organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1110-o1111

5,17-Di­bromo-26,28-dihy­dr­oxy-25,27-diprop­­oxy-2,8,14,20-tetra­thia­calix[4]arene

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 12 March 2011; accepted 7 April 2011; online 13 April 2011)

In the title compound, C30H26Br2O4S4, the thia­calix[4]arene unit adopts a pinched cone conformation, with one of the ether-substituted rings bent towards the calix cavity and the two phenolic rings bent outwards. The phenyl rings make dihedral angles of 27.12 (9), 36.71 (10), 75.04 (8), and 76.01 (7)° with the virtual plane defined by the four bridging S atoms. The two opposite ether-substituted rings are almost parallel to each other, with an inter­planar anagle of 2.99 (12)°, while the two phenolic rings are nearly perpendicular to each other, making a dihedral angle of 74.52 (11)° and a Br⋯Br distance of 13.17 (2) Å. Two intra­molecular O—H⋯O hydrogen bonds between the OH groups and the same ether O atom stabilize the cone conformation. In the crystal, two different chains of mol­ecules, one with alternating and the other with tail-to-tail orientations, are formed by inter­molecular offset-face-to-face ππ stacking inter­actions with distances of 3.606 (3) to 4.488 (4) Å between the centroids of the aromatic rings.

Related literature

For general background to the chemistry of thia­calix[4]arenes, see: Shokova & Kovalev (2003[Shokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1-28.]); Lhoták (2004[Lhoták, P. (2004). Eur. J. Org. Chem. pp. 1675-1692.]); Morohashi et al. (2006[Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291-5316.]); Kajiwara et al. (2007[Kajiwara, T., Iki, N. & Yamashita, M. (2007). Coord. Chem. Rev. 251, 1734-1746.]); Guo et al. (2007[Guo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221-1224.]). For the synthesis and related structures, see: Lhoták et al. (2001[Lhoták, P., Himl, M., Stibor, I., Sykora, J. & Cisarová, I. (2001). Tetrahedron Lett. 42, 7107-7110.]); Kasyan et al. (2003[Kasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J. & Kalchenko, V. (2003). Tetrahedron Lett. 44, 7167-7170.]); Desroches et al. (2004[Desroches, C., Kessler, V. G. & Parola, S. (2004). Tetrahedron Lett. 45, 6329-6331.]); Kasyan et al. (2006[Kasyan, O., Thondorf, I., Bolte, M., Kalchenko, V. & Böhmer, V. (2006). Acta Cryst. C62, o289-o294.]); Morohashi et al. (2006[Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291-5316.]); Xu et al. (2008[Xu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349-o352.]); Chen et al. (2010[Chen, Y.-F., Liu, Y., Ma, J.-P. & Guo, D.-S. (2010). Acta Cryst. E66, o871-o872.]). For ππ stacking inter­actions, see: Tsuzuki et al. (2002[Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104-112.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26Br2O4S4

  • Mr = 738.57

  • Triclinic, [P \overline 1]

  • a = 9.3788 (16) Å

  • b = 11.712 (2) Å

  • c = 14.768 (3) Å

  • α = 97.904 (2)°

  • β = 95.614 (1)°

  • γ = 107.738 (2)°

  • V = 1513.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 298 K

  • 0.29 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.478, Tmax = 0.586

  • 7993 measured reflections

  • 5513 independent reflections

  • 4162 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 5513 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.82 2.20 2.926 (3) 148
O2—H2A⋯O3 0.82 2.12 2.849 (3) 148

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiacalix[4]arenes are new versatile scaffolds for constructing highly organized receptors via appropriate chemical modifications at the upper or/and lower rim (Shokova & Kovalev, 2003; Lhoták, 2004; Morohashi et al., 2006; Kajiwara et al., 2007; Guo et al., 2007). Usually, it can be attained by electrophilic bromination at the upper rim to yield the corresponding bromosubstituted thiacalix[4]arene derivatives (Lhoták et al., 2001; Kasyan et al., 2003; Xu et al., 2008; Chen et al., 2010), which can be further used to create more elaborate molecules and novel supramolecular systems. Only a few cyrstal structures of such derivatives are known, however, most of which are tetrabromothiacalix[4]arenes. Recently, Lhoták et al. (2001) presented the synthesis of a dibromothiacalix[4]arene, namely 5,17-dibromo-25,27-dipropoxy-26,28-dihydroxy-2,8,14,20-tetrathiacalix[4]arene, by a selective bromination reaction. We now report the crystal structure of this compound.

In the crystal structure of the title compound, as illustrated in Fig. 1, the thiacalix[4]arene unit is found in a pinched cone conformation. Two opposite ether-substituted rings, one of which is bent towards the calix cavity, are almost parallel to each other, forming a dihedral anagle of 2.99 (12)°. On the other hand, both phenolic rings are bent outwards and nearly perpendicular to each other, with an interplanar angle of 74.52 (11)° and a Br···Br distance of 13.17 (2) Å. The dihedral angles between the virtual plane defined by the four bridging S atoms and C1–C6, C7–C12, C13–C18 and C19–C24 rings are 75.04 (8), 27.12 (9), 76.01 (7) and 36.71 (10) °, respectively. Two intramolecular O—H···O hydrogen bonds (Table 1) stabilizing the cone conformation, are formed in the crystal structure. Interestingly, both OH groups make the hydrogen bonds to the same ethereal O atom, O3 (Fig. 2). A similar arrangement of such hydrogen bonds was discussed by Kasyan et al. (2006), while a different pattern, in which one OH group forms the hydrogen bonds to its both adjacent ethereal O atoms, was reported by Desroches et al. (2004).

In the packing, two different chains of molecules are formed by aromatic-aromatic interactions (Tsuzuki et al., 2002). One chain, with alternating orientation, extends along the a axis (Fig. 3), and is established by intermolecular offset-face-to-face π-π stackings between the phenolic rings. Separations between the centroids of the phenolic rings C19–C24 and C19–C24 at (-x, -y, -z + 1), C7–C12 and C7–C12 at (-x + 1, -y + 1, -z + 2) are 3.606 (3) and 4.488 (4) Å, respectively, and the corresponding perpendicular distances are 3.454 (2) and 3.568 (2) Å. The other chain, with tail-to-tail orientation, is running along the b axis, with intermolecular offset-face-to-face π-π contacts between the ether-substituted rings. The distance between the centroids of the rings C1–C6 and C13–C18 at (x - 1, y, z) is 4.195 (2) Å, and the corresponding perpendicular distance is 3.611 (2) Å.

Related literature top

For general background to the chemistry of thiacalix[4]arenes, see: Shokova & Kovalev (2003); Lhoták (2004); Morohashi et al. (2006); Kajiwara et al. (2007); Guo et al. (2007). For the synthesis and related structures, see: Lhoták et al. (2001); Kasyan et al. (2003); Desroches et al. (2004); Kasyan et al. (2006); Morohashi et al. (2006); Xu et al. (2008). Chen et al. (2010). For ππ stacking interactions, see: Tsuzuki et al. (2002).

Experimental top

The title compound was prepared by a published procedure (Lhoták et al., 2001). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in CH2Cl2 and CH3OH (v: v = 2: 1) at 273 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methylene and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) =1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Array of intramolecular hydrogen-bonded rings of the title molecule. For the sake of clarity, H atoms not involved in hydrogen bonds have been omitted.
[Figure 3] Fig. 3. Packing diagram of the title compound, viewed along the a axis, showing offset-face-to-face π-π stacking motifs. Hydrogen atoms are omitted for clarity.
5,17-Dibromo-26,28-dihydroxy-25,27-dipropoxy-2,8,14,20-tetrathiacalix[4]arene top
Crystal data top
C30H26Br2O4S4Z = 2
Mr = 738.57F(000) = 744
Triclinic, P1Dx = 1.621 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3788 (16) ÅCell parameters from 2882 reflections
b = 11.712 (2) Åθ = 2.5–26.7°
c = 14.768 (3) ŵ = 2.99 mm1
α = 97.904 (2)°T = 298 K
β = 95.614 (1)°Block, colourless
γ = 107.738 (2)°0.29 × 0.21 × 0.20 mm
V = 1513.5 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5513 independent reflections
Radiation source: fine-focus sealed tube4162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1011
Tmin = 0.478, Tmax = 0.586k = 1214
7993 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.5589P]
where P = (Fo2 + 2Fc2)/3
5513 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C30H26Br2O4S4γ = 107.738 (2)°
Mr = 738.57V = 1513.5 (4) Å3
Triclinic, P1Z = 2
a = 9.3788 (16) ÅMo Kα radiation
b = 11.712 (2) ŵ = 2.99 mm1
c = 14.768 (3) ÅT = 298 K
α = 97.904 (2)°0.29 × 0.21 × 0.20 mm
β = 95.614 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5513 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4162 reflections with I > 2σ(I)
Tmin = 0.478, Tmax = 0.586Rint = 0.017
7993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.74 e Å3
5513 reflectionsΔρmin = 0.54 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51306 (5)0.32748 (4)1.28607 (3)0.06261 (15)
Br20.19390 (6)0.37147 (4)0.49367 (3)0.07472 (17)
C10.1371 (4)0.0988 (3)0.7904 (2)0.0413 (8)
C20.2029 (4)0.0044 (3)0.8354 (3)0.0525 (9)
H20.26910.06860.80160.063*
C30.1711 (5)0.0178 (4)0.9301 (3)0.0570 (10)
H30.21380.04690.95960.068*
C40.0766 (4)0.1264 (4)0.9810 (3)0.0526 (10)
H40.05740.13521.04500.063*
C50.0097 (4)0.2227 (3)0.9378 (2)0.0434 (8)
C60.0376 (4)0.2078 (3)0.8419 (2)0.0387 (8)
C70.2766 (4)0.3469 (3)1.0398 (2)0.0414 (8)
C80.3184 (4)0.3436 (3)1.1317 (2)0.0451 (9)
H80.25220.34741.17410.054*
C90.4581 (4)0.3349 (3)1.1600 (2)0.0440 (8)
C100.5564 (4)0.3273 (3)1.0981 (2)0.0449 (8)
H100.64990.32011.11810.054*
C110.5164 (4)0.3305 (3)1.0062 (2)0.0412 (8)
C120.3760 (4)0.3422 (3)0.9761 (2)0.0408 (8)
C130.5253 (4)0.1679 (3)0.8624 (2)0.0367 (7)
C140.4575 (4)0.0772 (3)0.9097 (2)0.0439 (8)
H140.47530.09140.97390.053*
C150.3638 (4)0.0341 (3)0.8626 (3)0.0505 (9)
H150.31940.09530.89480.061*
C160.3362 (4)0.0543 (3)0.7679 (2)0.0453 (8)
H160.27290.12970.73610.054*
C170.4008 (4)0.0357 (3)0.7190 (2)0.0357 (7)
C180.5011 (4)0.1471 (3)0.7661 (2)0.0344 (7)
C190.1502 (4)0.0465 (3)0.5925 (2)0.0387 (8)
C200.0703 (4)0.1655 (3)0.5527 (2)0.0443 (8)
H200.12090.21680.52820.053*
C210.0847 (4)0.2084 (3)0.5492 (2)0.0467 (9)
C220.1623 (4)0.1353 (3)0.5865 (2)0.0465 (9)
H220.26670.16560.58410.056*
C230.0828 (4)0.0161 (3)0.6278 (2)0.0399 (8)
C240.0744 (4)0.0297 (3)0.6307 (2)0.0401 (8)
C250.0263 (4)0.3907 (3)0.7817 (3)0.0548 (10)
H25A0.12170.35450.74070.066*
H25B0.04570.42880.83980.066*
C260.0777 (6)0.4811 (4)0.7405 (4)0.0778 (14)
H26A0.08790.44210.68030.093*
H26B0.17630.50680.77840.093*
C270.0364 (6)0.5914 (4)0.7288 (4)0.0860 (16)
H27A0.07100.56890.71070.129*
H27B0.08770.62870.68190.129*
H27C0.06580.64800.78610.129*
C280.5073 (4)0.3165 (3)0.6889 (3)0.0496 (9)
H28A0.49710.37100.74170.059*
H28B0.40710.27160.65530.059*
C290.6031 (4)0.3874 (3)0.6276 (3)0.0506 (9)
H29A0.70140.43350.66320.061*
H29B0.55680.44530.60800.061*
C300.6257 (6)0.3113 (4)0.5436 (3)0.0728 (13)
H30A0.67260.25420.56210.109*
H30B0.68950.36290.50830.109*
H30C0.52950.26790.50630.109*
O10.5815 (3)0.2325 (2)0.71942 (15)0.0412 (5)
O20.3429 (3)0.3459 (2)0.88626 (15)0.0491 (6)
H2A0.25980.35510.87680.074*
O30.0416 (2)0.2975 (2)0.79765 (16)0.0423 (5)
O40.1557 (3)0.1454 (2)0.66895 (17)0.0474 (6)
H4A0.09860.18220.68570.071*
S40.64004 (10)0.31392 (8)0.92504 (6)0.0459 (2)
S30.35097 (10)0.00864 (8)0.59664 (6)0.0453 (2)
S20.18282 (10)0.08270 (9)0.66809 (6)0.0486 (2)
S10.10033 (11)0.36788 (9)1.00496 (7)0.0512 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0684 (3)0.0745 (3)0.0419 (2)0.0225 (2)0.00312 (19)0.00470 (19)
Br20.0791 (3)0.0426 (2)0.0834 (3)0.0006 (2)0.0035 (3)0.0026 (2)
C10.0335 (18)0.048 (2)0.0477 (19)0.0186 (16)0.0124 (15)0.0088 (16)
C20.045 (2)0.047 (2)0.068 (3)0.0160 (18)0.0165 (19)0.0109 (19)
C30.057 (3)0.059 (3)0.068 (3)0.024 (2)0.024 (2)0.030 (2)
C40.053 (2)0.068 (3)0.049 (2)0.030 (2)0.0175 (19)0.019 (2)
C50.0358 (19)0.052 (2)0.049 (2)0.0241 (17)0.0109 (16)0.0067 (17)
C60.0328 (18)0.0460 (19)0.0454 (19)0.0214 (16)0.0119 (15)0.0108 (16)
C70.0396 (19)0.0395 (19)0.045 (2)0.0158 (16)0.0072 (16)0.0006 (15)
C80.048 (2)0.045 (2)0.0416 (19)0.0154 (17)0.0140 (17)0.0007 (15)
C90.048 (2)0.0415 (19)0.0390 (18)0.0144 (17)0.0035 (16)0.0005 (15)
C100.042 (2)0.044 (2)0.046 (2)0.0143 (17)0.0018 (16)0.0012 (16)
C110.0351 (19)0.0409 (19)0.0448 (19)0.0112 (15)0.0085 (15)0.0008 (15)
C120.042 (2)0.0375 (18)0.0420 (19)0.0143 (15)0.0063 (16)0.0016 (15)
C130.0290 (17)0.0390 (18)0.0446 (19)0.0153 (14)0.0079 (14)0.0042 (15)
C140.048 (2)0.049 (2)0.0393 (18)0.0201 (18)0.0081 (16)0.0118 (16)
C150.061 (3)0.041 (2)0.054 (2)0.0167 (19)0.0138 (19)0.0193 (17)
C160.047 (2)0.0356 (18)0.053 (2)0.0128 (16)0.0079 (17)0.0065 (16)
C170.0349 (18)0.0389 (18)0.0384 (17)0.0178 (15)0.0094 (14)0.0076 (14)
C180.0294 (17)0.0378 (17)0.0409 (18)0.0155 (14)0.0107 (14)0.0088 (14)
C190.0409 (19)0.0436 (19)0.0302 (16)0.0117 (16)0.0070 (14)0.0051 (14)
C200.054 (2)0.046 (2)0.0348 (18)0.0190 (18)0.0084 (16)0.0064 (15)
C210.053 (2)0.0346 (18)0.0427 (19)0.0037 (17)0.0003 (17)0.0039 (15)
C220.040 (2)0.047 (2)0.047 (2)0.0054 (17)0.0043 (16)0.0118 (17)
C230.0362 (19)0.046 (2)0.0383 (18)0.0118 (16)0.0075 (15)0.0103 (15)
C240.040 (2)0.0428 (19)0.0366 (17)0.0113 (16)0.0056 (15)0.0076 (15)
C250.041 (2)0.054 (2)0.076 (3)0.0204 (18)0.0100 (19)0.023 (2)
C260.071 (3)0.060 (3)0.111 (4)0.017 (2)0.034 (3)0.037 (3)
C270.065 (3)0.067 (3)0.125 (4)0.008 (2)0.005 (3)0.049 (3)
C280.047 (2)0.048 (2)0.064 (2)0.0217 (18)0.0218 (19)0.0181 (18)
C290.048 (2)0.045 (2)0.062 (2)0.0138 (17)0.0131 (18)0.0164 (18)
C300.093 (4)0.072 (3)0.064 (3)0.027 (3)0.038 (3)0.028 (2)
O10.0362 (13)0.0439 (13)0.0472 (13)0.0125 (11)0.0154 (11)0.0156 (11)
O20.0443 (15)0.0672 (17)0.0424 (14)0.0265 (13)0.0083 (11)0.0109 (12)
O30.0342 (13)0.0456 (13)0.0503 (14)0.0144 (11)0.0116 (11)0.0113 (11)
O40.0373 (13)0.0400 (13)0.0595 (15)0.0085 (11)0.0113 (12)0.0035 (11)
S40.0334 (5)0.0504 (5)0.0491 (5)0.0100 (4)0.0085 (4)0.0014 (4)
S30.0415 (5)0.0544 (5)0.0383 (5)0.0137 (4)0.0129 (4)0.0011 (4)
S20.0390 (5)0.0596 (6)0.0484 (5)0.0207 (4)0.0022 (4)0.0051 (4)
S10.0480 (6)0.0588 (6)0.0516 (5)0.0303 (5)0.0067 (4)0.0043 (4)
Geometric parameters (Å, º) top
Br1—C91.904 (3)C17—S31.781 (3)
Br2—C211.893 (3)C18—O11.369 (4)
C1—C21.382 (5)C19—C201.379 (5)
C1—C61.395 (5)C19—C241.396 (5)
C1—S21.786 (4)C19—S31.787 (3)
C2—C31.377 (6)C20—C211.379 (5)
C2—H20.9300C20—H200.9300
C3—C41.374 (6)C21—C221.376 (5)
C3—H30.9300C22—C231.386 (5)
C4—C51.386 (5)C22—H220.9300
C4—H40.9300C23—C241.400 (5)
C5—C61.392 (5)C23—S21.776 (3)
C5—S11.790 (4)C24—O41.346 (4)
C6—O31.375 (4)C25—C261.451 (5)
C7—C81.383 (5)C25—O31.456 (4)
C7—C121.395 (5)C25—H25A0.9700
C7—S11.782 (4)C25—H25B0.9700
C8—C91.374 (5)C26—C271.485 (6)
C8—H80.9300C26—H26A0.9700
C9—C101.373 (5)C26—H26B0.9700
C10—C111.381 (5)C27—H27A0.9600
C10—H100.9300C27—H27B0.9600
C11—C121.401 (5)C27—H27C0.9600
C11—S41.779 (3)C28—O11.461 (4)
C12—O21.343 (4)C28—C291.492 (5)
C13—C141.378 (5)C28—H28A0.9700
C13—C181.394 (4)C28—H28B0.9700
C13—S41.785 (3)C29—C301.498 (5)
C14—C151.373 (5)C29—H29A0.9700
C14—H140.9300C29—H29B0.9700
C15—C161.372 (5)C30—H30A0.9600
C15—H150.9300C30—H30B0.9600
C16—C171.379 (5)C30—H30C0.9600
C16—H160.9300O2—H2A0.8200
C17—C181.395 (4)O4—H4A0.8200
C2—C1—C6119.3 (3)C21—C20—H20120.0
C2—C1—S2120.3 (3)C19—C20—H20120.0
C6—C1—S2120.4 (3)C22—C21—C20121.3 (3)
C3—C2—C1120.5 (4)C22—C21—Br2118.9 (3)
C3—C2—H2119.8C20—C21—Br2119.8 (3)
C1—C2—H2119.8C21—C22—C23119.2 (3)
C4—C3—C2120.2 (4)C21—C22—H22120.4
C4—C3—H3119.9C23—C22—H22120.4
C2—C3—H3119.9C22—C23—C24120.4 (3)
C3—C4—C5120.6 (4)C22—C23—S2119.6 (3)
C3—C4—H4119.7C24—C23—S2119.8 (3)
C5—C4—H4119.7O4—C24—C19118.4 (3)
C4—C5—C6119.2 (3)O4—C24—C23122.4 (3)
C4—C5—S1120.3 (3)C19—C24—C23119.2 (3)
C6—C5—S1120.3 (3)C26—C25—O3108.5 (3)
O3—C6—C5119.6 (3)C26—C25—H25A110.0
O3—C6—C1120.0 (3)O3—C25—H25A110.0
C5—C6—C1120.2 (3)C26—C25—H25B110.0
C8—C7—C12120.3 (3)O3—C25—H25B110.0
C8—C7—S1119.5 (3)H25A—C25—H25B108.4
C12—C7—S1120.1 (3)C25—C26—C27116.5 (4)
C9—C8—C7119.8 (3)C25—C26—H26A108.2
C9—C8—H8120.1C27—C26—H26A108.2
C7—C8—H8120.1C25—C26—H26B108.2
C10—C9—C8121.0 (3)C27—C26—H26B108.2
C10—C9—Br1119.6 (3)H26A—C26—H26B107.3
C8—C9—Br1119.4 (3)C26—C27—H27A109.5
C9—C10—C11120.0 (3)C26—C27—H27B109.5
C9—C10—H10120.0H27A—C27—H27B109.5
C11—C10—H10120.0C26—C27—H27C109.5
C10—C11—C12120.1 (3)H27A—C27—H27C109.5
C10—C11—S4120.0 (3)H27B—C27—H27C109.5
C12—C11—S4119.9 (3)O1—C28—C29107.6 (3)
O2—C12—C7123.3 (3)O1—C28—H28A110.2
O2—C12—C11117.8 (3)C29—C28—H28A110.2
C7—C12—C11118.9 (3)O1—C28—H28B110.2
C14—C13—C18120.3 (3)C29—C28—H28B110.2
C14—C13—S4119.8 (3)H28A—C28—H28B108.5
C18—C13—S4119.9 (2)C28—C29—C30114.4 (3)
C15—C14—C13120.5 (3)C28—C29—H29A108.7
C15—C14—H14119.7C30—C29—H29A108.7
C13—C14—H14119.7C28—C29—H29B108.7
C16—C15—C14119.6 (3)C30—C29—H29B108.7
C16—C15—H15120.2H29A—C29—H29B107.6
C14—C15—H15120.2C29—C30—H30A109.5
C15—C16—C17121.0 (3)C29—C30—H30B109.5
C15—C16—H16119.5H30A—C30—H30B109.5
C17—C16—H16119.5C29—C30—H30C109.5
C16—C17—C18119.7 (3)H30A—C30—H30C109.5
C16—C17—S3119.3 (3)H30B—C30—H30C109.5
C18—C17—S3121.0 (2)C18—O1—C28116.7 (2)
O1—C18—C13120.0 (3)C12—O2—H2A109.5
O1—C18—C17121.2 (3)C6—O3—C25116.5 (2)
C13—C18—C17118.7 (3)C24—O4—H4A109.5
C20—C19—C24119.9 (3)C11—S4—C1397.33 (15)
C20—C19—S3119.8 (3)C17—S3—C1997.63 (15)
C24—C19—S3120.3 (3)C23—S2—C1101.49 (15)
C21—C20—C19120.0 (3)C7—S1—C5103.06 (15)
C6—C1—C2—C30.2 (5)C16—C17—C18—C134.5 (5)
S2—C1—C2—C3178.2 (3)S3—C17—C18—C13174.0 (2)
C1—C2—C3—C41.7 (6)C24—C19—C20—C211.1 (5)
C2—C3—C4—C51.3 (6)S3—C19—C20—C21179.9 (3)
C3—C4—C5—C60.9 (5)C19—C20—C21—C221.3 (5)
C3—C4—C5—S1174.7 (3)C19—C20—C21—Br2179.5 (2)
C4—C5—C6—O3172.5 (3)C20—C21—C22—C230.4 (5)
S1—C5—C6—O311.9 (4)Br2—C21—C22—C23179.6 (3)
C4—C5—C6—C12.9 (5)C21—C22—C23—C240.5 (5)
S1—C5—C6—C1172.8 (2)C21—C22—C23—S2175.1 (3)
C2—C1—C6—O3172.8 (3)C20—C19—C24—O4179.9 (3)
S2—C1—C6—O38.8 (4)S3—C19—C24—O41.1 (4)
C2—C1—C6—C52.5 (5)C20—C19—C24—C230.2 (5)
S2—C1—C6—C5175.9 (2)S3—C19—C24—C23179.1 (2)
C12—C7—C8—C90.5 (5)C22—C23—C24—O4179.1 (3)
S1—C7—C8—C9176.1 (3)S2—C23—C24—O44.5 (5)
C7—C8—C9—C101.1 (5)C22—C23—C24—C190.6 (5)
C7—C8—C9—Br1178.9 (3)S2—C23—C24—C19175.2 (2)
C8—C9—C10—C111.1 (5)O3—C25—C26—C27173.3 (4)
Br1—C9—C10—C11178.9 (3)O1—C28—C29—C3059.9 (4)
C9—C10—C11—C120.4 (5)C13—C18—O1—C2896.9 (3)
C9—C10—C11—S4177.2 (3)C17—C18—O1—C2886.8 (4)
C8—C7—C12—O2179.5 (3)C29—C28—O1—C18171.2 (3)
S1—C7—C12—O23.9 (5)C5—C6—O3—C2591.0 (4)
C8—C7—C12—C111.9 (5)C1—C6—O3—C2593.7 (4)
S1—C7—C12—C11177.5 (2)C26—C25—O3—C6176.1 (3)
C10—C11—C12—O2179.4 (3)C10—C11—S4—C13111.1 (3)
S4—C11—C12—O22.9 (4)C12—C11—S4—C1366.5 (3)
C10—C11—C12—C71.9 (5)C14—C13—S4—C1144.9 (3)
S4—C11—C12—C7175.8 (3)C18—C13—S4—C11133.3 (3)
C18—C13—C14—C150.9 (5)C16—C17—S3—C1949.0 (3)
S4—C13—C14—C15177.3 (3)C18—C17—S3—C19129.5 (3)
C13—C14—C15—C160.8 (5)C20—C19—S3—C17114.9 (3)
C14—C15—C16—C170.2 (5)C24—C19—S3—C1764.0 (3)
C15—C16—C17—C182.9 (5)C22—C23—S2—C1109.2 (3)
C15—C16—C17—S3175.6 (3)C24—C23—S2—C176.2 (3)
C14—C13—C18—O1172.8 (3)C2—C1—S2—C2374.2 (3)
S4—C13—C18—O19.0 (4)C6—C1—S2—C23107.5 (3)
C14—C13—C18—C173.6 (5)C8—C7—S1—C5110.4 (3)
S4—C13—C18—C17174.6 (2)C12—C7—S1—C574.0 (3)
C16—C17—C18—O1171.8 (3)C4—C5—S1—C778.8 (3)
S3—C17—C18—O19.7 (4)C6—C5—S1—C7105.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.202.926 (3)148
O2—H2A···O30.822.122.849 (3)148

Experimental details

Crystal data
Chemical formulaC30H26Br2O4S4
Mr738.57
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3788 (16), 11.712 (2), 14.768 (3)
α, β, γ (°)97.904 (2), 95.614 (1), 107.738 (2)
V3)1513.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.29 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.478, 0.586
No. of measured, independent and
observed [I > 2σ(I)] reflections
7993, 5513, 4162
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections5513
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.54

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.202.926 (3)148
O2—H2A···O30.822.122.849 (3)148
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-F., Liu, Y., Ma, J.-P. & Guo, D.-S. (2010). Acta Cryst. E66, o871–o872.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDesroches, C., Kessler, V. G. & Parola, S. (2004). Tetrahedron Lett. 45, 6329–6331.  CrossRef CAS Google Scholar
First citationGuo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221–1224.  Web of Science CrossRef CAS Google Scholar
First citationKajiwara, T., Iki, N. & Yamashita, M. (2007). Coord. Chem. Rev. 251, 1734–1746.  Web of Science CrossRef CAS Google Scholar
First citationKasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J. & Kalchenko, V. (2003). Tetrahedron Lett. 44, 7167–7170.  Web of Science CSD CrossRef CAS Google Scholar
First citationKasyan, O., Thondorf, I., Bolte, M., Kalchenko, V. & Böhmer, V. (2006). Acta Cryst. C62, o289–o294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLhoták, P. (2004). Eur. J. Org. Chem. pp. 1675–1692.  Google Scholar
First citationLhoták, P., Himl, M., Stibor, I., Sykora, J. & Cisarová, I. (2001). Tetrahedron Lett. 42, 7107–7110.  Google Scholar
First citationMorohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291–5316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1–28.  Web of Science CrossRef CAS Google Scholar
First citationTsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349–o352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1110-o1111
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds