organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1276-o1277

6-Meth­­oxy-N-methyl-3-nitro-4-nitro­methyl-4H-chromen-2-amine

aCentre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: krishstrucbio@gmail.com

(Received 11 February 2011; accepted 25 April 2011; online 29 April 2011)

In the title compound, C12H13N3O6, the dihydro­pyran ring adopts a near screw-boat conformation. The dihedral angle between the mean planes of the benzene and dihydro­pyran rings is 6.35 (5)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) motif, which stabilizes the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯O, N—H⋯O and C—H⋯π hydrogen bonds contribute to the stabilization of the packing.

Related literature

For related structures, see: Gayathri et al. (2006[Gayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961-o1963.]); Bhaskaran et al. (2006[Bhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188-o190.]). For the biological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Gabor et al. (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]); Wang et al. (2000[Wang, J. L., Liu, D., Zhang, Z. J., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S. & Huang, Z. (2000). Proc. Natl Acad. Sci. USA, 97, 7124-9.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For C—H⋯π inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11-40. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N3O6

  • Mr = 295.25

  • Monoclinic, P 21 /n

  • a = 6.8354 (2) Å

  • b = 9.4363 (2) Å

  • c = 19.9332 (4) Å

  • β = 90.777 (2)°

  • V = 1285.59 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.4 × 0.4 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.966, Tmax = 1.000

  • 13856 measured reflections

  • 2256 independent reflections

  • 1804 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.01

  • 2256 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.01 2.6169 (17) 127
N1—H1⋯O3i 0.86 2.26 2.9808 (18) 142
C11—H11A⋯O2ii 0.97 2.49 3.4366 (19) 165
C10—H10ACgiii 0.96 2.61 3.548 (2) 164
C10—H10CCgiv 0.96 2.86 3.706 (2) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

4H-Chromene derivatives exhibit anti-viral, anti-fungal, anti-inflammatory, anti-diabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai et al., 2006; Gabor et al., 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). Functionally substituted 4H-Chromene derivatives are a new class of compound that binds to Bcl-2 protein and induces apoptosis or programmed cell death in cancer cells (Wang et al., 2000). In order to examine the activity relationship between their molecular structure and biology, a single-crystal of the title compound was prepared for X-ray diffraction studies.

In the title compound (Fig. 1), the methoxy substituent at the C4 atom forms the torsion angle of -180 (14) ° [(-) anti-periplanar conformation] with the atom set O6/C4/C3/C2. From the puckering analysis (Cremer & Pople, 1975), the dihydropyran ring (O1/C1/C6/C7/C8/C9) is very similar to the screw-boat conformation (S form) with puckering parameters of Q = 0.1798 (15) Å, θ = 100.8 (5)° and Φ = 20.1 (5)°. Three intramolecular interactions N1—H1···O2 (symmetry code: x, y, z), N1—H1···N2 and C11—H11A···O3 are observed to contribute to the stability of the title compound, in which an N1—H1···O2 interaction generates a characteristic intramolecular S (6) motif with an N···O distance of 2.617 (17) Å (Fig. 2). The stabilization of crystal packing (Fig. 3) is influenced by intermolecular hydrogen bonding such as N1—H1···O3 (symmetry code: -x + 1/2, y - 1/2, -z + 1/2) and C11—H11A···O2 (symmetry code: -x + 1/2, y + 1/2, -z + 1/2). The C—H···pi interactions (Fig. 4) observed between C10—H10A···Cg (symmetry code:-x, 1 - y,-z, Cg is the centroid of the benzene ring C1—C6, C···Cg distance: 3.548 (2) Å, H-Perp: -2.56 Å) and C10—H10C···Cg (symmetry code: 1 - x,1 - y,-z, C···Cg distance: 3.706 (2) Å, H-Perp: 2.65 Å) also contribute to the crystal packing. The bond distances of the C—H···π interactions agree with those described by Desiraju & Steiner (1999). An intermolecular N1—H1···O3 interaction generates a C (6) motif with an N···O distance of 2.981 (18) Å (Fig. 5).

Related literature top

For related structures, see: Gayathri et al. (2006); Bhaskaran et al. (2006). For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor et al. (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007); Wang et al. (2000). For ring puckering analysis, see: Cremer & Pople (1975). For C—H···π interactions, see: Desiraju & Steiner (1999).

Experimental top

(E)-4-Methoxy-2-(2-nitrovinyl)phenol (200 mg, 1.024 mmol) was taken in a 25 ml round bottom flask in methanol (5 ml). To this solution, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (15 mg, 0.102 mmol) was added and stirred thoroughly for 10 minutes at room temperature. To this stirred solution, ((E) N-methyl-1-(methylthio)-2-nitroethenamine) (NMSM) was added and stirred for 8 h for completion (TLC, hexane:ethyl acetate, 3:2, Rf of I = 1/2). The reaction mixture was then kept in a refrigerator for 3 h to afford racemic mixture of the product (I)as a white precipitate, which was filtered. Good crystals were obtained by recrystallization with a solution of dichloromethane:hexane (9:3 v/v).

Refinement top

All hydrogen atoms were placed in calculated positions, with N—H = 0.86 and C—H = 0.97 and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2 Ueq(C).

TITL

CELL 0.71073 6.8354 9.4363 19.9332 90.000 90.777 90.000

ZERR 4.00 0.0002 0.0002 0.0004 0.000 0.002 0.000

LATT 1

SYMM 1/2 - X, 1/2 + Y, 1/2 - Z

SFAC C H N O

UNIT 48 52 12 24

MERG 2

OMIT -2 50

ACTA

CONF

FMAP 2

PLAN 20

BOND $H

EQIV $1 1/2-X, -1/2+Y, 1/2-Z

EQIV $2 1/2-X, 1/2+Y, 1/2-Z

HTAB N1 O3_$1

HTAB C11 O2_$2

L.S. 4

WGHT 0.087000

FVAR 5.43518

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the intramolecular S (6) motif formed by N—H···O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the hydrogen bond is shown as a blue dashed line.
[Figure 3] Fig. 3. The crystal packing of Compound (I) viewed down the XO-axis, showing intermolecular hydrogen bonding interactions as dashed lines.
[Figure 4] Fig. 4. A view showing the weak C—H···pi intermolecular interactions in Compound (I). Cg is a centroid of the C1—C6 ring in the 4H-Chromene moiety.
[Figure 5] Fig. 5. A view of the intermolecular C (6) motif formed by the N—H···O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the hydrogen bond is shown as a blue dashed line.
6-Methoxy-N-methyl-3-nitro-4-nitromethyl-4H-chromen-2-amine top
Crystal data top
C12H13N3O6F(000) = 616
Mr = 295.25Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7594 reflections
a = 6.8354 (2) Åθ = 3.0–29.3°
b = 9.4363 (2) ŵ = 0.12 mm1
c = 19.9332 (4) ÅT = 293 K
β = 90.777 (2)°Block, colorless
V = 1285.59 (5) Å30.4 × 0.4 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2256 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.966, Tmax = 1.000l = 2323
13856 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.087P)2]
where P = (Fo2 + 2Fc2)/3
2256 reflections(Δ/σ)max = 0.015
192 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H13N3O6V = 1285.59 (5) Å3
Mr = 295.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8354 (2) ŵ = 0.12 mm1
b = 9.4363 (2) ÅT = 293 K
c = 19.9332 (4) Å0.4 × 0.4 × 0.2 mm
β = 90.777 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2256 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1804 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 1.000Rint = 0.040
13856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
2256 reflectionsΔρmin = 0.36 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2620 (2)0.61723 (15)0.00254 (7)0.0299 (4)
C20.2708 (2)0.58244 (17)0.06949 (8)0.0337 (4)
H20.25940.48840.08300.040*
C30.2967 (2)0.68797 (18)0.11657 (8)0.0356 (4)
H30.30190.66560.16200.043*
C40.3149 (2)0.82767 (17)0.09555 (8)0.0335 (4)
C50.3093 (2)0.85951 (17)0.02791 (7)0.0329 (4)
H50.32390.95320.01420.039*
C60.2826 (2)0.75487 (16)0.01994 (7)0.0297 (4)
C70.2766 (2)0.78954 (16)0.09386 (7)0.0323 (4)
H70.39390.84530.10450.039*
C80.2891 (2)0.65553 (16)0.13472 (7)0.0310 (4)
C90.2506 (2)0.52117 (16)0.10765 (7)0.0289 (4)
C100.2007 (2)0.26444 (16)0.10926 (9)0.0379 (4)
H10A0.07980.26550.08420.057*
H10B0.19500.19280.14340.057*
H10C0.30670.24420.07960.057*
C110.0974 (3)0.88254 (16)0.11164 (8)0.0379 (4)
H11A0.11190.91710.15730.046*
H11B0.09160.96380.08190.046*
C120.3430 (3)0.9162 (2)0.20753 (8)0.0543 (5)
H12A0.44980.85430.21800.081*
H12B0.35851.00450.23080.081*
H12C0.22190.87280.22130.081*
N10.2318 (2)0.40166 (13)0.14032 (6)0.0336 (3)
H10.23830.40480.18340.040*
N20.3329 (2)0.67051 (14)0.20171 (6)0.0356 (3)
N30.0864 (2)0.80035 (15)0.10518 (7)0.0411 (4)
O10.22704 (16)0.50418 (11)0.04132 (5)0.0358 (3)
O20.3398 (2)0.56472 (13)0.24035 (5)0.0496 (4)
O30.3669 (2)0.79190 (12)0.22406 (6)0.0484 (4)
O40.1438 (2)0.73633 (16)0.15375 (8)0.0703 (5)
O50.1686 (2)0.79552 (16)0.05057 (7)0.0641 (4)
O60.34105 (19)0.94142 (13)0.13716 (6)0.0486 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (8)0.0310 (8)0.0272 (8)0.0014 (6)0.0001 (6)0.0012 (7)
C20.0359 (9)0.0344 (9)0.0307 (9)0.0006 (7)0.0012 (7)0.0079 (7)
C30.0352 (9)0.0487 (10)0.0230 (8)0.0021 (7)0.0032 (7)0.0045 (7)
C40.0309 (8)0.0418 (9)0.0280 (8)0.0032 (7)0.0031 (6)0.0049 (7)
C50.0366 (9)0.0321 (8)0.0299 (8)0.0033 (7)0.0004 (7)0.0001 (7)
C60.0321 (8)0.0318 (8)0.0253 (8)0.0015 (6)0.0000 (6)0.0011 (6)
C70.0439 (9)0.0280 (8)0.0250 (8)0.0055 (7)0.0029 (7)0.0021 (6)
C80.0381 (9)0.0309 (8)0.0238 (8)0.0002 (7)0.0020 (6)0.0013 (6)
C90.0297 (8)0.0318 (8)0.0253 (8)0.0030 (6)0.0003 (6)0.0002 (6)
C100.0427 (10)0.0285 (9)0.0424 (10)0.0002 (7)0.0050 (8)0.0008 (7)
C110.0610 (11)0.0249 (8)0.0278 (9)0.0013 (7)0.0020 (7)0.0042 (7)
C120.0661 (13)0.0703 (14)0.0267 (9)0.0128 (10)0.0045 (8)0.0082 (9)
N10.0443 (8)0.0296 (7)0.0270 (7)0.0007 (6)0.0005 (6)0.0001 (6)
N20.0455 (8)0.0358 (8)0.0254 (7)0.0029 (6)0.0042 (6)0.0010 (6)
N30.0534 (9)0.0347 (8)0.0353 (9)0.0109 (6)0.0022 (7)0.0042 (7)
O10.0538 (7)0.0289 (6)0.0244 (6)0.0057 (5)0.0031 (5)0.0018 (4)
O20.0772 (9)0.0417 (7)0.0297 (7)0.0045 (6)0.0105 (6)0.0074 (5)
O30.0775 (9)0.0378 (7)0.0297 (7)0.0097 (6)0.0054 (6)0.0087 (5)
O40.0762 (10)0.0754 (10)0.0597 (9)0.0071 (8)0.0115 (8)0.0222 (8)
O50.0679 (10)0.0781 (10)0.0460 (8)0.0039 (7)0.0138 (7)0.0154 (7)
O60.0696 (9)0.0479 (7)0.0285 (6)0.0079 (6)0.0065 (6)0.0080 (5)
Geometric parameters (Å, º) top
C1—C21.376 (2)C9—O11.3394 (17)
C1—C61.381 (2)C10—N11.4496 (19)
C1—O11.4019 (17)C10—H10A0.9600
C2—C31.381 (2)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.388 (2)C11—N31.480 (2)
C3—H30.9300C11—H11A0.9700
C4—O61.3696 (19)C11—H11B0.9700
C4—C51.382 (2)C12—O61.423 (2)
C5—C61.387 (2)C12—H12A0.9600
C5—H50.9300C12—H12B0.9600
C6—C71.511 (2)C12—H12C0.9600
C7—C81.506 (2)N1—H10.8600
C7—C111.551 (2)N2—O31.2497 (17)
C7—H70.9800N2—O21.2613 (16)
C8—N21.3719 (19)N3—O41.2111 (18)
C8—C91.401 (2)N3—O51.2191 (19)
C9—N11.3095 (19)
C2—C1—C6122.24 (14)N1—C10—H10A109.5
C2—C1—O1115.67 (13)N1—C10—H10B109.5
C6—C1—O1122.07 (13)H10A—C10—H10B109.5
C1—C2—C3119.63 (14)N1—C10—H10C109.5
C1—C2—H2120.2H10A—C10—H10C109.5
C3—C2—H2120.2H10B—C10—H10C109.5
C2—C3—C4119.43 (14)N3—C11—C7110.81 (12)
C2—C3—H3120.3N3—C11—H11A109.5
C4—C3—H3120.3C7—C11—H11A109.5
O6—C4—C5115.20 (14)N3—C11—H11B109.5
O6—C4—C3124.98 (14)C7—C11—H11B109.5
C5—C4—C3119.81 (14)H11A—C11—H11B108.1
C6—C5—C4121.45 (15)O6—C12—H12A109.5
C6—C5—H5119.3O6—C12—H12B109.5
C4—C5—H5119.3H12A—C12—H12B109.5
C1—C6—C5117.41 (14)O6—C12—H12C109.5
C1—C6—C7121.09 (13)H12A—C12—H12C109.5
C5—C6—C7121.49 (13)H12B—C12—H12C109.5
C8—C7—C6110.10 (12)C9—N1—C10124.87 (13)
C8—C7—C11112.99 (13)C9—N1—H1117.6
C6—C7—C11112.17 (12)C10—N1—H1117.6
C8—C7—H7107.1O3—N2—O2120.17 (13)
C6—C7—H7107.1O3—N2—C8118.59 (13)
C11—C7—H7107.1O2—N2—C8121.24 (13)
N2—C8—C9120.36 (13)O4—N3—O5123.00 (17)
N2—C8—C7116.74 (13)O4—N3—C11118.40 (15)
C9—C8—C7122.86 (13)O5—N3—C11118.53 (15)
N1—C9—O1112.12 (13)C9—O1—C1120.35 (12)
N1—C9—C8127.37 (14)C4—O6—C12117.96 (14)
O1—C9—C8120.52 (13)
C6—C1—C2—C31.5 (2)N2—C8—C9—N17.3 (2)
O1—C1—C2—C3177.37 (13)C7—C8—C9—N1170.06 (15)
C1—C2—C3—C40.5 (2)N2—C8—C9—O1173.30 (13)
C2—C3—C4—O6179.99 (14)C7—C8—C9—O19.4 (2)
C2—C3—C4—C50.8 (2)C8—C7—C11—N355.31 (17)
O6—C4—C5—C6179.61 (14)C6—C7—C11—N369.86 (16)
C3—C4—C5—C61.1 (2)O1—C9—N1—C103.5 (2)
C2—C1—C6—C51.2 (2)C8—C9—N1—C10177.05 (15)
O1—C1—C6—C5177.60 (13)C9—C8—N2—O3179.81 (14)
C2—C1—C6—C7178.67 (14)C7—C8—N2—O32.7 (2)
O1—C1—C6—C72.5 (2)C9—C8—N2—O20.0 (2)
C4—C5—C6—C10.1 (2)C7—C8—N2—O2177.50 (14)
C4—C5—C6—C7179.97 (14)C7—C11—N3—O489.78 (17)
C1—C6—C7—C811.8 (2)C7—C11—N3—O587.28 (17)
C5—C6—C7—C8168.03 (14)N1—C9—O1—C1173.34 (12)
C1—C6—C7—C11114.91 (16)C8—C9—O1—C17.2 (2)
C5—C6—C7—C1165.23 (18)C2—C1—O1—C9167.88 (13)
C6—C7—C8—N2164.64 (13)C6—C1—O1—C913.3 (2)
C11—C7—C8—N269.08 (17)C5—C4—O6—C12178.38 (14)
C6—C7—C8—C917.9 (2)C3—C4—O6—C122.3 (2)
C11—C7—C8—C9108.34 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.012.6169 (17)127
N1—H1···O3i0.862.262.9808 (18)142
C11—H11A···O2ii0.972.493.4366 (19)165
C10—H10A···Cgiii0.962.613.548 (2)164
C10—H10C···Cgiv0.962.863.706 (2)148
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H13N3O6
Mr295.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.8354 (2), 9.4363 (2), 19.9332 (4)
β (°) 90.777 (2)
V3)1285.59 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.4 × 0.4 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.966, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13856, 2256, 1804
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.01
No. of reflections2256
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.012.6169 (17)127
N1—H1···O3i0.862.262.9808 (18)142
C11—H11A···O2ii0.972.493.4366 (19)165
C10—H10A···Cgiii0.962.613.548 (2)164
C10—H10C···Cgiv0.962.863.706 (2)148
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: hspr@yahoo.com.

Acknowledgements

RK, JM, and PM thank the Centre for Bioinformatics (funded by the Department of Biotechnology and the Department of Information Technology, New Delhi, India) and Pondicherry University for providing computational facilities. AP thanks Pondicherry University for a fellowship and PM thanks the University Grants Commission (UGC) for a fellowship. HSP thanks the UGC for the SAP and the Department of Science and Technology (DST) for the FIST.

References

First citationBhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188–o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961–o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar
First citationWang, J. L., Liu, D., Zhang, Z. J., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S. & Huang, Z. (2000). Proc. Natl Acad. Sci. USA, 97, 7124–9.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1276-o1277
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds