metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­benzoyl­ferrocenecarboxamide

aDepartment of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia, and bLaboratory of Organic Chemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
*Correspondence e-mail: mario.cetina@ttf.hr, vkovac@pbf.hr

(Received 17 March 2011; accepted 12 April 2011; online 16 April 2011)

In the title compound, [Fe(C5H5)(C20H14NO3)], the cyclo­penta­dienyl rings deviate by 9.3 (2)° from an eclipsed conformation, defined by C—Cg1Cg2—C pseudo-torsion angles ranging from 8.8 (1) to 9.85 (1)°. The coordination at the N atom is slightly pyramidal, as indicated by the angular sum around it of 352.6°. The amide group is inclined at 17.86 (9) and 27.27 (11)° with respect to the aromatic rings. In the crystal, mol­ecules are linked by one C—H⋯O hydrogen bond and one C—H⋯π inter­action into a two-dimensional framework parallel to the b axis.

Related literature

For background to ferrocene amides, see: Kohmoto et al. (2008[Kohmoto, S., Takeichi, H., Kishikawa, K., Masu, H. & Azumaya, I. (2008). Tetrahedron Lett. 49, 1223-1227.]); Masu et al. (2005[Masu, H., Sakai, M., Kishikawa, K., Yamamoto, M., Yamaguchi, K. & Kohmoto, S. (2005). J. Org. Chem. 70, 1423-1431.], 2006[Masu, H., Mizutani, I., Kato, T., Azumaya, I., Yamaguchi, K., Kishikawa, K. & Kohmoto, S. (2006). J. Org. Chem. 71, 8037-8044.]); Moriuchi et al. (1995[Moriuchi, T., Ikeda, I. & Hirao, T. (1995). Organometallics, 14, 3578-3580.], 2000[Moriuchi, T., Bandoh, S., Miyaji, Y. & Hirao, T. (2000). J. Organomet. Chem. 599, 135-142.]); Moriuchi & Hirao (2007[Moriuchi, T. & Hirao, T. (2007). Tetrahedron Lett. 48, 5099-5101.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C20H14NO3)]

  • Mr = 437.26

  • Monoclinic, P 21 /c

  • a = 10.8699 (4) Å

  • b = 11.3387 (4) Å

  • c = 19.6264 (7) Å

  • β = 122.133 (2)°

  • V = 2048.42 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 295 K

  • 0.56 × 0.53 × 0.43 mm

Data collection
  • Oxford Diffraction KM-4/Xcalibur diffractometer with a Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.910, Tmax = 1.000

  • 14704 measured reflections

  • 5867 independent reflections

  • 3472 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.068

  • S = 0.93

  • 5867 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.56 3.241 (2) 131
C15—H15⋯Cg2ii 0.93 2.97 3.528 (2) 120
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, aromatic foldamers with iminodicarbonyl linkers have been synthesized to investigate their structures in comparison with that of biopolymers, mostly proteins (Masu et al. 2005, 2006; Kohmoto et al. 2008). Also, considerable interest has been devoted to the synthesis of various imide based ferrocene derivatives in which the redox properties of transition metals permits their potential utilization as electrical materials and catalysts, e.g. ferrocenophanes (Moriuchi et al., 1995, 2000) or imide-bridged diferrocene for protonation-controlled regulation of electronic communication (Moriuchi & Hirao, 2007). Considering these previous studies we decided to prepare some new ferrocene containing imides notably due to investigation of their structure. During the synthesis of model substances as a part of our current research on ferrocene foldamers with iminodicarbonyl linkers we have isolated the title compound 1 and its structure is described in this paper.

A survay of Cambridge Structural Database (Allen, 2002) revealed that 1 (Fig. 1) is the first structure with a N–(C=O)3 fragment linked to the ferrocenyl moiety. N1 is pyramidal and is displaced by 0.228 (1)Å out of the plane defined by atoms C11/C12/C19. Because of pyramidality, the angular sum around N1 is 352.6°. A somehow close C14–H14···N1 interaction of 2.55 Å seems to be indicative for a intramolecular hydrogen bond forming a five-membered ring that could be described by graph set descriptors as S(5) (Bernstein et al., 1995). On the other hand, the C14–H14···N1 angle is very small (101°) and there is no difference in chemical shifts for protons at C14 and C18 in the 1H NMR spectrum (7.91 p.p.m., doublet, for 4 protons of the C14, C18, C21, C25), therefore indicating the absence of an intramolecular hydrogen bond at least in solution.

The C11=O1 carbonyl group and C1–C5 ring form an extended π-conjugated system, and therefore C1–C11 bond is shortened. The coplanar arrangement of a carbonyl group attached to the cyclopetadienyl (Cp) ring should allow maximum interaction of two π-systems. The C11=O1 bond is twisted out of the plane of the C1–C5 ring for 18.81 (11)°. The Cp rings deviate 9.3 (2)° from an eclipsed conformation. The value of the C–Cg1Cg2–C pseudo-torsion angles, defined by joining two eclipsing Cp carbon atoms through the ring centroids range from 8.8 (1) to 9.8 (1)°. The Cp rings are almost parallel, with a dihedral angle between the mean planes of the rings of 1.84 (11)°. The amide groups do not lie in the plane of the attached aromatic rings. Thus, the plane of the C13/C12/O2/N1 atoms is inclined to the C13–C18 phenyl ring for 17.86 (9)°, and the plane of the C19/C20/O3/N1 atoms is inclined to the C20–C25 phenyl ring for even 27.27 (11)°. Two phenyl rings are perpendicular with respect to the C1–C5 ring. The corresponding dihedral angles are 85.36 (9) and 88.17 (10)° for C13–C18 and C20–C25 rings, respectively.

Molecules of 1 are self-assembled by C4–H4···O1 hydrogen bonds (Fig. 2; Table 1) into C(6) (Bernstein et al., 1995) spirals parallel to the b axis. Hydrogen-bonded chains are further weakly linked by one C–H···π interaction, C15–H15···Cg2, also parallel to the b axis forming a two-dimensional framework.

Related literature top

For background to ferrocene amides, see: Kohmoto et al. (2008); Masu et al. (2005, 2006); Moriuchi et al. (1995, 2000); Moriuchi & Hirao (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a suspension of hexane-washed sodium hydride (60% NaH in mineral oil, 78 mg; 2.027 mmol) in dry tetrahydrofuran (5 ml), a solution of ferrocene amide (188 mg; 0.821 mmol) in dry tetrahydrofuran (5 ml) was dropped and the mixture was heated at reflux for 2 h. After cooling benzoyl chloride (0.13 ml; 1.126 mmol) was added and the reaction mixture was stirred at room temperature overnight. After removing the solvent the remaining residue was dissolved in dichloromethane, washed with water and brine, dried over anhydrous sodium sulfate and evaporated. TLC purification gave 111 mg (41%) orange crystals of N-benzoylferrocenecarboxamide 2 and 76 mg (21%) red crystals of the title compound 1. A single-crystal of 1 was grown by slow evaporation from a saturated dichloromethane solution.

Refinement top

All H atoms were included in calculated positions as riding atoms, with SHELXL97 (Sheldrick, 2008) defaults, viz. C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1, with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of 1, showing the C–H···O hydrogen bonds and C–H···π interactions as dashed lines. Symmetry codes are given in Table 1.
N,N-Dibenzoylferrocenecarboxamide top
Crystal data top
[Fe(C5H5)(C20H14NO3)]F(000) = 904
Mr = 437.26Dx = 1.418 Mg m3
Monoclinic, P21/cMelting point = 416–418 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8699 (4) ÅCell parameters from 5978 reflections
b = 11.3387 (4) Åθ = 4.0–31.8°
c = 19.6264 (7) ŵ = 0.76 mm1
β = 122.133 (2)°T = 295 K
V = 2048.42 (13) Å3Prism, red
Z = 40.56 × 0.53 × 0.43 mm
Data collection top
Oxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire3 detector
5867 independent reflections
Radiation source: Enhance (Mo) X-ray Source3472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.3426 pixels mm-1θmax = 30.0°, θmin = 4.1°
ω scansh = 1514
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1015
Tmin = 0.910, Tmax = 1.000l = 2727
14704 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0306P)2]
where P = (Fo2 + 2Fc2)/3
5867 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C5H5)(C20H14NO3)]V = 2048.42 (13) Å3
Mr = 437.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8699 (4) ŵ = 0.76 mm1
b = 11.3387 (4) ÅT = 295 K
c = 19.6264 (7) Å0.56 × 0.53 × 0.43 mm
β = 122.133 (2)°
Data collection top
Oxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire3 detector
5867 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3472 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.024
14704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 0.93Δρmax = 0.26 e Å3
5867 reflectionsΔρmin = 0.24 e Å3
271 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.32 (release 27-01-2009 CrysAlis171 .NET) (compiled Jan 27 2009,14:17:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.22827 (2)0.555286 (18)0.788568 (11)0.04543 (7)
N10.31428 (12)0.20402 (10)0.81870 (6)0.0418 (3)
O10.08238 (10)0.25999 (10)0.72376 (6)0.0561 (3)
O20.32130 (12)0.17948 (11)0.93657 (6)0.0685 (3)
O30.35548 (15)0.01217 (10)0.80453 (6)0.0727 (4)
C10.22015 (15)0.39344 (13)0.83023 (7)0.0435 (3)
C20.35480 (17)0.44935 (13)0.88449 (8)0.0580 (4)
H20.44670.42170.90000.070*
C30.3229 (2)0.55509 (15)0.91043 (9)0.0733 (5)
H30.39110.60860.94680.088*
C40.1724 (2)0.56619 (15)0.87266 (9)0.0668 (5)
H40.12380.62810.87950.080*
C50.10714 (17)0.46776 (13)0.82268 (9)0.0524 (4)
H50.00790.45340.79040.063*
C60.18399 (19)0.54441 (15)0.67438 (9)0.0612 (4)
H60.15520.47680.64270.073*
C70.3267 (2)0.58116 (17)0.72643 (11)0.0699 (5)
H70.41000.54250.73610.084*
C80.3216 (2)0.68789 (18)0.76171 (12)0.0761 (5)
H80.40120.73280.79860.091*
C90.1762 (2)0.71431 (16)0.73166 (11)0.0713 (5)
H90.14190.77960.74530.086*
C100.09164 (19)0.62606 (17)0.67781 (10)0.0674 (5)
H100.00930.62220.64900.081*
C110.19470 (14)0.28448 (13)0.78516 (7)0.0414 (3)
C120.38958 (17)0.18287 (12)0.90480 (8)0.0483 (4)
C130.54864 (16)0.17184 (13)0.94748 (8)0.0498 (4)
C140.62677 (17)0.21187 (15)0.91517 (9)0.0612 (4)
H140.57800.24270.86330.073*
C150.77638 (18)0.20666 (18)0.95886 (11)0.0778 (6)
H150.82860.23450.93700.093*
C160.8472 (2)0.1599 (2)1.03492 (13)0.0939 (7)
H160.94810.15581.06470.113*
C170.7712 (3)0.11922 (18)1.06751 (11)0.0896 (7)
H170.82080.08711.11900.107*
C180.6221 (2)0.12535 (14)1.02499 (8)0.0666 (5)
H180.57090.09871.04770.080*
C190.31625 (16)0.10751 (14)0.77336 (8)0.0475 (3)
C200.27699 (15)0.13020 (14)0.68970 (8)0.0476 (4)
C210.29771 (16)0.23823 (15)0.66520 (8)0.0555 (4)
H210.33080.30180.70060.067*
C220.2693 (2)0.25240 (18)0.58799 (10)0.0744 (5)
H220.28490.32500.57170.089*
C230.2179 (2)0.1583 (2)0.53545 (11)0.0884 (6)
H230.19690.16790.48320.106*
C240.1979 (2)0.0515 (2)0.55973 (11)0.0918 (7)
H240.16380.01160.52400.110*
C250.2275 (2)0.03562 (17)0.63671 (9)0.0700 (5)
H250.21440.03790.65300.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.04328 (12)0.04295 (12)0.04387 (11)0.00224 (11)0.01901 (9)0.00300 (9)
N10.0486 (7)0.0418 (7)0.0316 (5)0.0062 (6)0.0190 (5)0.0003 (5)
O10.0399 (5)0.0705 (7)0.0479 (6)0.0040 (5)0.0166 (5)0.0101 (5)
O20.0894 (8)0.0766 (8)0.0531 (6)0.0206 (7)0.0471 (6)0.0179 (6)
O30.1159 (10)0.0427 (6)0.0520 (6)0.0101 (7)0.0396 (7)0.0003 (5)
C10.0496 (8)0.0431 (8)0.0348 (6)0.0072 (7)0.0205 (6)0.0042 (6)
C20.0570 (9)0.0497 (9)0.0400 (7)0.0107 (8)0.0073 (7)0.0004 (7)
C30.0999 (14)0.0470 (10)0.0387 (8)0.0114 (10)0.0137 (9)0.0047 (7)
C40.1046 (15)0.0523 (10)0.0520 (9)0.0247 (10)0.0474 (10)0.0090 (8)
C50.0644 (10)0.0530 (10)0.0513 (8)0.0125 (8)0.0385 (8)0.0119 (7)
C60.0733 (11)0.0618 (11)0.0518 (9)0.0044 (10)0.0354 (9)0.0059 (8)
C70.0639 (11)0.0749 (14)0.0875 (12)0.0072 (10)0.0515 (10)0.0173 (10)
C80.0698 (12)0.0665 (13)0.0913 (13)0.0222 (10)0.0424 (11)0.0031 (11)
C90.0925 (14)0.0491 (10)0.0868 (13)0.0111 (11)0.0574 (12)0.0188 (10)
C100.0572 (10)0.0787 (13)0.0605 (10)0.0082 (10)0.0275 (8)0.0297 (10)
C110.0436 (8)0.0492 (9)0.0349 (7)0.0033 (7)0.0234 (6)0.0060 (6)
C120.0696 (10)0.0371 (8)0.0360 (7)0.0094 (8)0.0265 (7)0.0026 (6)
C130.0624 (9)0.0385 (8)0.0348 (7)0.0101 (8)0.0166 (7)0.0026 (6)
C140.0598 (10)0.0677 (11)0.0431 (8)0.0110 (9)0.0187 (8)0.0091 (8)
C150.0601 (11)0.0908 (14)0.0669 (11)0.0058 (11)0.0233 (9)0.0230 (10)
C160.0661 (12)0.0903 (16)0.0712 (13)0.0221 (12)0.0000 (11)0.0230 (12)
C170.0973 (16)0.0644 (13)0.0459 (10)0.0186 (13)0.0031 (11)0.0004 (9)
C180.0876 (13)0.0460 (10)0.0382 (8)0.0067 (9)0.0145 (8)0.0002 (7)
C190.0541 (9)0.0447 (9)0.0412 (7)0.0012 (8)0.0237 (7)0.0046 (7)
C200.0484 (8)0.0552 (10)0.0418 (7)0.0021 (7)0.0257 (7)0.0038 (7)
C210.0600 (9)0.0643 (11)0.0493 (8)0.0031 (8)0.0339 (8)0.0016 (8)
C220.0892 (13)0.0874 (14)0.0646 (11)0.0029 (12)0.0530 (10)0.0117 (10)
C230.1114 (16)0.1143 (19)0.0530 (10)0.0061 (15)0.0529 (11)0.0038 (12)
C240.1254 (18)0.1016 (17)0.0601 (11)0.0254 (14)0.0571 (12)0.0279 (11)
C250.0933 (13)0.0693 (12)0.0548 (9)0.0129 (10)0.0444 (10)0.0146 (8)
Geometric parameters (Å, º) top
Fe1—C52.0260 (15)C7—H70.9300
Fe1—C72.0269 (17)C8—C91.394 (2)
Fe1—C62.0303 (15)C8—H80.9300
Fe1—C12.0300 (14)C9—C101.389 (2)
Fe1—C22.0309 (14)C9—H90.9300
Fe1—C82.0339 (18)C10—H100.9300
Fe1—C102.0349 (15)C12—C131.472 (2)
Fe1—C92.0363 (16)C13—C141.379 (2)
Fe1—C32.0399 (15)C13—C181.3920 (19)
Fe1—C42.0430 (16)C14—C151.378 (2)
N1—C191.4177 (17)C14—H140.9300
N1—C111.4300 (17)C15—C161.371 (3)
N1—C121.4531 (16)C15—H150.9300
O1—C111.2061 (15)C16—C171.367 (3)
O2—C121.1973 (16)C16—H160.9300
O3—C191.2030 (17)C17—C181.374 (3)
C1—C21.421 (2)C17—H170.9300
C1—C51.431 (2)C18—H180.9300
C1—C111.458 (2)C19—C201.4830 (19)
C2—C31.416 (2)C20—C211.377 (2)
C2—H20.9300C20—C251.388 (2)
C3—C41.396 (3)C21—C221.386 (2)
C3—H30.9300C21—H210.9300
C4—C51.404 (2)C22—C231.379 (3)
C4—H40.9300C22—H220.9300
C5—H50.9300C23—C241.361 (3)
C6—C71.392 (2)C23—H230.9300
C6—C101.393 (2)C24—C251.379 (2)
C6—H60.9300C24—H240.9300
C7—C81.410 (2)C25—H250.9300
C5—Fe1—C7156.04 (7)Fe1—C5—H5125.6
C5—Fe1—C6121.39 (7)C7—C6—C10108.43 (16)
C7—Fe1—C640.14 (7)C7—C6—Fe169.80 (9)
C5—Fe1—C141.32 (6)C10—C6—Fe170.14 (9)
C7—Fe1—C1121.55 (7)C7—C6—H6125.8
C6—Fe1—C1110.74 (6)C10—C6—H6125.8
C5—Fe1—C269.06 (7)Fe1—C6—H6125.9
C7—Fe1—C2109.23 (7)C6—C7—C8107.29 (16)
C6—Fe1—C2129.30 (7)C6—C7—Fe170.06 (9)
C1—Fe1—C240.98 (6)C8—C7—Fe169.95 (10)
C5—Fe1—C8161.66 (7)C6—C7—H7126.4
C7—Fe1—C840.64 (7)C8—C7—H7126.4
C6—Fe1—C867.47 (7)Fe1—C7—H7125.2
C1—Fe1—C8155.13 (7)C9—C8—C7107.99 (17)
C2—Fe1—C8119.49 (8)C9—C8—Fe170.07 (10)
C5—Fe1—C10108.23 (6)C7—C8—Fe169.42 (10)
C7—Fe1—C1067.61 (7)C9—C8—H8126.0
C6—Fe1—C1040.09 (7)C7—C8—H8126.0
C1—Fe1—C10128.56 (7)Fe1—C8—H8126.1
C2—Fe1—C10166.69 (7)C10—C9—C8108.05 (17)
C8—Fe1—C1067.22 (7)C10—C9—Fe169.99 (10)
C5—Fe1—C9125.12 (7)C8—C9—Fe169.88 (10)
C7—Fe1—C967.87 (7)C10—C9—H9126.0
C6—Fe1—C967.34 (7)C8—C9—H9126.0
C1—Fe1—C9164.26 (7)Fe1—C9—H9125.7
C2—Fe1—C9152.35 (8)C9—C10—C6108.24 (16)
C8—Fe1—C940.05 (7)C9—C10—Fe170.10 (9)
C10—Fe1—C939.91 (7)C6—C10—Fe169.78 (9)
C5—Fe1—C367.84 (7)C9—C10—H10125.9
C7—Fe1—C3127.41 (8)C6—C10—H10125.9
C6—Fe1—C3165.89 (8)Fe1—C10—H10125.8
C1—Fe1—C368.26 (6)O1—C11—N1120.15 (13)
C2—Fe1—C340.71 (6)O1—C11—C1124.46 (13)
C8—Fe1—C3107.15 (8)N1—C11—C1115.38 (12)
C10—Fe1—C3151.55 (8)O2—C12—N1119.28 (14)
C9—Fe1—C3117.63 (8)O2—C12—C13124.53 (13)
C5—Fe1—C440.37 (6)N1—C12—C13116.14 (13)
C7—Fe1—C4163.00 (8)C14—C13—C18119.43 (16)
C6—Fe1—C4153.85 (8)C14—C13—C12122.32 (13)
C1—Fe1—C468.54 (6)C18—C13—C12118.14 (16)
C2—Fe1—C468.45 (7)C15—C14—C13120.74 (16)
C8—Fe1—C4124.62 (8)C15—C14—H14119.6
C10—Fe1—C4118.52 (7)C13—C14—H14119.6
C9—Fe1—C4105.92 (7)C16—C15—C14119.2 (2)
C3—Fe1—C440.00 (7)C16—C15—H15120.4
C19—N1—C11121.13 (11)C14—C15—H15120.4
C19—N1—C12114.53 (11)C17—C16—C15120.73 (19)
C11—N1—C12116.91 (11)C17—C16—H16119.6
C2—C1—C5107.47 (13)C15—C16—H16119.6
C2—C1—C11128.32 (13)C16—C17—C18120.67 (17)
C5—C1—C11124.12 (13)C16—C17—H17119.7
C2—C1—Fe169.54 (8)C18—C17—H17119.7
C5—C1—Fe169.19 (8)C17—C18—C13119.24 (19)
C11—C1—Fe1123.82 (9)C17—C18—H18120.4
C3—C2—C1107.17 (15)C13—C18—H18120.4
C3—C2—Fe169.99 (8)O3—C19—N1119.61 (12)
C1—C2—Fe169.48 (8)O3—C19—C20122.30 (13)
C3—C2—H2126.4N1—C19—C20118.01 (13)
C1—C2—H2126.4C21—C20—C25119.73 (14)
Fe1—C2—H2125.7C21—C20—C19122.44 (13)
C4—C3—C2109.11 (15)C25—C20—C19117.66 (14)
C4—C3—Fe170.12 (8)C20—C21—C22120.14 (16)
C2—C3—Fe169.30 (8)C20—C21—H21119.9
C4—C3—H3125.4C22—C21—H21119.9
C2—C3—H3125.4C23—C22—C21119.62 (18)
Fe1—C3—H3126.7C23—C22—H22120.2
C3—C4—C5108.25 (15)C21—C22—H22120.2
C3—C4—Fe169.88 (10)C24—C23—C22120.22 (17)
C5—C4—Fe169.17 (9)C24—C23—H23119.9
C3—C4—H4125.9C22—C23—H23119.9
C5—C4—H4125.9C23—C24—C25120.80 (18)
Fe1—C4—H4126.6C23—C24—H24119.6
C4—C5—C1107.99 (15)C25—C24—H24119.6
C4—C5—Fe170.47 (10)C24—C25—C20119.47 (18)
C1—C5—Fe169.49 (8)C24—C25—H25120.3
C4—C5—H5126.0C20—C25—H25120.3
C1—C5—H5126.0
C5—Fe1—C1—C2118.97 (12)C4—Fe1—C6—C1042.5 (2)
C7—Fe1—C1—C283.25 (11)C10—C6—C7—C80.62 (19)
C6—Fe1—C1—C2126.64 (10)Fe1—C6—C7—C860.33 (12)
C8—Fe1—C1—C245.68 (19)C10—C6—C7—Fe159.71 (11)
C10—Fe1—C1—C2168.54 (10)C5—Fe1—C7—C647.3 (2)
C9—Fe1—C1—C2153.4 (2)C1—Fe1—C7—C685.21 (12)
C3—Fe1—C1—C238.25 (10)C2—Fe1—C7—C6128.82 (10)
C4—Fe1—C1—C281.42 (10)C8—Fe1—C7—C6117.97 (16)
C7—Fe1—C1—C5157.78 (10)C10—Fe1—C7—C637.35 (10)
C6—Fe1—C1—C5114.38 (9)C9—Fe1—C7—C680.62 (12)
C2—Fe1—C1—C5118.97 (12)C3—Fe1—C7—C6170.76 (10)
C8—Fe1—C1—C5164.66 (15)C4—Fe1—C7—C6152.1 (2)
C10—Fe1—C1—C572.49 (11)C5—Fe1—C7—C8165.24 (15)
C9—Fe1—C1—C534.5 (3)C6—Fe1—C7—C8117.97 (16)
C3—Fe1—C1—C580.72 (10)C1—Fe1—C7—C8156.81 (10)
C4—Fe1—C1—C537.56 (9)C2—Fe1—C7—C8113.21 (11)
C5—Fe1—C1—C11117.88 (15)C10—Fe1—C7—C880.63 (12)
C7—Fe1—C1—C1139.89 (15)C9—Fe1—C7—C837.35 (11)
C6—Fe1—C1—C113.50 (14)C3—Fe1—C7—C871.27 (13)
C2—Fe1—C1—C11123.14 (16)C4—Fe1—C7—C834.1 (3)
C8—Fe1—C1—C1177.5 (2)C6—C7—C8—C90.7 (2)
C10—Fe1—C1—C1145.39 (15)Fe1—C7—C8—C959.68 (12)
C9—Fe1—C1—C1183.4 (3)C6—C7—C8—Fe160.40 (11)
C3—Fe1—C1—C11161.40 (14)C5—Fe1—C8—C941.7 (3)
C4—Fe1—C1—C11155.44 (14)C7—Fe1—C8—C9119.15 (17)
C5—C1—C2—C31.11 (16)C6—Fe1—C8—C981.09 (12)
C11—C1—C2—C3177.67 (14)C1—Fe1—C8—C9172.06 (13)
Fe1—C1—C2—C360.12 (11)C2—Fe1—C8—C9155.32 (11)
C5—C1—C2—Fe159.02 (9)C10—Fe1—C8—C937.49 (11)
C11—C1—C2—Fe1117.55 (14)C3—Fe1—C8—C9112.78 (12)
C5—Fe1—C2—C379.95 (12)C4—Fe1—C8—C972.35 (14)
C7—Fe1—C2—C3125.52 (12)C5—Fe1—C8—C7160.81 (19)
C6—Fe1—C2—C3165.99 (11)C6—Fe1—C8—C738.06 (11)
C1—Fe1—C2—C3118.15 (15)C1—Fe1—C8—C752.9 (2)
C8—Fe1—C2—C382.07 (14)C2—Fe1—C8—C785.53 (12)
C10—Fe1—C2—C3160.6 (3)C10—Fe1—C8—C781.65 (12)
C9—Fe1—C2—C346.7 (2)C9—Fe1—C8—C7119.15 (17)
C4—Fe1—C2—C336.51 (12)C3—Fe1—C8—C7128.07 (11)
C5—Fe1—C2—C138.20 (9)C4—Fe1—C8—C7168.50 (11)
C7—Fe1—C2—C1116.33 (10)C7—C8—C9—C100.6 (2)
C6—Fe1—C2—C175.85 (12)Fe1—C8—C9—C1059.83 (12)
C8—Fe1—C2—C1159.77 (9)C7—C8—C9—Fe159.27 (12)
C10—Fe1—C2—C142.5 (3)C5—Fe1—C9—C1075.83 (13)
C9—Fe1—C2—C1164.85 (14)C7—Fe1—C9—C1081.10 (12)
C3—Fe1—C2—C1118.15 (15)C6—Fe1—C9—C1037.52 (10)
C4—Fe1—C2—C181.65 (10)C1—Fe1—C9—C1048.7 (3)
C1—C2—C3—C40.84 (18)C2—Fe1—C9—C10170.52 (14)
Fe1—C2—C3—C458.96 (11)C8—Fe1—C9—C10118.98 (17)
C1—C2—C3—Fe159.80 (10)C3—Fe1—C9—C10157.08 (12)
C5—Fe1—C3—C437.38 (10)C4—Fe1—C9—C10115.66 (12)
C7—Fe1—C3—C4164.07 (11)C5—Fe1—C9—C8165.18 (11)
C6—Fe1—C3—C4170.8 (3)C7—Fe1—C9—C837.88 (11)
C1—Fe1—C3—C482.09 (11)C6—Fe1—C9—C881.46 (12)
C2—Fe1—C3—C4120.59 (16)C1—Fe1—C9—C8167.6 (2)
C8—Fe1—C3—C4123.87 (11)C2—Fe1—C9—C851.5 (2)
C10—Fe1—C3—C450.2 (2)C10—Fe1—C9—C8118.98 (17)
C9—Fe1—C3—C481.82 (12)C3—Fe1—C9—C883.94 (14)
C5—Fe1—C3—C283.21 (11)C4—Fe1—C9—C8125.36 (12)
C7—Fe1—C3—C275.34 (14)C8—C9—C10—C60.17 (19)
C6—Fe1—C3—C250.2 (3)Fe1—C9—C10—C659.58 (11)
C1—Fe1—C3—C238.50 (10)C8—C9—C10—Fe159.76 (12)
C8—Fe1—C3—C2115.55 (12)C7—C6—C10—C90.28 (18)
C10—Fe1—C3—C2170.78 (14)Fe1—C6—C10—C959.78 (11)
C9—Fe1—C3—C2157.59 (11)C7—C6—C10—Fe159.50 (11)
C4—Fe1—C3—C2120.59 (16)C5—Fe1—C10—C9123.38 (11)
C2—C3—C4—C50.24 (18)C7—Fe1—C10—C981.81 (12)
Fe1—C3—C4—C558.70 (10)C6—Fe1—C10—C9119.21 (15)
C2—C3—C4—Fe158.46 (11)C1—Fe1—C10—C9164.91 (10)
C5—Fe1—C4—C3119.75 (14)C2—Fe1—C10—C9160.6 (3)
C7—Fe1—C4—C348.2 (3)C8—Fe1—C10—C937.63 (11)
C6—Fe1—C4—C3174.93 (14)C3—Fe1—C10—C946.4 (2)
C1—Fe1—C4—C381.33 (10)C4—Fe1—C10—C980.61 (13)
C2—Fe1—C4—C337.14 (10)C5—Fe1—C10—C6117.41 (10)
C8—Fe1—C4—C374.61 (12)C7—Fe1—C10—C637.40 (10)
C10—Fe1—C4—C3155.39 (10)C1—Fe1—C10—C675.88 (12)
C9—Fe1—C4—C3114.23 (11)C2—Fe1—C10—C641.4 (3)
C7—Fe1—C4—C5168.0 (2)C8—Fe1—C10—C681.58 (11)
C6—Fe1—C4—C555.18 (19)C9—Fe1—C10—C6119.21 (15)
C1—Fe1—C4—C538.42 (9)C3—Fe1—C10—C6165.63 (15)
C2—Fe1—C4—C582.61 (10)C4—Fe1—C10—C6160.18 (10)
C8—Fe1—C4—C5165.64 (10)C19—N1—C11—O113.67 (19)
C10—Fe1—C4—C584.86 (11)C12—N1—C11—O1134.58 (14)
C9—Fe1—C4—C5126.02 (10)C19—N1—C11—C1166.52 (12)
C3—Fe1—C4—C5119.75 (14)C12—N1—C11—C145.23 (16)
C3—C4—C5—C10.46 (17)C2—C1—C11—O1156.27 (14)
Fe1—C4—C5—C159.60 (10)C5—C1—C11—O119.8 (2)
C3—C4—C5—Fe159.14 (12)Fe1—C1—C11—O166.65 (18)
C2—C1—C5—C40.98 (16)C2—C1—C11—N123.9 (2)
C11—C1—C5—C4177.72 (13)C5—C1—C11—N1160.03 (12)
Fe1—C1—C5—C460.21 (10)Fe1—C1—C11—N1113.55 (11)
C2—C1—C5—Fe159.24 (10)C19—N1—C12—O2113.74 (16)
C11—C1—C5—Fe1117.51 (12)C11—N1—C12—O236.58 (19)
C7—Fe1—C5—C4171.38 (16)C19—N1—C12—C1368.71 (16)
C6—Fe1—C5—C4154.92 (10)C11—N1—C12—C13140.97 (13)
C1—Fe1—C5—C4118.85 (13)O2—C12—C13—C14159.20 (16)
C2—Fe1—C5—C480.96 (10)N1—C12—C13—C1418.2 (2)
C8—Fe1—C5—C440.4 (3)O2—C12—C13—C1817.1 (2)
C10—Fe1—C5—C4112.88 (11)N1—C12—C13—C18165.53 (12)
C9—Fe1—C5—C471.97 (12)C18—C13—C14—C150.2 (2)
C3—Fe1—C5—C437.05 (9)C12—C13—C14—C15175.99 (15)
C7—Fe1—C5—C152.53 (19)C13—C14—C15—C160.7 (3)
C6—Fe1—C5—C186.23 (10)C14—C15—C16—C170.2 (3)
C2—Fe1—C5—C137.90 (8)C15—C16—C17—C180.6 (3)
C8—Fe1—C5—C1159.3 (2)C16—C17—C18—C131.1 (3)
C10—Fe1—C5—C1128.27 (9)C14—C13—C18—C170.6 (2)
C9—Fe1—C5—C1169.18 (9)C12—C13—C18—C17177.01 (15)
C3—Fe1—C5—C181.80 (9)C11—N1—C19—O3136.69 (15)
C4—Fe1—C5—C1118.85 (13)C12—N1—C19—O312.3 (2)
C5—Fe1—C6—C7159.55 (10)C11—N1—C19—C2046.64 (18)
C1—Fe1—C6—C7114.76 (11)C12—N1—C19—C20164.41 (13)
C2—Fe1—C6—C771.92 (13)O3—C19—C20—C21148.83 (16)
C8—Fe1—C6—C738.52 (11)N1—C19—C20—C2127.7 (2)
C10—Fe1—C6—C7119.42 (15)O3—C19—C20—C2526.5 (2)
C9—Fe1—C6—C782.06 (12)N1—C19—C20—C25156.95 (14)
C3—Fe1—C6—C731.6 (3)C25—C20—C21—C220.0 (2)
C4—Fe1—C6—C7161.93 (15)C19—C20—C21—C22175.18 (15)
C5—Fe1—C6—C1081.04 (12)C20—C21—C22—C231.1 (3)
C7—Fe1—C6—C10119.42 (15)C21—C22—C23—C241.3 (3)
C1—Fe1—C6—C10125.82 (10)C22—C23—C24—C250.4 (3)
C2—Fe1—C6—C10168.66 (10)C23—C24—C25—C200.6 (3)
C8—Fe1—C6—C1080.90 (11)C21—C20—C25—C240.8 (3)
C9—Fe1—C6—C1037.36 (10)C19—C20—C25—C24176.26 (17)
C3—Fe1—C6—C10151.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.563.241 (2)131
C15—H15···Cg2ii0.932.973.528 (2)120
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C20H14NO3)]
Mr437.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.8699 (4), 11.3387 (4), 19.6264 (7)
β (°) 122.133 (2)
V3)2048.42 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.56 × 0.53 × 0.43
Data collection
DiffractometerOxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire3 detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14704, 5867, 3472
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 0.93
No. of reflections5867
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.563.241 (2)131
C15—H15···Cg2ii0.932.973.528 (2)120
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant Nos. 058–1191344-3122 and 119–1193079-3069).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKohmoto, S., Takeichi, H., Kishikawa, K., Masu, H. & Azumaya, I. (2008). Tetrahedron Lett. 49, 1223–1227.  CrossRef CAS Google Scholar
First citationMasu, H., Mizutani, I., Kato, T., Azumaya, I., Yamaguchi, K., Kishikawa, K. & Kohmoto, S. (2006). J. Org. Chem. 71, 8037–8044.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMasu, H., Sakai, M., Kishikawa, K., Yamamoto, M., Yamaguchi, K. & Kohmoto, S. (2005). J. Org. Chem. 70, 1423–1431.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoriuchi, T., Bandoh, S., Miyaji, Y. & Hirao, T. (2000). J. Organomet. Chem. 599, 135–142.  CrossRef CAS Google Scholar
First citationMoriuchi, T. & Hirao, T. (2007). Tetrahedron Lett. 48, 5099–5101.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoriuchi, T., Ikeda, I. & Hirao, T. (1995). Organometallics, 14, 3578–3580.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds