organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1104

1,1′-[(1,3-Di­hydroxypropane-2,2-diyl)di­methylene]dipyridinium bis­­(hexa­fluoro­phosphate)

aDepartment of Light Chemical Engineering, College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 8 February 2011; accepted 7 April 2011; online 13 April 2011)

The title compound, C15H20N2O22+·2PF6, was prepared by anion exchange of two bromide ions in the ionic liquid 2,2′-bis-(pyridinium-1-ylmeth­yl)-propane-1,3-diol dibromide with potassium hexa­fluoro­phosphate. The two pyridine rings are planar (r.m.s. deviations = 0.008 and 0.00440 Å) and make a dihedral angle of 44.0 (2)°. Intermolecular O—H⋯F and C—H⋯F interactions occur. The four F atoms in each anion were refined as disordered over two sets of sites with an occupancy ration of 0.700 (19):0.300 (19).

Related literature

For properties and applications of ionic liquids, see: Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2071-2083.]). For dicationic ionic liquids, see: Liang et al. (2008[Liang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.]); Geng et al. (2010[Geng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, o1267.]); Yuan et al. (2010[Yuan, A.-L., Wang, C.-S., Zhuang, L.-H. & Wang, G.-W. (2010). Acta Cryst. E66, o3282.]); Yang et al. (2010[Yang, X. Z., Wang, J. & Zhang, Z. Z. (2010). J. Chem. Eng. Data, 55, 586-588.]). For the synthesis of dicationic ionic liquids, see: Yuan et al. (2010[Yuan, A.-L., Wang, C.-S., Zhuang, L.-H. & Wang, G.-W. (2010). Acta Cryst. E66, o3282.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20N2O22+·2PF6

  • Mr = 550.27

  • Monoclinic, P 21 /n

  • a = 11.955 (2) Å

  • b = 13.796 (3) Å

  • c = 12.707 (3) Å

  • β = 95.17 (3)°

  • V = 2087.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.907, Tmax = 0.968

  • 4027 measured reflections

  • 3835 independent reflections

  • 2564 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.141

  • S = 1.04

  • 3835 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O1 0.97 2.47 2.831 (5) 102
C10—H10B⋯O2 0.97 2.44 2.796 (5) 102
O1—H1A⋯F8i 0.82 2.29 2.898 (8) 131
O2—H2A⋯F1 0.82 2.49 2.973 (11) 119
C1—H1B⋯F6 0.93 2.40 3.280 (4) 158
C11—H11A⋯F10i 0.93 2.31 3.087 (7) 141
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionic liquids (ILs) have enjoyed vast research interests in recent years because of their unique physicochemical properties (Welton, 1999). Geminal dicationic ionic liquids have been shown to possess superior properties in terms of thermal stability and volatility compared to traditional ionic liquids (ILs) (Liang et al., 2008). Consequently, they have been proposed as solvents in high-temperature reactions, as novel high-temperature lubricants or ultrastable separation phases (Yang et al., 2010).

As part of our ongoing studies on new geminal dicationic ionic liquids (Geng et al., 2010; Yuan et al., 2010), we here report the crystal structure of the title compound (I).

The atom-numbering scheme of (I) is shown in Fig.1. Intramolecular C—H···O hydrogen bonds are observed between the methylene groups next to the pyridine N atoms ans the hydroxy groups. All bond lengths are within normal ranges (Allen et al., 1987). The two pyridine rings are planar (r.m.s. deviations = 0.008 and 0.004 Å) and make a dihedral angle of 44.0 (2)°. (Table 1, Fig. 1).

Related literature top

For properties and applications of ionic liquids, see: Welton (1999). For dicationic ionic liquids, see: Liang et al. (2008); Geng et al. (2010); Yuan et al. (2010); Yang et al. (2010). For the synthesis of the title compound, see: Yuan et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of pyridine (1.98 g, 25 mmol) and 2,2-bis-(bromomethyl)-propane-1,3-diol (2.60 g, 10 mmol) was stirred vigorously at 387 K for 16 h. After cooling to room temperature, the crude product was washed with acetonitrile. The resulting solid collected by filtration was treated with water (20 ml) as well as KPF6 (3.68 g, 20 mmol) and the reaction mixture was stirred at room temperature for 1 h. After filtration, the white solid was washed with ethanol and dried in vacuo to give the title compound (I) (4.82 g, 88%). M.p. 508–510 K. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanolic solution. 1H NMR (DMSO, δ, p.p.m.) 8.92 (t, 4 H), 8.68 (m, 2 H), 8.20 (m, 4 H), 5.57 (s, 2 H) 4.79 (s, 4 H), 3.16 (s, 4 H).

Refinement top

In both hexafluorophosphate groups fluorine atoms have strong oscillations, while central P atoms are fixed. Four fluorine positions in each anion have therefore been split over two positions each. All H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for methine, methyl, methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. Dashed lines indicte hydrogen bonds.
1,1'-[(1,3-Dihydroxypropane-2,2-diyl)dimethylene]dipyridinium bis(hexafluorophosphate) top
Crystal data top
C15H20N2O22+·2PF6F(000) = 1112
Mr = 550.27Dx = 1.751 Mg m3
Monoclinic, P21/nMelting point = 508–510 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.955 (2) ÅCell parameters from 25 reflections
b = 13.796 (3) Åθ = 9–13°
c = 12.707 (3) ŵ = 0.33 mm1
β = 95.17 (3)°T = 293 K
V = 2087.3 (7) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2564 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.907, Tmax = 0.968l = 1515
4027 measured reflections3 standard reflections every 200 reflections
3835 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.894P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3835 reflectionsΔρmax = 0.36 e Å3
372 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (12)
Crystal data top
C15H20N2O22+·2PF6V = 2087.3 (7) Å3
Mr = 550.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.955 (2) ŵ = 0.33 mm1
b = 13.796 (3) ÅT = 293 K
c = 12.707 (3) Å0.30 × 0.20 × 0.10 mm
β = 95.17 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2564 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.907, Tmax = 0.9683 standard reflections every 200 reflections
4027 measured reflections intensity decay: 1%
3835 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
3835 reflectionsΔρmin = 0.26 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7687 (3)0.3662 (2)0.7039 (3)0.0524 (8)
H1B0.81890.33010.66790.063*
C20.6564 (3)0.3615 (3)0.6737 (3)0.0634 (10)
H2B0.63020.32400.61580.076*
C30.5825 (3)0.4116 (3)0.7286 (3)0.0684 (11)
H3A0.50560.40690.71000.082*
C40.6229 (3)0.4692 (3)0.8114 (3)0.0659 (10)
H4A0.57380.50460.84920.079*
C50.7352 (3)0.4739 (3)0.8378 (3)0.0523 (8)
H5A0.76300.51350.89340.063*
C60.9277 (3)0.4206 (2)0.8207 (2)0.0443 (7)
H6A0.95690.35680.80600.053*
H6B0.93620.42960.89670.053*
C70.9999 (2)0.4972 (2)0.7698 (2)0.0366 (7)
C80.9657 (3)0.5992 (2)0.7975 (3)0.0491 (8)
H8A1.01650.64590.77030.059*
H8B0.89030.61270.76620.059*
C90.9929 (3)0.4856 (2)0.6495 (2)0.0457 (8)
H9A0.91570.49300.61980.055*
H9B1.03800.53490.61910.055*
C101.1185 (2)0.4719 (2)0.8195 (2)0.0416 (7)
H10A1.11820.47410.89580.050*
H10B1.13550.40580.80040.050*
C111.2419 (3)0.6103 (2)0.8503 (3)0.0504 (8)
H11A1.20490.62370.91000.060*
C121.3296 (3)0.6672 (3)0.8268 (3)0.0621 (10)
H12A1.35310.71870.87060.074*
C131.3824 (3)0.6479 (3)0.7383 (3)0.0649 (10)
H13A1.44210.68620.72130.078*
C141.3471 (3)0.5719 (3)0.6748 (3)0.0609 (10)
H14A1.38210.55870.61400.073*
C151.2606 (3)0.5161 (2)0.7011 (3)0.0496 (8)
H15A1.23690.46390.65840.060*
F10.8561 (10)0.3151 (7)0.4690 (8)0.077 (2)0.700 (19)
F20.8566 (7)0.0817 (6)0.4416 (8)0.095 (2)0.700 (19)
F30.7337 (10)0.1917 (9)0.4717 (10)0.111 (4)0.700 (19)
F40.9805 (9)0.2016 (13)0.4446 (10)0.156 (5)0.700 (19)
F1'0.886 (3)0.3061 (18)0.448 (2)0.107 (10)0.300 (19)
F2'0.867 (3)0.0966 (17)0.4638 (19)0.174 (13)0.300 (19)
F3'0.742 (2)0.2191 (19)0.455 (3)0.111 (8)0.300 (19)
F4'1.0133 (16)0.1966 (19)0.4436 (13)0.083 (4)0.300 (19)
F50.8379 (3)0.2040 (2)0.33183 (18)0.1135 (10)
F60.8902 (3)0.19322 (18)0.57857 (18)0.1019 (9)
F70.7615 (12)0.6122 (8)0.5469 (9)0.134 (4)0.700 (19)
F80.5398 (6)0.7270 (5)0.5386 (7)0.087 (2)0.700 (19)
F90.5816 (5)0.5722 (6)0.5350 (8)0.079 (2)0.700 (19)
F100.7152 (4)0.7742 (5)0.5546 (4)0.0600 (16)0.700 (19)
F7'0.783 (3)0.620 (3)0.5484 (16)0.144 (13)0.300 (19)
F8'0.5348 (13)0.701 (2)0.5434 (19)0.152 (11)0.300 (19)
F9'0.631 (4)0.558 (2)0.535 (2)0.211 (15)0.300 (19)
F10'0.710 (2)0.7468 (16)0.5498 (16)0.178 (15)0.300 (19)
F110.6508 (2)0.67341 (18)0.41995 (16)0.0884 (8)
F120.6571 (2)0.6637 (2)0.66872 (17)0.0994 (9)
N10.8068 (2)0.42241 (18)0.78490 (19)0.0401 (6)
N21.2088 (2)0.53542 (17)0.78851 (19)0.0391 (6)
O10.9697 (2)0.60654 (18)0.91006 (18)0.0683 (7)
H1A0.95110.66130.92640.102*
O21.0330 (2)0.39234 (18)0.62617 (18)0.0614 (7)
H2A1.03000.38520.56190.092*
P10.86380 (8)0.19842 (7)0.45439 (7)0.0540 (3)
P20.65577 (8)0.66706 (6)0.54479 (6)0.0474 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (2)0.0469 (19)0.050 (2)0.0083 (17)0.0084 (16)0.0058 (16)
C20.065 (3)0.060 (2)0.063 (2)0.017 (2)0.0047 (19)0.0065 (19)
C30.049 (2)0.069 (3)0.085 (3)0.007 (2)0.005 (2)0.012 (2)
C40.055 (2)0.071 (3)0.073 (3)0.006 (2)0.0133 (19)0.003 (2)
C50.056 (2)0.055 (2)0.0466 (19)0.0023 (17)0.0099 (16)0.0003 (16)
C60.0475 (19)0.0442 (18)0.0407 (17)0.0027 (15)0.0015 (14)0.0090 (14)
C70.0403 (17)0.0352 (16)0.0338 (15)0.0004 (13)0.0009 (12)0.0023 (12)
C80.053 (2)0.0432 (19)0.050 (2)0.0045 (15)0.0001 (15)0.0020 (15)
C90.0509 (19)0.051 (2)0.0345 (16)0.0036 (15)0.0014 (14)0.0063 (14)
C100.0473 (18)0.0388 (17)0.0377 (16)0.0003 (14)0.0014 (13)0.0045 (13)
C110.054 (2)0.052 (2)0.0449 (19)0.0033 (16)0.0038 (15)0.0099 (15)
C120.055 (2)0.060 (2)0.071 (3)0.0092 (18)0.0026 (19)0.0154 (19)
C130.049 (2)0.058 (2)0.089 (3)0.0039 (18)0.015 (2)0.006 (2)
C140.051 (2)0.071 (3)0.063 (2)0.0043 (19)0.0186 (18)0.001 (2)
C150.048 (2)0.054 (2)0.0475 (19)0.0074 (16)0.0065 (15)0.0106 (16)
F10.109 (5)0.053 (3)0.066 (4)0.004 (3)0.012 (4)0.003 (2)
F20.141 (5)0.050 (3)0.088 (5)0.010 (3)0.032 (3)0.037 (3)
F30.079 (4)0.123 (8)0.137 (6)0.047 (5)0.039 (4)0.036 (6)
F40.027 (5)0.255 (9)0.188 (7)0.012 (5)0.012 (4)0.044 (6)
F1'0.15 (2)0.068 (11)0.107 (14)0.060 (13)0.004 (11)0.009 (8)
F2'0.40 (3)0.052 (9)0.055 (8)0.032 (11)0.054 (11)0.024 (7)
F3'0.058 (11)0.084 (11)0.194 (18)0.014 (10)0.019 (10)0.027 (10)
F4'0.014 (8)0.159 (11)0.076 (7)0.005 (7)0.009 (5)0.018 (6)
F50.157 (3)0.137 (3)0.0422 (14)0.001 (2)0.0148 (15)0.0030 (14)
F60.180 (3)0.0738 (16)0.0473 (14)0.0147 (17)0.0141 (15)0.0025 (11)
F70.088 (6)0.116 (6)0.196 (9)0.047 (4)0.005 (5)0.029 (5)
F80.100 (6)0.066 (3)0.094 (4)0.035 (3)0.009 (3)0.011 (2)
F90.095 (4)0.056 (4)0.087 (4)0.028 (2)0.010 (2)0.005 (3)
F100.088 (3)0.043 (3)0.050 (2)0.032 (2)0.0108 (17)0.0115 (18)
F7'0.085 (12)0.27 (3)0.083 (11)0.101 (15)0.022 (8)0.049 (13)
F8'0.034 (8)0.29 (3)0.130 (14)0.055 (12)0.014 (7)0.024 (15)
F9'0.47 (5)0.050 (9)0.121 (15)0.05 (2)0.08 (3)0.008 (8)
F10'0.35 (4)0.089 (12)0.075 (8)0.151 (17)0.050 (11)0.032 (7)
F110.131 (2)0.0975 (18)0.0378 (12)0.0269 (16)0.0152 (12)0.0127 (11)
F120.151 (2)0.109 (2)0.0386 (13)0.0268 (18)0.0083 (13)0.0125 (12)
N10.0438 (15)0.0395 (14)0.0369 (13)0.0014 (12)0.0040 (11)0.0062 (11)
N20.0394 (14)0.0395 (14)0.0378 (14)0.0011 (11)0.0003 (11)0.0022 (11)
O10.094 (2)0.0608 (16)0.0497 (15)0.0114 (14)0.0054 (13)0.0156 (12)
O20.0687 (16)0.0663 (17)0.0485 (14)0.0037 (13)0.0019 (12)0.0185 (12)
P10.0626 (7)0.0553 (6)0.0426 (5)0.0065 (5)0.0043 (4)0.0053 (4)
P20.0626 (6)0.0428 (5)0.0374 (5)0.0009 (4)0.0071 (4)0.0009 (4)
Geometric parameters (Å, º) top
C1—N11.336 (4)C12—C131.365 (5)
C1—C21.364 (5)C12—H12A0.9300
C1—H1B0.9300C13—C141.365 (5)
C2—C31.362 (6)C13—H13A0.9300
C2—H2B0.9300C14—C151.355 (5)
C3—C41.372 (6)C14—H14A0.9300
C3—H3A0.9300C15—N21.346 (4)
C4—C51.356 (5)C15—H15A0.9300
C4—H4A0.9300F1—P11.624 (10)
C5—N11.339 (4)F2—P11.620 (9)
C5—H5A0.9300F3—P11.593 (12)
C6—N11.476 (4)F4—P11.412 (10)
C6—C71.542 (4)F1'—P11.51 (2)
C6—H6A0.9700F2'—P11.41 (2)
C6—H6B0.9700F3'—P11.49 (2)
C7—C81.516 (4)F4'—P11.805 (18)
C7—C91.532 (4)F5—P11.562 (2)
C7—C101.539 (4)F6—P11.583 (2)
C8—O11.430 (4)F7—P21.471 (12)
C8—H8A0.9700F8—P21.610 (6)
C8—H8B0.9700F9—P21.580 (8)
C9—O21.414 (4)F10—P21.639 (7)
C9—H9A0.9700F7'—P21.65 (3)
C9—H9B0.9700F8'—P21.517 (19)
C10—N21.472 (4)F9'—P21.54 (3)
C10—H10A0.9700F10'—P21.276 (19)
C10—H10B0.9700F11—P21.585 (2)
C11—N21.336 (4)F12—P21.574 (2)
C11—C121.364 (5)O1—H1A0.8200
C11—H11A0.9300O2—H2A0.8200
N1—C1—C2120.2 (3)C13—C14—H14A120.2
N1—C1—H1B119.9N2—C15—C14120.6 (3)
C2—C1—H1B119.9N2—C15—H15A119.7
C3—C2—C1119.9 (4)C14—C15—H15A119.7
C3—C2—H2B120.0C1—N1—C5120.4 (3)
C1—C2—H2B120.0C1—N1—C6118.9 (3)
C2—C3—C4119.2 (4)C5—N1—C6120.5 (3)
C2—C3—H3A120.4C11—N2—C15120.3 (3)
C4—C3—H3A120.4C11—N2—C10119.3 (3)
C5—C4—C3119.4 (4)C15—N2—C10120.4 (3)
C5—C4—H4A120.3C8—O1—H1A109.5
C3—C4—H4A120.3C9—O2—H2A109.5
N1—C5—C4120.9 (3)F2'—P1—F3'102.4 (17)
N1—C5—H5A119.5F2'—P1—F1'168.1 (19)
C4—C5—H5A119.5F3'—P1—F1'89.3 (15)
N1—C6—C7115.4 (2)F2'—P1—F597.8 (10)
N1—C6—H6A108.4F4—P1—F591.1 (5)
C7—C6—H6A108.4F4—P1—F688.8 (5)
N1—C6—H6B108.4F5—P1—F6179.74 (18)
C7—C6—H6B108.4F4—P1—F3176.7 (8)
H6A—C6—H6B107.5F5—P1—F391.9 (5)
C8—C7—C9109.6 (2)F6—P1—F388.2 (5)
C8—C7—C10111.9 (2)F4—P1—F293.8 (8)
C9—C7—C10110.6 (2)F5—P1—F286.9 (4)
C8—C7—C6111.5 (3)F6—P1—F293.4 (4)
C9—C7—C6111.3 (2)F3—P1—F285.0 (5)
C10—C7—C6101.7 (2)F4—P1—F192.6 (8)
O1—C8—C7108.2 (2)F5—P1—F193.2 (4)
O1—C8—H8A110.1F6—P1—F186.5 (4)
C7—C8—H8A110.1F3—P1—F188.6 (6)
O1—C8—H8B110.1F2—P1—F1173.6 (5)
C7—C8—H8B110.1F2'—P1—F4'88.2 (16)
H8A—C8—H8B108.4F3'—P1—F4'168.9 (13)
O2—C9—C7108.4 (2)F1'—P1—F4'80.2 (15)
O2—C9—H9A110.0F10'—P2—F8'102.6 (19)
C7—C9—H9A110.0F10'—P2—F9'160 (3)
O2—C9—H9B110.0F8'—P2—F9'96.8 (16)
C7—C9—H9B110.0F7—P2—F1292.0 (5)
H9A—C9—H9B108.4F7—P2—F992.9 (7)
N2—C10—C7115.2 (2)F12—P2—F990.6 (4)
N2—C10—H10A108.5F7—P2—F1190.1 (5)
C7—C10—H10A108.5F12—P2—F11177.84 (16)
N2—C10—H10B108.5F9—P2—F1189.8 (4)
C7—C10—H10B108.5F7—P2—F8178.3 (6)
H10A—C10—H10B107.5F12—P2—F889.7 (3)
N2—C11—C12120.6 (3)F9—P2—F886.9 (4)
N2—C11—H11A119.7F11—P2—F888.2 (3)
C12—C11—H11A119.7F7—P2—F1095.5 (6)
C11—C12—C13119.3 (3)F12—P2—F1089.1 (2)
C11—C12—H12A120.4F9—P2—F10171.5 (3)
C13—C12—H12A120.4F11—P2—F1090.2 (2)
C14—C13—C12119.7 (3)F8—P2—F1084.6 (3)
C14—C13—H13A120.1F10'—P2—F7'82.6 (18)
C12—C13—H13A120.1F8'—P2—F7'174.6 (16)
C15—C14—C13119.5 (3)F9'—P2—F7'78 (2)
C15—C14—H14A120.2
N1—C1—C2—C32.2 (6)N2—C11—C12—C131.0 (5)
C1—C2—C3—C42.3 (6)C11—C12—C13—C140.1 (6)
C2—C3—C4—C50.8 (6)C12—C13—C14—C150.6 (6)
C3—C4—C5—N10.8 (6)C13—C14—C15—N20.6 (5)
N1—C6—C7—C863.2 (3)C2—C1—N1—C50.6 (5)
N1—C6—C7—C959.6 (3)C2—C1—N1—C6175.6 (3)
N1—C6—C7—C10177.4 (2)C4—C5—N1—C10.9 (5)
C9—C7—C8—O1178.2 (2)C4—C5—N1—C6174.0 (3)
C10—C7—C8—O158.7 (3)C7—C6—N1—C192.4 (3)
C6—C7—C8—O154.4 (3)C7—C6—N1—C592.7 (3)
C8—C7—C9—O2175.8 (2)C12—C11—N2—C151.0 (5)
C10—C7—C9—O251.9 (3)C12—C11—N2—C10176.3 (3)
C6—C7—C9—O260.4 (3)C14—C15—N2—C110.2 (5)
C8—C7—C10—N259.2 (3)C14—C15—N2—C10177.1 (3)
C9—C7—C10—N263.4 (3)C7—C10—N2—C1195.2 (3)
C6—C7—C10—N2178.3 (2)C7—C10—N2—C1587.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O10.972.472.831 (5)102
C10—H10B···O20.972.442.796 (5)102
O1—H1A···F8i0.822.292.898 (8)131
O2—H2A···F10.822.492.973 (11)119
C1—H1B···F60.932.403.280 (4)158
C11—H11A···F10i0.932.313.087 (7)141
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H20N2O22+·2PF6
Mr550.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.955 (2), 13.796 (3), 12.707 (3)
β (°) 95.17 (3)
V3)2087.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.907, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
4027, 3835, 2564
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.141, 1.04
No. of reflections3835
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O10.972.472.831 (5)102
C10—H10B···O20.972.442.796 (5)102
O1—H1A···F8i0.822.292.898 (8)131
O2—H2A···F10.822.492.973 (11)119
C1—H1B···F60.932.403.280 (4)158
C11—H11A···F10i0.932.313.087 (7)141
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (No. 51003047) and the Foundation for Young Teachers Scholarship of Nanjing University of Technology, Jiangsu, China (No. 39729005) for financial support. The authors thank the Centre of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGeng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, o1267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, X. Z., Wang, J. & Zhang, Z. Z. (2010). J. Chem. Eng. Data, 55, 586–588.  CrossRef CAS Google Scholar
First citationYuan, A.-L., Wang, C.-S., Zhuang, L.-H. & Wang, G.-W. (2010). Acta Cryst. E66, o3282.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds