metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodido{2-(morpholin-4-yl)-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}zinc

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 14 April 2011; accepted 19 April 2011; online 22 April 2011)

In the title compound, [ZnI2(C13H19N3O)], the ZnII ion is five-coordinated in a distorted square-pyramidal geometry, in which the basal plane is defined by three N atoms from the Schiff base ligand and one iodide ion. A second iodide ligand, situated in the apical position, completes the coordination geometry. In the crystal structure, C—H⋯O hydrogen bonds link a pair of mol­ecules around an inversion centre into a dimer.

Related literature

For the structure of an analogous ZnCl2 complex, see: Ikmal Hisham et al. (2011[Ikmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m55.]). For square-pyramidal ZnI2 complexes with N,N′,N′′-tridentate ligands, see: Drew & Hollis (1978[Drew, M. G. B. & Hollis, S. (1978). J. Chem. Soc. Dalton Trans. pp. 511-516.]); Yousefi (2010[Yousefi, M. (2010). Acta Cryst. E66, m1600-m1601.]). For a description of the geometry of complexes with five-coordinated metal ions, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C13H19N3O)]

  • Mr = 552.48

  • Triclinic, [P \overline 1]

  • a = 8.8874 (3) Å

  • b = 10.3117 (4) Å

  • c = 10.3643 (4) Å

  • α = 68.8810 (18)°

  • β = 81.959 (2)°

  • γ = 66.3990 (17)°

  • V = 811.91 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.31 mm−1

  • T = 100 K

  • 0.17 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.465, Tmax = 0.646

  • 7292 measured reflections

  • 3517 independent reflections

  • 3260 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.045

  • S = 1.05

  • 3517 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.205 (2)
Zn1—N2 2.093 (2)
Zn1—N3 2.269 (2)
Zn1—I1 2.6018 (4)
Zn1—I2 2.6506 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.99 2.55 3.491 (3) 159
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Fig. 1) was obtained via the complexation of ZnII ion with the in situ prepared Schiff base, 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine, and two iodide ions. Similar to what was observed in an analogous ZnCl2 complex (Ikmal Hisham et al., 2011), the Schiff base acts as an N,N',N''-tridentate chelate ligand, along with two halide ligands, make a distorted square-pyramidal geometry around the metal ion (τ = 0.24, Addison et al., 1984). The Zn—I and Zn—N interatomic distances (Table 1) are comparable to the values reported for similar structures (Drew & Hollis, 1978; Yousefi, 2010). In the crystal, a pair of the molecules, related by a symmetry operation -x + 1, -y + 2, -z + 2, are linked through C—H···O hydrogen bonds into a centrosymmetric dimer (Table 2).

Related literature top

For the structure of an analogous ZnCl2 complex, see: Ikmal Hisham et al. (2011). For square-pyramidal ZnI2 complexes with N,N',N''-tridentate ligands, see: Drew & Hollis (1978); Yousefi (2010). For a description of the geometry of complexes with five-coordinated metal ions, see: Addison et al. (1984).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 h, followed by addition of a solution of zinc(II) acetate dihydrate (0.36 g, 1.65 mmol) and potassium iodide (0.54 g, 3.3 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min and then left at room temperature. Brown crystals of the title complex were obtained in a few days.

Refinement top

H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Diiodido{2-(morpholin-4-yl)-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}zinc top
Crystal data top
[ZnI2(C13H19N3O)]Z = 2
Mr = 552.48F(000) = 524
Triclinic, P1Dx = 2.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8874 (3) ÅCell parameters from 6030 reflections
b = 10.3117 (4) Åθ = 2.3–30.4°
c = 10.3643 (4) ŵ = 5.31 mm1
α = 68.8810 (18)°T = 100 K
β = 81.959 (2)°Block, brown
γ = 66.3990 (17)°0.17 × 0.13 × 0.09 mm
V = 811.91 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3517 independent reflections
Radiation source: fine-focus sealed tube3260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.465, Tmax = 0.646k = 1313
7292 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.3278P]
where P = (Fo2 + 2Fc2)/3
3517 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[ZnI2(C13H19N3O)]γ = 66.3990 (17)°
Mr = 552.48V = 811.91 (6) Å3
Triclinic, P1Z = 2
a = 8.8874 (3) ÅMo Kα radiation
b = 10.3117 (4) ŵ = 5.31 mm1
c = 10.3643 (4) ÅT = 100 K
α = 68.8810 (18)°0.17 × 0.13 × 0.09 mm
β = 81.959 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3260 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.646Rint = 0.013
7292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.05Δρmax = 0.85 e Å3
3517 reflectionsΔρmin = 1.23 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.77476 (4)0.81170 (3)0.66161 (3)0.01267 (7)
I10.64389 (2)1.103488 (18)0.584395 (17)0.01508 (5)
I21.05998 (2)0.694938 (19)0.791314 (17)0.01566 (5)
O10.3717 (2)0.8562 (2)1.0506 (2)0.0212 (4)
N10.8699 (3)0.8016 (2)0.4558 (2)0.0135 (4)
N20.7235 (3)0.6403 (2)0.6380 (2)0.0137 (4)
N30.6122 (3)0.7619 (2)0.8469 (2)0.0137 (4)
C10.9527 (3)0.8810 (3)0.3702 (3)0.0161 (5)
H10.96970.95370.39590.019*
C21.0153 (3)0.8615 (3)0.2446 (3)0.0181 (5)
H21.07670.91760.18680.022*
C30.9859 (3)0.7587 (3)0.2062 (3)0.0190 (6)
H31.02390.74550.11970.023*
C40.9002 (3)0.6744 (3)0.2951 (3)0.0165 (5)
H40.87970.60240.27090.020*
C50.8456 (3)0.6981 (3)0.4199 (3)0.0145 (5)
C60.7574 (3)0.6108 (3)0.5253 (3)0.0139 (5)
C70.7137 (3)0.5006 (3)0.4920 (3)0.0181 (5)
H7A0.67320.44120.57540.027*
H7B0.81120.43360.45820.027*
H7C0.62800.55470.42040.027*
C80.6366 (3)0.5663 (3)0.7513 (3)0.0161 (5)
H8A0.68370.45660.76930.019*
H8B0.51890.60520.72750.019*
C90.6557 (3)0.5993 (3)0.8785 (3)0.0150 (5)
H9A0.58390.56430.95310.018*
H9B0.77070.54350.91190.018*
C100.4339 (3)0.8512 (3)0.8159 (3)0.0157 (5)
H10A0.40080.82540.74400.019*
H10B0.41520.95940.77820.019*
C110.3273 (3)0.8231 (3)0.9429 (3)0.0177 (5)
H11A0.21070.88640.91740.021*
H11B0.33910.71660.97660.021*
C120.5400 (3)0.7684 (3)1.0885 (3)0.0188 (6)
H12A0.55610.66081.12760.023*
H12B0.56900.79601.16100.023*
C130.6531 (3)0.7918 (3)0.9652 (3)0.0168 (5)
H13A0.64660.89670.93380.020*
H13B0.76760.72470.99500.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01377 (14)0.01207 (14)0.01168 (14)0.00432 (11)0.00086 (11)0.00440 (11)
I10.01607 (9)0.01218 (8)0.01448 (9)0.00349 (6)0.00078 (6)0.00401 (6)
I20.01406 (9)0.01676 (9)0.01511 (9)0.00421 (7)0.00121 (6)0.00553 (7)
O10.0184 (10)0.0264 (11)0.0200 (10)0.0062 (8)0.0039 (8)0.0130 (9)
N10.0131 (10)0.0134 (10)0.0120 (10)0.0034 (8)0.0003 (8)0.0039 (8)
N20.0130 (10)0.0110 (10)0.0147 (11)0.0028 (8)0.0011 (8)0.0033 (8)
N30.0150 (11)0.0130 (10)0.0116 (10)0.0047 (9)0.0001 (8)0.0032 (8)
C10.0148 (12)0.0163 (12)0.0164 (13)0.0051 (10)0.0007 (10)0.0051 (10)
C20.0142 (12)0.0194 (13)0.0178 (13)0.0053 (11)0.0010 (10)0.0047 (11)
C30.0171 (13)0.0214 (14)0.0138 (13)0.0024 (11)0.0017 (10)0.0067 (11)
C40.0153 (13)0.0178 (13)0.0160 (13)0.0034 (10)0.0007 (10)0.0084 (11)
C50.0108 (12)0.0140 (12)0.0160 (13)0.0014 (10)0.0011 (9)0.0053 (10)
C60.0116 (12)0.0123 (12)0.0159 (13)0.0012 (10)0.0012 (9)0.0057 (10)
C70.0187 (13)0.0189 (13)0.0185 (14)0.0070 (11)0.0010 (10)0.0085 (11)
C80.0176 (13)0.0155 (12)0.0165 (13)0.0077 (10)0.0038 (10)0.0064 (10)
C90.0167 (13)0.0123 (12)0.0135 (13)0.0048 (10)0.0009 (10)0.0028 (10)
C100.0145 (12)0.0169 (12)0.0148 (13)0.0042 (10)0.0003 (10)0.0061 (10)
C110.0151 (13)0.0192 (13)0.0186 (14)0.0055 (11)0.0020 (10)0.0079 (11)
C120.0183 (13)0.0256 (14)0.0123 (13)0.0071 (11)0.0008 (10)0.0076 (11)
C130.0181 (13)0.0197 (13)0.0124 (13)0.0064 (11)0.0018 (10)0.0067 (10)
Geometric parameters (Å, º) top
Zn1—N12.205 (2)C4—H40.9500
Zn1—N22.093 (2)C5—C61.495 (4)
Zn1—N32.269 (2)C6—C71.495 (4)
Zn1—I12.6018 (4)C7—H7A0.9800
Zn1—I22.6506 (4)C7—H7B0.9800
O1—C111.423 (3)C7—H7C0.9800
O1—C121.426 (3)C8—C91.521 (4)
N1—C11.332 (3)C8—H8A0.9900
N1—C51.349 (3)C8—H8B0.9900
N2—C61.277 (3)C9—H9A0.9900
N2—C81.459 (3)C9—H9B0.9900
N3—C91.479 (3)C10—C111.521 (4)
N3—C131.490 (3)C10—H10A0.9900
N3—C101.491 (3)C10—H10B0.9900
C1—C21.394 (4)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.380 (4)C12—C131.521 (4)
C2—H20.9500C12—H12A0.9900
C3—C41.394 (4)C12—H12B0.9900
C3—H30.9500C13—H13A0.9900
C4—C51.387 (4)C13—H13B0.9900
N2—Zn1—N174.71 (8)C6—C7—H7B109.5
N2—Zn1—N378.31 (8)H7A—C7—H7B109.5
N1—Zn1—N3151.54 (8)C6—C7—H7C109.5
N2—Zn1—I1137.01 (6)H7A—C7—H7C109.5
N1—Zn1—I195.53 (6)H7B—C7—H7C109.5
N3—Zn1—I198.03 (6)N2—C8—C9107.5 (2)
N2—Zn1—I2109.52 (6)N2—C8—H8A110.2
N1—Zn1—I298.21 (6)C9—C8—H8A110.2
N3—Zn1—I299.18 (6)N2—C8—H8B110.2
I1—Zn1—I2113.325 (12)C9—C8—H8B110.2
C11—O1—C12110.8 (2)H8A—C8—H8B108.5
C1—N1—C5118.9 (2)N3—C9—C8111.1 (2)
C1—N1—Zn1126.70 (18)N3—C9—H9A109.4
C5—N1—Zn1114.34 (17)C8—C9—H9A109.4
C6—N2—C8122.6 (2)N3—C9—H9B109.4
C6—N2—Zn1120.65 (18)C8—C9—H9B109.4
C8—N2—Zn1116.61 (16)H9A—C9—H9B108.0
C9—N3—C13111.1 (2)N3—C10—C11112.5 (2)
C9—N3—C10112.5 (2)N3—C10—H10A109.1
C13—N3—C10107.4 (2)C11—C10—H10A109.1
C9—N3—Zn1100.98 (15)N3—C10—H10B109.1
C13—N3—Zn1111.80 (16)C11—C10—H10B109.1
C10—N3—Zn1113.10 (15)H10A—C10—H10B107.8
N1—C1—C2122.6 (3)O1—C11—C10111.4 (2)
N1—C1—H1118.7O1—C11—H11A109.3
C2—C1—H1118.7C10—C11—H11A109.3
C3—C2—C1118.3 (3)O1—C11—H11B109.3
C3—C2—H2120.8C10—C11—H11B109.3
C1—C2—H2120.8H11A—C11—H11B108.0
C2—C3—C4119.6 (3)O1—C12—C13111.7 (2)
C2—C3—H3120.2O1—C12—H12A109.3
C4—C3—H3120.2C13—C12—H12A109.3
C5—C4—C3118.4 (3)O1—C12—H12B109.3
C5—C4—H4120.8C13—C12—H12B109.3
C3—C4—H4120.8H12A—C12—H12B107.9
N1—C5—C4122.1 (2)N3—C13—C12113.3 (2)
N1—C5—C6114.8 (2)N3—C13—H13A108.9
C4—C5—C6123.1 (2)C12—C13—H13A108.9
N2—C6—C5115.4 (2)N3—C13—H13B108.9
N2—C6—C7125.4 (2)C12—C13—H13B108.9
C5—C6—C7119.2 (2)H13A—C13—H13B107.7
C6—C7—H7A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.992.553.491 (3)159
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[ZnI2(C13H19N3O)]
Mr552.48
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8874 (3), 10.3117 (4), 10.3643 (4)
α, β, γ (°)68.8810 (18), 81.959 (2), 66.3990 (17)
V3)811.91 (6)
Z2
Radiation typeMo Kα
µ (mm1)5.31
Crystal size (mm)0.17 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.465, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
7292, 3517, 3260
Rint0.013
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.05
No. of reflections3517
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 1.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn1—N12.205 (2)Zn1—I12.6018 (4)
Zn1—N22.093 (2)Zn1—I22.6506 (4)
Zn1—N32.269 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.992.553.491 (3)159
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. G. B. & Hollis, S. (1978). J. Chem. Soc. Dalton Trans. pp. 511–516.  CrossRef Google Scholar
First citationIkmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m55.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousefi, M. (2010). Acta Cryst. E66, m1600–m1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds