metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-(3-Meth­­oxy-2-oxido­benzyl­­idene-κO2)threoninato-κ2O1,N](1,10-phenanthroline-κ2N,N′)copper(II) hemihydrate

aCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and cDepartment of Materials Science, Shandong Polytechnic Technician College, Shandong 252027, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 20 March 2011; accepted 31 March 2011; online 7 April 2011)

In the title complex, [Cu(C12H13NO5)(C12H8N2)]·0.5H2O, the CuII ion is five-coordinated by one N atom and two O atoms from a tridentate Schiff base ligand, derived from the condensation of L-threonine and o-vanillin, and two N atoms from a 1,10-phenanthroline ligand in a distorted square-pyramidal geometry. In the crystal, inter­molecular O—H⋯O hydrogen bonds form a one-dimensional left-handed helical structureextending parallel to [001]. The water molecule of crystallization shows half-occupancy.

Related literature

For general background to Schiff bases and their metal complexes, see: Chohan et al. (1998[Chohan, Z. H., Praveen, M. & Ghaffer, A. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1673-1687.]); Nath et al. (2001[Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]); Yamada (1966[Yamada, S. (1966). Coord. Chem. Rev. 1, 415-437.]). For structures of related complexes with five-coordinate copper(II) derived from amino acid Schiff base ligands, see: Huang et al. (2010[Huang, L., Dong, J., Jing, B., Li, L. & Wang, D. (2010). Acta Cryst. E66, m1553.]); Qiu et al. (2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H13NO5)(C12H8N2)]·0.5H2O

  • Mr = 503.99

  • Tetragonal, I 4

  • a = 22.527 (6) Å

  • c = 10.290 (4) Å

  • V = 5222 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.50 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.669, Tmax = 0.910

  • 13788 measured reflections

  • 4560 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.267

  • S = 0.90

  • 4560 reflections

  • 307 parameters

  • 511 restraints

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2126 Friedel pairs

  • Flack parameter: −0.13 (5)

Table 1
Selected bond lengths (Å)

Cu1—N1 1.940 (8)
Cu1—N2 2.263 (9)
Cu1—N3 2.004 (8)
Cu1—O1 1.966 (6)
Cu1—O4 1.924 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 2.10 2.767 (11) 138
Symmetry code: (i) [-y+{\script{3\over 2}}, x-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases still play an important role as ligands in metal coordination chemistry even after almost a century since their discovery (Yamada et al., 1966). It has been reported that amino acid Schiff bases and their first row transition metal complexes exhibit fungicidal, bactericidal, antiviral and antitubercular activities (Chohan et al., 1998; Nath et al., 2001). Herein, we report the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand, derived from the condensation of L-threonine and o-vanillin, and a 1,10-phenanthroline coligand.

The title complex has a mononuclear structure with an amino acid Schiff base ligand and a 1,10-phenanthroline ligand. As shown in Fig. 1, the CuII ion is five-coordinated by one N atom and two O atoms from the Schiff base ligand and by two N atoms from the 1,10-phenanthroline ligand, forming a seriously distorted square-pyramidal geometry. O1, O4, N1 and N3 atoms are located in the basal plane and N2 atom in the apical position. The CuII ion lies 0.1651 (4) Å above the basal plane towards N2. The Cu1—N2 bond is significantly longer [2.263 (9) Å] (Table 1) as seen previously [2.298 (4) Å] (Huang et al., 2010) and [2.231 (3) Å] (Qiu et al., 2008). In the crystal, intermolecular O3—H3···O2i (symmetry code: 3/2-y, -1/2+x, -1/2+z) hydrogen bonds (Table 2) form a one-dimensional left-handed helical structure (Fig. 2).

Related literature top

For general background to Schiff bases and their metal complexes, see: Chohan et al. (1998); Nath et al. (2001); Yamada (1966). For related structures of five-coordinate copper(II) complexes with amino acid Schiff base ligands, see: Huang et al. (2010); Qiu et al. (2008).

Experimental top

L-Threonine (1 mmol, 119 mg) and potassium hydroxide (1 mmol, 56 mg) were dissolved in hot methanol (10 ml) and added successively to a methanol solution of o-vanillin (1 mmol, 152 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate hydrate (1 mmol, 200 mg) was added dropwise and stirred for 2 h. A methanol solution (5 ml) of phenanthroline (1 mmol, 198 mg) was added dropwise and stirred for 4 h. The solution was held at room temperature for two weeks, whereupon green block-shaped crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms of the water molecule were found in difference Fourier maps and refined as riding atoms, with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH3) and 0.98 (CH) Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional structure of the title compound, linked by O—H···O hydrogen bonds.
[N-(3-Methoxy-2-oxidobenzylidene-κO2)threoninato- κ2O1,N](1,10-phenanthroline- κ2N,N')copper(II) hemihydrate top
Crystal data top
[Cu(C12H13NO5)(C12H8N2)]·0.5H2ODx = 1.282 Mg m3
Mr = 503.99Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 1876 reflections
Hall symbol: I 4θ = 2.2–18.4°
a = 22.527 (6) ŵ = 0.87 mm1
c = 10.290 (4) ÅT = 293 K
V = 5222 (3) Å3Block, green
Z = 80.50 × 0.15 × 0.11 mm
F(000) = 2080
Data collection top
Bruker SMART 1000 CCD
diffractometer
4560 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2620
Tmin = 0.669, Tmax = 0.910k = 2626
13788 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.267 w = 1/[σ2(Fo2) + (0.182P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
4560 reflectionsΔρmax = 0.83 e Å3
307 parametersΔρmin = 0.40 e Å3
511 restraintsAbsolute structure: Flack (1983), 2126 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (5)
Crystal data top
[Cu(C12H13NO5)(C12H8N2)]·0.5H2OZ = 8
Mr = 503.99Mo Kα radiation
Tetragonal, I4µ = 0.87 mm1
a = 22.527 (6) ÅT = 293 K
c = 10.290 (4) Å0.50 × 0.15 × 0.11 mm
V = 5222 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4560 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2419 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.910Rint = 0.084
13788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.267Δρmax = 0.83 e Å3
S = 0.90Δρmin = 0.40 e Å3
4560 reflectionsAbsolute structure: Flack (1983), 2126 Friedel pairs
307 parametersAbsolute structure parameter: 0.13 (5)
511 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.87663 (4)0.35499 (4)0.6986 (2)0.0480 (4)
N10.9319 (3)0.3654 (4)0.5559 (8)0.0497 (19)
N20.7903 (4)0.3312 (4)0.5991 (9)0.061 (2)
N30.8201 (4)0.3524 (4)0.8489 (8)0.055 (2)
O10.8764 (3)0.4423 (3)0.7022 (10)0.0605 (15)
O20.9201 (4)0.5211 (3)0.6114 (8)0.082 (2)
O30.8996 (3)0.3845 (3)0.3014 (7)0.0669 (19)
H30.90570.39850.22910.100*
O40.8993 (3)0.2736 (3)0.7261 (7)0.061 (2)
O50.9025 (4)0.1616 (3)0.7772 (10)0.089 (3)
O60.0168 (13)0.2227 (13)0.067 (3)0.177 (12)0.50
H250.01330.22660.01490.265*0.50
H260.01550.18540.07970.265*0.50
C10.9087 (5)0.4666 (5)0.6146 (11)0.063 (2)
C20.9336 (5)0.4259 (5)0.5068 (10)0.063 (2)
H20.97390.43760.48150.075*
C30.8892 (5)0.4301 (5)0.3891 (10)0.065 (2)
H3A0.84930.42390.42440.077*
C40.8898 (6)0.4907 (5)0.3298 (12)0.079 (3)
H4A0.86220.49200.25880.118*
H4B0.92900.49950.29840.118*
H4C0.87860.51950.39400.118*
C50.9646 (5)0.3267 (5)0.5069 (11)0.058 (2)
H50.99040.33850.44140.069*
C60.9653 (4)0.2659 (5)0.5439 (9)0.059 (2)
C70.9331 (5)0.2421 (4)0.6499 (10)0.063 (2)
C80.9367 (5)0.1805 (4)0.6756 (13)0.070 (2)
C90.9703 (5)0.1430 (5)0.5961 (12)0.076 (3)
H90.96950.10220.61040.091*
C101.0053 (5)0.1662 (4)0.4943 (11)0.081 (3)
H101.03060.14200.44650.097*
C111.0007 (4)0.2271 (4)0.4679 (12)0.070 (3)
H111.02160.24270.39790.084*
C120.9017 (6)0.1000 (5)0.8092 (16)0.091 (3)
H12A0.87670.09380.88350.137*
H12B0.94130.08700.82880.137*
H12C0.88660.07780.73680.137*
C130.7756 (5)0.3181 (5)0.4748 (11)0.067 (3)
H130.80500.32100.41160.081*
C140.7194 (4)0.3008 (5)0.4365 (13)0.078 (3)
H140.71130.29190.35000.093*
C150.6757 (5)0.2969 (6)0.5295 (13)0.075 (3)
H150.63690.28770.50550.091*
C160.6892 (4)0.3066 (5)0.6563 (11)0.067 (2)
C170.7462 (4)0.3256 (4)0.6924 (11)0.0588 (18)
C180.7628 (5)0.3374 (5)0.8214 (8)0.061 (2)
C190.7194 (5)0.3332 (5)0.9200 (8)0.070 (2)
C200.7350 (5)0.3438 (5)1.0495 (10)0.074 (3)
H200.70760.33981.11660.089*
C210.7923 (5)0.3605 (6)1.0725 (11)0.079 (3)
H210.80350.37041.15670.095*
C220.8342 (5)0.3630 (5)0.9741 (10)0.068 (3)
H220.87330.37220.99510.082*
C230.6463 (6)0.3046 (6)0.7582 (11)0.081 (3)
H230.60720.29520.73750.097*
C240.6605 (5)0.3161 (6)0.8868 (11)0.081 (3)
H240.63170.31270.95120.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0526 (6)0.0562 (7)0.0354 (5)0.0025 (5)0.0009 (7)0.0008 (7)
N10.052 (5)0.059 (5)0.038 (4)0.007 (4)0.007 (4)0.001 (4)
N20.069 (5)0.069 (6)0.046 (5)0.002 (4)0.000 (4)0.009 (4)
N30.060 (5)0.063 (5)0.041 (5)0.003 (4)0.002 (3)0.006 (4)
O10.071 (4)0.067 (4)0.044 (3)0.002 (3)0.004 (5)0.002 (5)
O20.123 (7)0.055 (4)0.068 (5)0.028 (4)0.019 (5)0.005 (4)
O30.093 (5)0.071 (5)0.036 (4)0.008 (4)0.004 (4)0.000 (3)
O40.071 (4)0.056 (4)0.055 (6)0.002 (3)0.007 (4)0.001 (3)
O50.107 (7)0.051 (4)0.109 (7)0.011 (4)0.007 (5)0.002 (4)
O60.155 (13)0.187 (14)0.188 (15)0.014 (9)0.013 (9)0.002 (9)
C10.073 (5)0.067 (5)0.050 (5)0.002 (5)0.005 (5)0.009 (5)
C20.075 (5)0.069 (5)0.044 (5)0.006 (5)0.001 (4)0.004 (4)
C30.075 (5)0.077 (5)0.042 (5)0.004 (5)0.001 (4)0.010 (5)
C40.100 (5)0.083 (5)0.054 (5)0.001 (5)0.003 (5)0.010 (4)
C50.053 (5)0.074 (5)0.046 (5)0.005 (4)0.004 (4)0.007 (4)
C60.053 (5)0.066 (5)0.059 (5)0.004 (4)0.010 (4)0.006 (4)
C70.061 (5)0.060 (5)0.068 (5)0.004 (4)0.009 (4)0.003 (4)
C80.066 (5)0.065 (5)0.077 (6)0.001 (4)0.008 (4)0.007 (5)
C90.079 (5)0.062 (5)0.086 (6)0.012 (4)0.002 (5)0.011 (5)
C100.080 (6)0.075 (5)0.086 (7)0.007 (5)0.006 (5)0.014 (5)
C110.056 (5)0.081 (5)0.073 (6)0.008 (5)0.003 (5)0.011 (5)
C120.099 (5)0.072 (5)0.102 (6)0.001 (5)0.002 (5)0.003 (5)
C130.072 (6)0.076 (6)0.053 (6)0.001 (5)0.006 (5)0.000 (5)
C140.085 (6)0.082 (6)0.065 (6)0.000 (5)0.026 (5)0.011 (5)
C150.072 (6)0.081 (6)0.073 (6)0.017 (5)0.021 (5)0.005 (5)
C160.058 (4)0.076 (5)0.066 (5)0.009 (4)0.005 (4)0.001 (4)
C170.058 (4)0.066 (4)0.052 (4)0.008 (3)0.002 (4)0.005 (5)
C180.066 (4)0.070 (5)0.048 (4)0.007 (4)0.004 (4)0.010 (4)
C190.070 (5)0.088 (5)0.052 (5)0.001 (5)0.013 (5)0.005 (5)
C200.080 (6)0.086 (6)0.055 (5)0.004 (5)0.016 (5)0.007 (5)
C210.092 (6)0.096 (6)0.049 (6)0.003 (6)0.002 (5)0.004 (5)
C220.077 (6)0.071 (6)0.056 (6)0.004 (5)0.004 (5)0.007 (5)
C230.067 (5)0.095 (6)0.081 (6)0.009 (5)0.005 (4)0.010 (5)
C240.073 (5)0.098 (6)0.073 (6)0.006 (5)0.019 (5)0.012 (5)
Geometric parameters (Å, º) top
Cu1—N11.940 (8)C6—C111.417 (8)
Cu1—N22.263 (9)C7—C81.417 (8)
Cu1—N32.004 (8)C8—C91.397 (16)
Cu1—O11.966 (6)C9—C101.413 (9)
Cu1—O41.924 (7)C9—H90.9300
N1—C51.246 (13)C10—C111.403 (8)
N1—C21.456 (12)C10—H100.9300
N2—C171.387 (13)C11—H110.9300
N2—C131.354 (14)C12—H12A0.9600
N3—C221.348 (13)C12—H12B0.9600
N3—C181.364 (13)C12—H12C0.9600
O1—C11.282 (13)C13—C141.383 (10)
O2—C11.255 (12)C13—H130.9300
O3—C31.388 (13)C14—C151.376 (11)
O3—H30.8200C14—H140.9300
O4—C71.302 (12)C15—C161.358 (17)
O5—C81.367 (15)C15—H150.9300
O5—C121.426 (13)C16—C171.403 (8)
O6—H250.8500C16—C231.427 (16)
O6—H260.8501C17—C181.404 (8)
C1—C21.544 (15)C18—C191.412 (8)
C2—C31.573 (14)C19—C201.398 (8)
C2—H20.9800C19—C241.424 (15)
C3—C41.494 (15)C20—C211.365 (15)
C3—H3A0.9800C20—H200.9300
C4—H4A0.9600C21—C221.386 (10)
C4—H4B0.9600C21—H210.9300
C4—H4C0.9600C22—H220.9300
C5—C61.422 (15)C23—C241.386 (9)
C5—H50.9300C23—H230.9300
C6—C71.414 (8)C24—H240.9300
N1—Cu1—O493.2 (3)C9—C8—O5124.4 (9)
N1—Cu1—O184.0 (3)C9—C8—C7121.0 (11)
O4—Cu1—O1161.9 (3)O5—C8—C7114.5 (10)
N1—Cu1—N3174.7 (3)C8—C9—C10120.8 (11)
O4—Cu1—N391.6 (3)C8—C9—H9119.6
O1—Cu1—N390.8 (3)C10—C9—H9119.6
N1—Cu1—N2103.8 (3)C11—C10—C9117.7 (11)
O4—Cu1—N294.0 (3)C11—C10—H10121.2
O1—Cu1—N2104.1 (3)C9—C10—H10121.2
N3—Cu1—N278.2 (4)C10—C11—C6122.5 (10)
C5—N1—C2119.9 (9)C10—C11—H11118.8
C5—N1—Cu1126.9 (8)C6—C11—H11118.8
C2—N1—Cu1113.1 (6)O5—C12—H12A109.5
C17—N2—C13117.4 (9)O5—C12—H12B109.5
C17—N2—Cu1108.9 (6)H12A—C12—H12B109.5
C13—N2—Cu1133.5 (7)O5—C12—H12C109.5
C22—N3—C18117.7 (9)H12A—C12—H12C109.5
C22—N3—Cu1125.6 (7)H12B—C12—H12C109.5
C18—N3—Cu1116.6 (6)N2—C13—C14123.6 (11)
C1—O1—Cu1114.4 (7)N2—C13—H13118.2
C3—O3—H3109.5C14—C13—H13118.2
C7—O4—Cu1125.9 (6)C15—C14—C13118.4 (12)
C8—O5—C12119.1 (10)C15—C14—H14120.8
H25—O6—H26104.6C13—C14—H14120.8
O1—C1—O2123.5 (11)C14—C15—C16119.8 (11)
O1—C1—C2117.2 (9)C14—C15—H15120.1
O2—C1—C2119.2 (10)C16—C15—H15120.1
N1—C2—C1107.3 (8)C15—C16—C17120.6 (11)
N1—C2—C3107.9 (8)C15—C16—C23123.3 (9)
C1—C2—C3106.7 (9)C17—C16—C23115.8 (10)
N1—C2—H2111.6N2—C17—C16119.9 (10)
C1—C2—H2111.6N2—C17—C18116.5 (7)
C3—C2—H2111.6C16—C17—C18123.5 (10)
O3—C3—C4114.2 (9)N3—C18—C17119.7 (7)
O3—C3—C2110.4 (9)N3—C18—C19121.4 (9)
C4—C3—C2111.3 (9)C17—C18—C19118.9 (10)
O3—C3—H3A106.8C20—C19—C24120.6 (9)
C4—C3—H3A106.8C20—C19—C18120.0 (10)
C2—C3—H3A106.8C24—C19—C18119.4 (10)
C3—C4—H4A109.5C19—C20—C21116.7 (11)
C3—C4—H4B109.5C19—C20—H20121.6
H4A—C4—H4B109.5C21—C20—H20121.6
C3—C4—H4C109.5C22—C21—C20121.9 (11)
H4A—C4—H4C109.5C22—C21—H21119.1
H4B—C4—H4C109.5C20—C21—H21119.1
N1—C5—C6124.9 (10)N3—C22—C21122.0 (11)
N1—C5—H5117.6N3—C22—H22119.0
C6—C5—H5117.6C21—C22—H22119.0
C7—C6—C11118.8 (9)C24—C23—C16122.6 (11)
C7—C6—C5124.4 (8)C24—C23—H23118.7
C11—C6—C5116.9 (9)C16—C23—H23118.7
O4—C7—C6123.9 (8)C23—C24—C19119.7 (11)
O4—C7—C8117.1 (9)C23—C24—H24120.1
C6—C7—C8119.0 (10)C19—C24—H24120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.102.767 (11)138
Symmetry code: (i) y+3/2, x1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H13NO5)(C12H8N2)]·0.5H2O
Mr503.99
Crystal system, space groupTetragonal, I4
Temperature (K)293
a, c (Å)22.527 (6), 10.290 (4)
V3)5222 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.50 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.669, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
13788, 4560, 2419
Rint0.084
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.267, 0.90
No. of reflections4560
No. of parameters307
No. of restraints511
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.40
Absolute structureFlack (1983), 2126 Friedel pairs
Absolute structure parameter0.13 (5)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.940 (8)Cu1—O11.966 (6)
Cu1—N22.263 (9)Cu1—O41.924 (7)
Cu1—N32.004 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.102.767 (11)138
Symmetry code: (i) y+3/2, x1/2, z1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Praveen, M. & Ghaffer, A. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1673–1687.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, L., Dong, J., Jing, B., Li, L. & Wang, D. (2010). Acta Cryst. E66, m1553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, S. (1966). Coord. Chem. Rev. 1, 415–437.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds