cooling to room temperature within one day.Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Crystal structure of cryolite-type Na3DyCl6. Displacement ellipsoids are drawn at 90% probability level. |
Na3DyCl6 | F(000) = 402 |
Mr = 444.17 | Dx = 2.895 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -p2yn | Cell parameters from 8457 reflections |
a = 6.8791 (5) Å | θ = 3.4–28.1° |
b = 7.2816 (5) Å | µ = 8.96 mm−1 |
c = 10.1734 (7) Å | T = 293 K |
β = 90.823 (4)° | Block, colourless |
V = 509.54 (6) Å3 | 0.20 × 0.15 × 0.10 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 1245 independent reflections |
Radiation source: fine-focus sealed tube | 1124 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
charge cpouled device scans | θmax = 28.1°, θmin = 3.4° |
Absorption correction: numerical (X-SHAPE; Stoe & Cie 1999) | h = −9→9 |
Tmin = 0.218, Tmax = 0.414 | k = −9→9 |
12026 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0199P)2 + 0.2881P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.045 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.84 e Å−3 |
1245 reflections | Δρmin = −1.05 e Å−3 |
50 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0043 (5) |
Na3DyCl6 | V = 509.54 (6) Å3 |
Mr = 444.17 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.8791 (5) Å | µ = 8.96 mm−1 |
b = 7.2816 (5) Å | T = 293 K |
c = 10.1734 (7) Å | 0.20 × 0.15 × 0.10 mm |
β = 90.823 (4)° |
Nonius KappaCCD diffractometer | 1245 independent reflections |
Absorption correction: numerical (X-SHAPE; Stoe & Cie 1999) | 1124 reflections with I > 2σ(I) |
Tmin = 0.218, Tmax = 0.414 | Rint = 0.071 |
12026 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 50 parameters |
wR(F2) = 0.045 | 0 restraints |
S = 1.08 | Δρmax = 0.84 e Å−3 |
1245 reflections | Δρmin = −1.05 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.0000 | 0.0000 | 0.5000 | 0.0291 (4) | |
Na2 | 0.5218 (2) | −0.0749 (2) | 0.24225 (18) | 0.0499 (4) | |
Dy | 0.0000 | 0.0000 | 0.0000 | 0.01593 (9) | |
Cl1 | 0.13816 (12) | 0.06522 (12) | 0.23941 (8) | 0.02834 (18) | |
Cl2 | −0.31489 (12) | 0.17894 (12) | 0.06382 (9) | 0.0358 (2) | |
Cl3 | 0.16836 (13) | 0.30521 (11) | −0.07742 (9) | 0.0358 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0323 (11) | 0.0244 (10) | 0.0303 (10) | −0.0038 (7) | −0.0033 (9) | 0.0027 (7) |
Na2 | 0.0462 (9) | 0.0341 (9) | 0.0694 (12) | −0.0069 (7) | 0.0029 (8) | 0.0033 (8) |
Dy | 0.01762 (12) | 0.01512 (12) | 0.01509 (12) | −0.00060 (6) | 0.00126 (7) | −0.00138 (6) |
Cl1 | 0.0334 (4) | 0.0333 (4) | 0.0182 (3) | 0.0032 (3) | −0.0037 (3) | −0.0035 (3) |
Cl2 | 0.0322 (4) | 0.0323 (4) | 0.0431 (5) | 0.0149 (3) | 0.0120 (4) | 0.0090 (4) |
Cl3 | 0.0350 (4) | 0.0271 (4) | 0.0450 (5) | −0.0123 (3) | −0.0069 (4) | 0.0122 (4) |
Na1—Cl2i | 2.7358 (8) | Na2—Dyiv | 4.0608 (17) |
Na1—Cl2ii | 2.7358 (8) | Na2—Na1x | 4.2126 (17) |
Na1—Cl3iii | 2.7902 (8) | Dy—Cl2 | 2.6176 (8) |
Na1—Cl3iv | 2.7902 (8) | Dy—Cl2xii | 2.6176 (8) |
Na1—Cl1 | 2.8687 (8) | Dy—Cl3 | 2.6320 (8) |
Na1—Cl1v | 2.8687 (8) | Dy—Cl3xii | 2.6320 (8) |
Na1—Na2vi | 3.9579 (18) | Dy—Cl1xii | 2.6447 (8) |
Na1—Na2vii | 3.9580 (18) | Dy—Cl1 | 2.6447 (8) |
Na1—Na2viii | 4.2126 (17) | Dy—Na2xiii | 4.0608 (17) |
Na1—Na2ix | 4.2126 (17) | Dy—Na2vi | 4.0608 (17) |
Na2—Cl1 | 2.8295 (19) | Cl1—Na2vi | 2.8492 (19) |
Na2—Cl2x | 2.8341 (19) | Cl2—Na1xiv | 2.7358 (8) |
Na2—Cl1iv | 2.8492 (19) | Cl2—Na2viii | 2.8342 (19) |
Na2—Cl3i | 2.8612 (19) | Cl2—Na2vi | 3.325 (2) |
Na2—Cl3xi | 3.204 (2) | Cl2—Na2 | 3.488 (2) |
Na2—Cl2iv | 3.325 (2) | Cl3—Na1vi | 2.7902 (8) |
Na2—Cl2 | 3.488 (2) | Cl3—Na2xv | 2.8611 (19) |
Na2—Na1iv | 3.9580 (18) | Cl3—Na2xi | 3.204 (2) |
Cl2i—Na1—Cl2ii | 180.0 | Cl3xi—Na2—Na1iv | 44.32 (3) |
Cl2i—Na1—Cl3iii | 90.49 (3) | Cl2iv—Na2—Na1iv | 88.01 (4) |
Cl2ii—Na1—Cl3iii | 89.51 (3) | Cl1—Na2—Dyiv | 103.79 (5) |
Cl2i—Na1—Cl3iv | 89.51 (3) | Cl2x—Na2—Dyiv | 158.34 (6) |
Cl2ii—Na1—Cl3iv | 90.49 (3) | Cl1iv—Na2—Dyiv | 40.43 (3) |
Cl3iii—Na1—Cl3iv | 180.0 | Cl3i—Na2—Dyiv | 97.19 (5) |
Cl2i—Na1—Cl1 | 85.33 (3) | Cl3xi—Na2—Dyiv | 88.29 (4) |
Cl2ii—Na1—Cl1 | 94.67 (3) | Cl2iv—Na2—Dyiv | 39.98 (2) |
Cl3iii—Na1—Cl1 | 86.30 (3) | Na1iv—Na2—Dyiv | 78.73 (3) |
Cl3iv—Na1—Cl1 | 93.71 (3) | Cl1—Na2—Na1x | 132.81 (6) |
Cl2i—Na1—Cl1v | 94.67 (3) | Cl2x—Na2—Na1x | 90.06 (4) |
Cl2ii—Na1—Cl1v | 85.33 (3) | Cl1iv—Na2—Na1x | 112.16 (5) |
Cl3iii—Na1—Cl1v | 93.71 (3) | Cl3i—Na2—Na1x | 41.17 (3) |
Cl3iv—Na1—Cl1v | 86.29 (3) | Cl3xi—Na2—Na1x | 82.78 (4) |
Cl1—Na1—Cl1v | 180.00 (3) | Cl2iv—Na2—Na1x | 40.45 (2) |
Cl2i—Na1—Na2vi | 59.53 (3) | Na1iv—Na2—Na1x | 120.74 (4) |
Cl2ii—Na1—Na2vi | 120.47 (3) | Dyiv—Na2—Na1x | 74.49 (3) |
Cl3iii—Na1—Na2vi | 53.35 (3) | Cl2—Dy—Cl2xii | 180.0 |
Cl3iv—Na1—Na2vi | 126.65 (3) | Cl2—Dy—Cl3 | 91.33 (3) |
Cl1—Na1—Na2vi | 45.99 (3) | Cl2xii—Dy—Cl3 | 88.67 (3) |
Cl1v—Na1—Na2vi | 134.01 (3) | Cl2—Dy—Cl3xii | 88.67 (3) |
Cl2i—Na1—Na2vii | 120.47 (3) | Cl2xii—Dy—Cl3xii | 91.33 (3) |
Cl2ii—Na1—Na2vii | 59.53 (3) | Cl3—Dy—Cl3xii | 180.0 |
Cl3iii—Na1—Na2vii | 126.65 (3) | Cl2—Dy—Cl1xii | 91.73 (3) |
Cl3iv—Na1—Na2vii | 53.35 (3) | Cl2xii—Dy—Cl1xii | 88.27 (3) |
Cl1—Na1—Na2vii | 134.01 (3) | Cl3—Dy—Cl1xii | 91.71 (3) |
Cl1v—Na1—Na2vii | 45.99 (3) | Cl3xii—Dy—Cl1xii | 88.29 (3) |
Na2vi—Na1—Na2vii | 180.0 | Cl2—Dy—Cl1 | 88.28 (3) |
Cl2i—Na1—Na2viii | 127.96 (3) | Cl2xii—Dy—Cl1 | 91.72 (3) |
Cl2ii—Na1—Na2viii | 52.04 (3) | Cl3—Dy—Cl1 | 88.29 (3) |
Cl3iii—Na1—Na2viii | 42.45 (3) | Cl3xii—Dy—Cl1 | 91.71 (3) |
Cl3iv—Na1—Na2viii | 137.55 (3) | Cl1xii—Dy—Cl1 | 180.00 (3) |
Cl1—Na1—Na2viii | 73.28 (3) | Cl2—Dy—Na2xiii | 125.31 (3) |
Cl1v—Na1—Na2viii | 106.72 (3) | Cl2xii—Dy—Na2xiii | 54.69 (3) |
Na2vi—Na1—Na2viii | 72.02 (3) | Cl3—Dy—Na2xiii | 115.46 (3) |
Na2vii—Na1—Na2viii | 107.98 (3) | Cl3xii—Dy—Na2xiii | 64.54 (3) |
Cl2i—Na1—Na2ix | 52.04 (3) | Cl1xii—Dy—Na2xiii | 44.32 (3) |
Cl2ii—Na1—Na2ix | 127.96 (3) | Cl1—Dy—Na2xiii | 135.68 (3) |
Cl3iii—Na1—Na2ix | 137.55 (3) | Cl2—Dy—Na2vi | 54.69 (3) |
Cl3iv—Na1—Na2ix | 42.45 (3) | Cl2xii—Dy—Na2vi | 125.31 (3) |
Cl1—Na1—Na2ix | 106.72 (3) | Cl3—Dy—Na2vi | 64.54 (3) |
Cl1v—Na1—Na2ix | 73.28 (3) | Cl3xii—Dy—Na2vi | 115.46 (3) |
Na2vi—Na1—Na2ix | 107.98 (3) | Cl1xii—Dy—Na2vi | 135.68 (3) |
Na2vii—Na1—Na2ix | 72.02 (3) | Cl1—Dy—Na2vi | 44.32 (3) |
Na2viii—Na1—Na2ix | 180.0 | Na2xiii—Dy—Na2vi | 180.0 |
Cl1—Na2—Cl2x | 97.84 (6) | Dy—Cl1—Na2 | 105.51 (5) |
Cl1—Na2—Cl1iv | 88.35 (5) | Dy—Cl1—Na2vi | 95.24 (4) |
Cl2x—Na2—Cl1iv | 143.02 (7) | Na2—Cl1—Na2vi | 133.80 (6) |
Cl1—Na2—Cl3i | 94.53 (6) | Dy—Cl1—Na1 | 134.58 (3) |
Cl2x—Na2—Cl3i | 79.84 (5) | Na2—Cl1—Na1 | 104.61 (4) |
Cl1iv—Na2—Cl3i | 136.23 (7) | Na2vi—Cl1—Na1 | 87.61 (4) |
Cl1—Na2—Cl3xi | 144.16 (7) | Dy—Cl2—Na1xiv | 138.63 (3) |
Cl2x—Na2—Cl3xi | 74.54 (5) | Dy—Cl2—Na2viii | 99.86 (4) |
Cl1iv—Na2—Cl3xi | 79.25 (5) | Na1xiv—Cl2—Na2viii | 121.47 (5) |
Cl3i—Na2—Cl3xi | 117.64 (5) | Dy—Cl2—Na2vi | 85.33 (4) |
Cl1—Na2—Cl2iv | 139.29 (7) | Na1xiv—Cl2—Na2vi | 87.50 (4) |
Cl2x—Na2—Cl2iv | 119.28 (5) | Na2viii—Cl2—Na2vi | 102.36 (4) |
Cl1iv—Na2—Cl2iv | 72.36 (4) | Dy—Cl3—Na1vi | 134.93 (3) |
Cl3i—Na2—Cl2iv | 77.55 (4) | Dy—Cl3—Na2xv | 128.25 (5) |
Cl3xi—Na2—Cl2iv | 68.06 (4) | Na1vi—Cl3—Na2xv | 96.38 (4) |
Cl1—Na2—Na1iv | 104.40 (5) | Dy—Cl3—Na2xi | 90.78 (4) |
Cl2x—Na2—Na1iv | 97.07 (5) | Na1vi—Cl3—Na2xi | 82.33 (4) |
Cl1iv—Na2—Na1iv | 46.40 (3) | Na2xv—Cl3—Na2xi | 104.74 (4) |
Cl3i—Na2—Na1iv | 161.07 (6) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x−1/2, y−1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x, −y, −z+1; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x−1/2, −y−1/2, z+1/2; (viii) x−1, y, z; (ix) −x+1, −y, −z+1; (x) x+1, y, z; (xi) −x+1, −y, −z; (xii) −x, −y, −z; (xiii) x−1/2, −y−1/2, z−1/2; (xiv) −x−1/2, y+1/2, −z+1/2; (xv) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | Na3DyCl6 |
Mr | 444.17 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 6.8791 (5), 7.2816 (5), 10.1734 (7) |
β (°) | 90.823 (4) |
V (Å3) | 509.54 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 8.96 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Numerical (X-SHAPE; Stoe & Cie 1999) |
Tmin, Tmax | 0.218, 0.414 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12026, 1245, 1124 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.663 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.045, 1.08 |
No. of reflections | 1245 |
No. of parameters | 50 |
Δρmax, Δρmin (e Å−3) | 0.84, −1.05 |
Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
Na1—Cl2i | 2.7358 (8) | Na2—Cl3vii | 3.204 (2) |
Na1—Cl2ii | 2.7358 (8) | Na2—Cl2iv | 3.325 (2) |
Na1—Cl3iii | 2.7902 (8) | Na2—Cl2 | 3.488 (2) |
Na1—Cl3iv | 2.7902 (8) | Dy—Cl2 | 2.6176 (8) |
Na1—Cl1 | 2.8687 (8) | Dy—Cl2viii | 2.6176 (8) |
Na1—Cl1v | 2.8687 (8) | Dy—Cl3 | 2.6320 (8) |
Na2—Cl1 | 2.8295 (19) | Dy—Cl3viii | 2.6320 (8) |
Na2—Cl2vi | 2.8341 (19) | Dy—Cl1viii | 2.6447 (8) |
Na2—Cl1iv | 2.8492 (19) | Dy—Cl1 | 2.6447 (8) |
Na2—Cl3i | 2.8612 (19) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x−1/2, y−1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x, −y, −z+1; (vi) x+1, y, z; (vii) −x+1, −y, −z; (viii) −x, −y, −z. |
Acknowledgements
This work was supported by the German Research Foundation (DFG, Frankfurt/Main) within the funding programme Open Access Publishing and the State of Baden-Württemberg (Stuttgart). The authors thank Dr Sabine Strobel for the data collection.
References
Böcker, M., Gerlitzki, N. & Meyer, G. (2001). Z. Kristallogr. New Cryst. Struct. 216, 19. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Hawthorne, F. C. & Ferguson, R. B. (1975). Can. Mineral. 13, 377–382. Google Scholar
Liao, W. & Dronskowski, R. (2004). Acta Cryst. E60, i72–i73. Web of Science CrossRef IUCr Journals Google Scholar
Meyer, G. (1984). Z. Anorg. Allg. Chem. 517, 191–197. CrossRef CAS Web of Science Google Scholar
Meyer, G., Ax, P., Schleid, Th. & Irmler, M. (1987). Z. Anorg. Allg. Chem. 554, 25–33. CrossRef CAS Google Scholar
Meyer, H.-J., Jones, N. L. & Corbett, J. D. (1989). Inorg. Chem. 28, 2635–2637. CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Schwanitz-Schüller, U. & Simon, A. (1985). Z. Naturforsch. Teil B, 40, 279–283. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 457–463. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Trisodiumhexachlorodysprosate(III) belongs to a group of ternary chlorides Na3MCl6 with M = Eu – Lu, Y and Sc (Meyer et al., 1987), which crystallize in the cryolite-type structure (Hawthorne et al., 1975). The Dy3+ and (Na1)+ occupy the 2a and 2b Wyckoff positions at centres of symmetry, whereas the three crystallographically different chloride anions and (Na2)+ reside at the 4e position with the site symmetry 1. A l l cations have six primary contacts to Cl-, but the [(Na2)Cl6]5- polyhedron can not only be described as distorted trigonal prism instead of the usual octahedra that are realised for [DyCl6]3- and [(Na1)Cl6]5-, it moreover carries a seventh capping Cl- anion. The isolated [DyCl6]3- octahedra are interconnected to a three-dimensional texture via sodium cations (Fig. 1). This structure represents the high-temperature phase of the Na3MCl6 series with M = Eu – Lu, Y and Sc. The transition into the low-temperature phase with its trigonal structure (Meyer, 1984) depends on the radius of the actual lanthanoid(III) cation (Wickleder et al., 1995) and is estimated for M = Dy at around 290 K, hence not far below the temperature of the measurement.