organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1131-o1132

8-(2,2,2-Tri­fluoro­eth­oxy)quinolinium perchlorate–8-(2,2,2-tri­fluoro­eth­oxy)quinoline (1/1)

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 31 March 2011; accepted 8 April 2011; online 13 April 2011)

The title compound, C11H9F3NO+·ClO4·C11H8F3NO or [(C11H8F3NO)H(C11H8F3NO)]ClO4, contains two 8-(2,2,2-trifluoro­eth­­oxy)quinoline molecules, one of which combines a proton from perchloric acid to form the corresponding quinolinium cation. The quinolinium and quinoline rings form a cationic unit via an inter­molecular N—H⋯N hydrogen bond. The heterocyclic units are almost perpendicular to each other [inter­planar angle 86.97 (6)°]. In the crystal, each perchlorate anion bridges two adjacent cationic units and creates a chain by a combination of C—H⋯O hydrogen bonds. Two inversion-related chains associate into a mol­ecular column by ππ stacking inter­actions between the quinolinium rings. The perpendicular and centroid–centroid distances between adjacent quinolinium rings are 3.501 (3) and 3.634 (9) Å, respectively. The molecular column is linked to its neighbors, creating a two-dimensional network via the weak ππ stacking between the quinoline rings [perpendicular and centroid–centroid separations 3.340 (4) and 4.408 (4) Å, respectively]. Finally, a three-dimensional framework is formed by a combination of intermolecular C—F⋯π contacts. One –CF3 group is disordered over two positions of equal occupancy.

Related literature

For background to quinoline derivatives, see: Moret et al. (2006[Moret, V., Dereudre-Bosquet, N., Clayette, P., Laras, Y., Pietrancosta, N., Rolland, A., Weck, C., Marc, S. & Kraus, J.-L. (2006). Bioorg. Med. Chem. Lett. 16, 5988-5992.]); Kalita et al. (2009[Kalita, D., Sarma, R. & Baruah, J. B. (2009). CrystEngComm, 11, 803-810.]). For related structures, see: Ouyang & Khoo et al. (1998[Ouyang, J., Xu, Y. & Khoo, L. E. (1998). J. Organomet. Chem. 561, 143-152.]); Karmakar et al. (2009[Karmakar, A., Kalita, D. & Baruah, J. B. (2009). J. Mol. Struct. 935, 47-52.]); Al-Mandhary & Steel (2003[Al-Mandhary, M. R. A. & Steel, P. J. (2003). Inorg. Chim. Acta, 351, 7-11.]); Zhang et al. (2006[Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071-o3072.]); Zheng et al. (2006[Zheng, Z.-B., Li, J.-K., Wu, R.-T. & Sun, Y.-F. (2006). Acta Cryst. E62, o4611-o4612.]). For ππ stacking, see: Kalita & Baruah (2010[Kalita, D. & Baruah, J. B. (2010). CrystEngComm, 12, 1562-1567.]); Chen et al. (2005[Chen, C.-L., Zhang, J.-A., Li, X.-P., Chen, Z.-N., Kang, B.-S. & Su, C.-Y. (2005). Inorg. Chim. Acta, 358, 4527-4533.]); Liang et al. (2002[Liang, F., Xie, Z., Wang, L., Jing, X. & Wang, F. (2002). Tetrahedron Lett. 43, 3427-3430.]). For C—F⋯π contacts, see: Prasanna & Row (2000[Prasanna, M. D. & Row, T. N. G. (2000). Cryst. Eng. 3, 135-154.]); Saraogi et al. (2003[Saraogi, I., Vijay, V. G., Das, S., Sekar, K. & Row, T. N. G. (2003). Cryst. Eng. 6, 69-77.]); Choudhury & Row (2004[Choudhury, A. R. & Row, T. N. G. (2004). Cryst. Growth Des. 4, 47-52.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9F3NO+·ClO4·C11H8F3NO

  • Mr = 554.83

  • Triclinic, [P \overline 1]

  • a = 9.462 (2) Å

  • b = 11.229 (3) Å

  • c = 11.832 (3) Å

  • α = 82.910 (3)°

  • β = 77.048 (3)°

  • γ = 74.536 (3)°

  • V = 1178.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.50 × 0.32 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.940

  • 6301 measured reflections

  • 4364 independent reflections

  • 3400 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.137

  • S = 1.02

  • 4364 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the midpoints of the N1–C5, C5–C9 and C17–C18 bonds, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2 0.86 1.87 2.684 (3) 158
C22—F5⋯Cg1 1.33 3.10 3.796 (3) 111
C22—F6⋯Cg2 1.33 3.17 3.804 (4) 109
C13—H13⋯O3i 0.93 2.60 3.393 (6) 144
C21—H21B⋯O4ii 0.97 2.48 3.437 (7) 169
C22—F5⋯Cg3iii 1.33 3.24 3.860 (8) 108
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecules containing quinoline moieties have attracted much interest due to their significant bioactivities (Moret et al., 2006) and potential applications for constructing supramolecular systems by various hydrogen bonds and ππ interactions (Kalita et al., 2009). Numerous crystal structures of 8-substituented quinolines, most of which are 8-alkyloxyquinoline derivatives have been reported (Karmakar et al., 2009; Al-Mandhary et al., 2003; Zhang et al., 2006; Zheng et al., 2006), while the crystal structures of such compounds exhibiting fluorinated alkyl groups have rarely been described. We synthesized a new trifluoroethoxyquinoline derivative and attempted to prepare its Ni(II)-complex. Surprisingly, a complex without the Ni(II) ion, namely 8-(2,2,2-trifluoroethoxy)-quinolinium-[8-(2,2,2-trifluoroethoxy)-quinoline] perchlorate, was obtained. Here, we report its crystal structure.

In the crystal structure of the title complex the asymmetric unit contains one perchlorate anion and one organic cation consisting of two 8-(2,2,2-trifluoroethoxy)-quinolines and a proton (Fig. 1). In the cationic unit, one quinoline ring is protonated forming a quinolinium and is connected to the other one via a N—H···N hydrogen bond (N–H···N angle 155.33 (5)°, N1···N2 2.684 (3) Å, Fig. 2, Table 1). This distance is shorter than 2.729 Å reported for a similar quinoline derivative (Ouyang et al., 1998). Such a short distance may be ascribed to the presence of two weak C—F···π contacts (Prasanna & Row, 2000; Saraogi et al., 2003; Choudhury & Row, 2004) between the non-disordered trifluoromethyl group and the quinoline ring. Separations of F5···Cg1 and F6···Cg2 (Cg1 and Cg2 are the centroids of N1–C5 and C5–C9 bonds, respectively) are 3.099 (3) and 3.166 (3) Å, respectively. The quinolinium and quinoline rings are almost perpendicular to each other, with a dihedral angle of 86.97 (6)°. The other trifluoromethyl group is disordered over two orientations, with refined site-occupancy factors of 0.5.

In the packing of the title complex, there exist intermolecular C—H···O hydrogen bonds, C—F···π contacts (Table 1) and ππ stackings (Kalita & Baruah, 2010; Chen et al., 2005; Liang et al., 2002). The cationic units are alternately bridged by perchlorate anions with intermolecular C—H···O hydrogen bonds and form an infinite one-dimensional chain along the c axis (Fig. 3). Hydrogen bonds arise from atoms C13—H13 and C21—H21B in the molecule at (x, y, z) acting as hydrogen bond donors towards atoms O3 at (-x + 1, -y + 1, -z + 1) and O4 (-x + 1, -y + 1, -z + 2), respectively. Two adjacent chains running along the alternate orientation are further combined to a molecular column by ππ stacking interactions between the quinolinium rings, with perpendicular and centroid-centroid distances of 3.501 (3) and 3.634 (9) Å, respectively, between neighboring phenyl rings of the quinolinium units. Finally, a complicated three-dimensional framework is formed by a combination of C—F···π contacts, with a F5···Cg3 (Cg3 is the centroid of C17–C18 bond) distance of 3.240 (7) Å (Table 1), and weak ππ stackings between adjacent phenyl rings of the quinoline moieties, with perpendicular and centroid-centroid separations of 3.340 (4) and 4.408 (4) Å, respectively.

Related literature top

For background to quinoline derivatives, see: Moret et al. (2006); Kalita et al. (2009). For the related structures, see: Ouyang & Khoo et al. (1998); Karmakar et al. (2009); Al-Mandhary & Steel (2003); Zhang et al. (2006); Zheng et al. (2006). For ππ stacking, see: Kalita & Baruah (2010); Chen et al. (2005); Liang et al. (2002). For C—F···π contacts, see: Prasanna & Row (2000); Saraogi et al. (2003); Choudhury & Row (2004).

Experimental top

A suspension of 8-hydroxyquinoline (0.200 g, 1.378 mmol), anhydrous KOH (0.093 g, 1.657 mmol) and 2,2,2-trifluoroethyl-4-methylbenzenesulfonate (0.385 g, 1.514 mmol) in dry NMP (5 ml) was stirred for 5 h at 393 K and then cooled to room temperature. The resulting mixture was neutralized with 5% aqueous HCl and extracted with CH2Cl2. The organic layer was separated and washed with saturated sodium hydrogen carbonate and brine, and dried over anhydrous MgSO4. Removal of the solvent under reduced pressure gave 8-(2,2,2-trifluoroethoxy)-quinoline as a yellow solid (yield 73%), which was purified by flash column chromatography (EtOAc/petroleum ether = 1:3, RF = 1/2).

Single crystals of the title complex suitable for X-ray analysis were obtained from a solution of Ni(ClO4)2 (0.013 g, 0.050 mmol) in MeOH (1 ml) which was layered onto a solution of 8-(2,2,2-trifluoroethoxy)-quinoline (0.012 g, 0.053 mmol) in CH2Cl2 (1 ml) at 298 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) (aromatic); C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) (methylene); N—H = 0.86Å and Uiso(H) = 1.2Ueq(N). In the title molecule, one trifluoromethyl group was disordered over two orientations, with refined site occupation factors of 0.5: 0.5.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen-bonded cationic unit, with weak C—F···π contacts. For the sake of clarity, the disordered moieties and the H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Molecular column formed by hydrogen bonds and ππ stackings, viewed along the a axis. The disordered moieties and H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 2].
8-(2,2,2-Trifluoroethoxy)quinolinium perchlorate– 8-(2,2,2-trifluoroethoxy)quinoline (1/1) top
Crystal data top
C11H9F3NO+·ClO4·C11H8F3NOZ = 2
Mr = 554.83F(000) = 564
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.462 (2) ÅCell parameters from 2404 reflections
b = 11.229 (3) Åθ = 2.5–25.1°
c = 11.832 (3) ŵ = 0.25 mm1
α = 82.910 (3)°T = 293 K
β = 77.048 (3)°Block, colourless
γ = 74.536 (3)°0.50 × 0.32 × 0.25 mm
V = 1178.0 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4364 independent reflections
Radiation source: fine-focus sealed tube3400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 118
Tmin = 0.884, Tmax = 0.940k = 139
6301 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.068P)2 + 0.293P]
where P = (Fo2 + 2Fc2)/3
4364 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H9F3NO+·ClO4·C11H8F3NOγ = 74.536 (3)°
Mr = 554.83V = 1178.0 (5) Å3
Triclinic, P1Z = 2
a = 9.462 (2) ÅMo Kα radiation
b = 11.229 (3) ŵ = 0.25 mm1
c = 11.832 (3) ÅT = 293 K
α = 82.910 (3)°0.50 × 0.32 × 0.25 mm
β = 77.048 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4364 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3400 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.940Rint = 0.021
6301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4364 reflectionsΔρmin = 0.27 e Å3
361 parameters
Special details top

Experimental. ^1Ĥ NMR (300 MHz, CDCl~3~):δ 8.97 (dd, 1H, J = 4.04 Hz, 1.52 Hz), 8.17 (d, 1H, J = 7.52 Hz), 7.54–7.44 (m, 3H), 7.25 (d, H, J = 7.65 Hz), 4.78 (q, 2H, J = 8.33 Hz).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.1468 (3)0.6885 (3)0.6473 (2)0.0583 (6)
H11.15690.60340.65580.070*
C21.2727 (3)0.7332 (3)0.6049 (2)0.0694 (8)
H21.36620.67910.58450.083*
C31.2575 (3)0.8571 (3)0.5937 (2)0.0682 (8)
H31.34160.88800.56530.082*
C41.1164 (3)0.9399 (2)0.6243 (2)0.0548 (6)
C50.9930 (3)0.8878 (2)0.66440 (18)0.0448 (5)
C61.0927 (4)1.0696 (3)0.6165 (2)0.0677 (8)
H61.17311.10560.59090.081*
C70.9530 (4)1.1412 (3)0.6463 (2)0.0738 (8)
H70.93851.22680.64150.089*
C80.8288 (3)1.0905 (2)0.6843 (2)0.0643 (7)
H80.73341.14240.70270.077*
C90.8474 (3)0.9661 (2)0.6943 (2)0.0505 (6)
C100.5911 (3)0.9754 (3)0.7691 (3)0.0844 (10)
H10A0.55181.02280.70370.101*
H10B0.59021.03250.82450.101*
C120.7912 (3)0.5853 (2)0.6481 (2)0.0637 (7)
H120.82190.62590.57700.076*
C130.7078 (4)0.4983 (3)0.6515 (3)0.0731 (8)
H130.68060.48390.58450.088*
C140.6678 (3)0.4362 (2)0.7528 (3)0.0687 (8)
H140.61400.37720.75570.082*
C150.7062 (3)0.4590 (2)0.8546 (2)0.0533 (6)
C160.7845 (2)0.55191 (19)0.8454 (2)0.0449 (5)
C170.6663 (3)0.3978 (2)0.9643 (3)0.0664 (7)
H170.61640.33550.97100.080*
C180.7003 (3)0.4296 (2)1.0592 (3)0.0670 (7)
H180.67390.38841.13080.080*
C190.7750 (3)0.5238 (2)1.0520 (2)0.0574 (6)
H190.79620.54501.11880.069*
C200.8163 (2)0.5841 (2)0.9478 (2)0.0465 (5)
C210.9028 (3)0.7245 (2)1.0323 (2)0.0550 (6)
H21A0.97740.66531.06870.066*
H21B0.80830.73971.08760.066*
C220.9496 (3)0.8415 (3)0.9960 (2)0.0621 (7)
Cl10.35067 (7)0.30823 (6)0.64594 (5)0.0564 (2)
F40.9743 (3)0.88475 (17)1.08657 (15)0.0965 (6)
F51.07304 (19)0.82890 (16)0.91311 (15)0.0783 (5)
F60.8460 (2)0.92888 (15)0.95375 (16)0.0850 (5)
N11.0134 (2)0.76298 (17)0.67574 (16)0.0463 (4)
H1A0.93740.73210.70210.056*
N20.8280 (2)0.61195 (17)0.74111 (17)0.0482 (5)
O10.73864 (18)0.90405 (15)0.73088 (16)0.0613 (5)
O20.88758 (18)0.67771 (15)0.93048 (13)0.0526 (4)
O30.4147 (3)0.4098 (2)0.6013 (2)0.0932 (7)
O40.4074 (2)0.25456 (19)0.74758 (18)0.0835 (6)
O50.3897 (3)0.2197 (2)0.5613 (2)0.0979 (8)
O60.1932 (2)0.3522 (2)0.6752 (2)0.0888 (7)
C110.4994 (4)0.8884 (4)0.8241 (4)0.0902 (10)0.50
F10.5026 (16)0.8110 (15)0.7456 (17)0.177 (7)0.50
F20.3618 (17)0.9521 (18)0.8772 (11)0.131 (4)0.50
F30.5473 (15)0.8205 (11)0.9134 (14)0.118 (5)0.50
C11W0.4994 (4)0.8884 (4)0.8241 (4)0.0902 (10)0.50
F1W0.5117 (10)0.7933 (8)0.7704 (12)0.105 (4)0.50
F2W0.3555 (16)0.9444 (18)0.8260 (11)0.109 (3)0.50
F3W0.5318 (19)0.8454 (16)0.9246 (13)0.142 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0535 (15)0.0587 (15)0.0562 (15)0.0040 (12)0.0086 (12)0.0055 (12)
C20.0472 (15)0.085 (2)0.0672 (18)0.0088 (14)0.0025 (13)0.0029 (15)
C30.0540 (16)0.094 (2)0.0623 (17)0.0336 (15)0.0074 (13)0.0012 (15)
C40.0612 (16)0.0688 (16)0.0412 (13)0.0279 (13)0.0108 (11)0.0022 (11)
C50.0539 (13)0.0484 (13)0.0347 (11)0.0179 (11)0.0090 (10)0.0007 (9)
C60.087 (2)0.0718 (18)0.0563 (16)0.0452 (17)0.0110 (15)0.0005 (13)
C70.116 (3)0.0494 (15)0.0600 (17)0.0323 (17)0.0124 (17)0.0016 (13)
C80.0779 (18)0.0474 (14)0.0599 (16)0.0087 (13)0.0078 (14)0.0004 (12)
C90.0564 (14)0.0476 (13)0.0445 (13)0.0114 (11)0.0081 (11)0.0008 (10)
C100.0535 (17)0.0661 (18)0.111 (3)0.0037 (14)0.0015 (16)0.0071 (17)
C120.0788 (19)0.0615 (16)0.0556 (16)0.0193 (14)0.0209 (14)0.0046 (12)
C130.085 (2)0.0695 (18)0.080 (2)0.0252 (16)0.0348 (17)0.0145 (16)
C140.0658 (18)0.0522 (15)0.099 (2)0.0214 (13)0.0283 (16)0.0109 (15)
C150.0451 (13)0.0400 (12)0.0764 (17)0.0112 (10)0.0144 (12)0.0041 (11)
C160.0404 (12)0.0361 (11)0.0566 (14)0.0069 (9)0.0101 (10)0.0027 (10)
C170.0574 (16)0.0501 (15)0.093 (2)0.0240 (12)0.0120 (15)0.0066 (14)
C180.0654 (17)0.0598 (16)0.0700 (18)0.0220 (14)0.0037 (14)0.0135 (13)
C190.0573 (15)0.0566 (15)0.0567 (15)0.0169 (12)0.0069 (12)0.0003 (12)
C200.0437 (12)0.0412 (12)0.0534 (14)0.0109 (10)0.0062 (10)0.0035 (10)
C210.0618 (15)0.0595 (15)0.0467 (13)0.0199 (12)0.0097 (11)0.0066 (11)
C220.0790 (19)0.0619 (16)0.0541 (15)0.0259 (15)0.0184 (14)0.0094 (12)
Cl10.0547 (4)0.0556 (4)0.0571 (4)0.0178 (3)0.0036 (3)0.0017 (3)
F40.1570 (19)0.0919 (12)0.0696 (11)0.0634 (13)0.0396 (12)0.0119 (9)
F50.0817 (11)0.0814 (11)0.0788 (11)0.0408 (9)0.0069 (9)0.0032 (9)
F60.1038 (13)0.0591 (10)0.0926 (13)0.0115 (9)0.0315 (11)0.0039 (9)
N10.0444 (11)0.0473 (11)0.0459 (11)0.0131 (9)0.0054 (8)0.0011 (8)
N20.0519 (11)0.0442 (10)0.0500 (11)0.0117 (9)0.0124 (9)0.0051 (8)
O10.0449 (9)0.0506 (10)0.0792 (12)0.0075 (8)0.0004 (8)0.0011 (9)
O20.0648 (10)0.0551 (9)0.0453 (9)0.0284 (8)0.0091 (8)0.0050 (7)
O30.1065 (17)0.0857 (15)0.1007 (17)0.0546 (14)0.0250 (13)0.0195 (12)
O40.0875 (15)0.0769 (13)0.0738 (13)0.0045 (11)0.0184 (11)0.0110 (11)
O50.0924 (16)0.1109 (18)0.0948 (16)0.0381 (14)0.0101 (13)0.0478 (14)
O60.0554 (12)0.0968 (16)0.1055 (17)0.0104 (11)0.0081 (11)0.0077 (13)
C110.0475 (18)0.089 (3)0.120 (4)0.0082 (17)0.0047 (19)0.010 (3)
F10.109 (7)0.217 (14)0.235 (12)0.025 (7)0.069 (7)0.097 (10)
F20.054 (5)0.124 (6)0.179 (12)0.000 (4)0.034 (7)0.030 (9)
F30.084 (5)0.082 (3)0.155 (12)0.026 (3)0.021 (5)0.038 (5)
C11W0.0475 (18)0.089 (3)0.120 (4)0.0082 (17)0.0047 (19)0.010 (3)
F1W0.056 (4)0.077 (4)0.181 (9)0.031 (3)0.001 (4)0.023 (5)
F2W0.045 (3)0.128 (5)0.143 (8)0.010 (3)0.007 (5)0.041 (7)
F3W0.142 (11)0.194 (13)0.093 (7)0.070 (9)0.007 (6)0.002 (7)
Geometric parameters (Å, º) top
C1—N11.312 (3)C14—H140.9300
C1—C21.383 (4)C15—C161.413 (3)
C1—H10.9300C15—C171.414 (4)
C2—C31.352 (4)C16—N21.364 (3)
C2—H20.9300C16—C201.421 (3)
C3—C41.408 (4)C17—C181.346 (4)
C3—H30.9300C17—H170.9300
C4—C51.406 (3)C18—C191.404 (4)
C4—C61.408 (4)C18—H180.9300
C5—N11.357 (3)C19—C201.361 (3)
C5—C91.418 (3)C19—H190.9300
C6—C71.346 (4)C20—O21.365 (3)
C6—H60.9300C21—O21.422 (3)
C7—C81.401 (4)C21—C221.480 (4)
C7—H70.9300C21—H21A0.9700
C8—C91.354 (3)C21—H21B0.9700
C8—H80.9300C22—F41.319 (3)
C9—O11.357 (3)C22—F61.326 (3)
C10—O11.416 (3)C22—F51.334 (3)
C10—C111.474 (5)Cl1—O61.415 (2)
C10—H10A0.9700Cl1—O51.418 (2)
C10—H10B0.9700Cl1—O31.423 (2)
C12—N21.316 (3)Cl1—O41.427 (2)
C12—C131.402 (4)N1—H1A0.8600
C12—H120.9300C11—F31.317 (15)
C13—C141.341 (4)C11—F11.338 (17)
C13—H130.9300C11—F21.359 (15)
C14—C151.403 (4)
N1—C1—C2121.7 (3)N2—C16—C15121.5 (2)
N1—C1—H1119.1N2—C16—C20119.7 (2)
C2—C1—H1119.1C15—C16—C20118.8 (2)
C3—C2—C1118.9 (3)C18—C17—C15120.2 (2)
C3—C2—H2120.6C18—C17—H17119.9
C1—C2—H2120.6C15—C17—H17119.9
C2—C3—C4121.0 (3)C17—C18—C19121.3 (3)
C2—C3—H3119.5C17—C18—H18119.4
C4—C3—H3119.5C19—C18—H18119.4
C5—C4—C6119.0 (3)C20—C19—C18120.3 (3)
C5—C4—C3116.9 (2)C20—C19—H19119.8
C6—C4—C3124.1 (3)C18—C19—H19119.8
N1—C5—C4120.2 (2)C19—C20—O2125.5 (2)
N1—C5—C9120.1 (2)C19—C20—C16120.1 (2)
C4—C5—C9119.8 (2)O2—C20—C16114.40 (19)
C7—C6—C4119.7 (3)O2—C21—C22107.24 (19)
C7—C6—H6120.2O2—C21—H21A110.3
C4—C6—H6120.2C22—C21—H21A110.3
C6—C7—C8121.9 (3)O2—C21—H21B110.3
C6—C7—H7119.0C22—C21—H21B110.3
C8—C7—H7119.0H21A—C21—H21B108.5
C9—C8—C7120.1 (3)F4—C22—F6107.2 (2)
C9—C8—H8119.9F4—C22—F5108.3 (2)
C7—C8—H8119.9F6—C22—F5105.6 (2)
C8—C9—O1126.7 (2)F4—C22—C21109.5 (2)
C8—C9—C5119.5 (2)F6—C22—C21112.6 (2)
O1—C9—C5113.7 (2)F5—C22—C21113.3 (2)
O1—C10—C11107.3 (2)O6—Cl1—O5109.93 (14)
O1—C10—H10A110.3O6—Cl1—O3109.00 (14)
C11—C10—H10A110.3O5—Cl1—O3109.86 (15)
O1—C10—H10B110.3O6—Cl1—O4109.81 (14)
C11—C10—H10B110.3O5—Cl1—O4110.33 (15)
H10A—C10—H10B108.5O3—Cl1—O4107.87 (14)
N2—C12—C13122.8 (3)C1—N1—C5121.2 (2)
N2—C12—H12118.6C1—N1—H1A119.4
C13—C12—H12118.6C5—N1—H1A119.4
C14—C13—C12118.9 (3)C12—N2—C16118.9 (2)
C14—C13—H13120.5C9—O1—C10117.2 (2)
C12—C13—H13120.5C20—O2—C21116.17 (18)
C13—C14—C15120.8 (3)F3—C11—F1107.5 (10)
C13—C14—H14119.6F3—C11—F2100.6 (10)
C15—C14—H14119.6F1—C11—F2116.5 (9)
C14—C15—C16117.0 (2)F3—C11—C10113.4 (7)
C14—C15—C17123.7 (2)F1—C11—C10108.9 (8)
C16—C15—C17119.3 (2)F2—C11—C10109.9 (9)
N1—C1—C2—C30.6 (4)C16—C15—C17—C181.2 (4)
C1—C2—C3—C40.0 (4)C15—C17—C18—C190.3 (4)
C2—C3—C4—C51.3 (4)C17—C18—C19—C200.8 (4)
C2—C3—C4—C6179.0 (3)C18—C19—C20—O2179.2 (2)
C6—C4—C5—N1178.2 (2)C18—C19—C20—C160.2 (4)
C3—C4—C5—N12.1 (3)N2—C16—C20—C19179.2 (2)
C6—C4—C5—C91.1 (3)C15—C16—C20—C191.7 (3)
C3—C4—C5—C9178.7 (2)N2—C16—C20—O21.3 (3)
C5—C4—C6—C70.7 (4)C15—C16—C20—O2177.81 (19)
C3—C4—C6—C7179.0 (3)O2—C21—C22—F4176.1 (2)
C4—C6—C7—C80.6 (4)O2—C21—C22—F664.7 (3)
C6—C7—C8—C91.4 (4)O2—C21—C22—F555.0 (3)
C7—C8—C9—O1179.3 (2)C2—C1—N1—C50.2 (4)
C7—C8—C9—C50.9 (4)C4—C5—N1—C11.6 (3)
N1—C5—C9—C8179.0 (2)C9—C5—N1—C1179.1 (2)
C4—C5—C9—C80.3 (3)C13—C12—N2—C160.6 (4)
N1—C5—C9—O11.2 (3)C15—C16—N2—C122.4 (3)
C4—C5—C9—O1179.6 (2)C20—C16—N2—C12176.7 (2)
N2—C12—C13—C142.4 (4)C8—C9—O1—C103.9 (4)
C12—C13—C14—C151.1 (4)C5—C9—O1—C10176.3 (2)
C13—C14—C15—C161.6 (4)C11—C10—O1—C9169.7 (3)
C13—C14—C15—C17179.3 (3)C19—C20—O2—C217.9 (3)
C14—C15—C16—N23.5 (3)C16—C20—O2—C21171.53 (19)
C17—C15—C16—N2178.8 (2)C22—C21—O2—C20167.1 (2)
C14—C15—C16—C20175.6 (2)O1—C10—C11—F359.6 (8)
C17—C15—C16—C202.2 (3)O1—C10—C11—F160.0 (9)
C14—C15—C17—C18176.4 (3)O1—C10—C11—F2171.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the midpoints of the N1–C5, C5–C9 and C17–C18 bonds, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.861.872.684 (3)158
C22—F5···Cg11.333.103.796 (3)111
C22—F6···Cg21.333.173.804 (4)109
C13—H13···O3i0.932.603.393 (6)144
C21—H21B···O4ii0.972.483.437 (7)169
C22—F5···Cg3iii1.333.243.860 (8)108
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H9F3NO+·ClO4·C11H8F3NO
Mr554.83
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.462 (2), 11.229 (3), 11.832 (3)
α, β, γ (°)82.910 (3), 77.048 (3), 74.536 (3)
V3)1178.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.32 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.884, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
6301, 4364, 3400
Rint0.021
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.02
No. of reflections4364
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the midpoints of the N1–C5, C5–C9 and C17–C18 bonds, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.861.872.684 (3)158
C22—F5···Cg11.333.103.796 (3)111
C22—F6···Cg21.333.173.804 (4)109
C13—H13···O3i0.932.603.393 (6)143.94
C21—H21B···O4ii0.972.483.437 (7)169
C22—F5···Cg3iii1.333.243.860 (8)108
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

References

First citationAl-Mandhary, M. R. A. & Steel, P. J. (2003). Inorg. Chim. Acta, 351, 7–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-L., Zhang, J.-A., Li, X.-P., Chen, Z.-N., Kang, B.-S. & Su, C.-Y. (2005). Inorg. Chim. Acta, 358, 4527–4533.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoudhury, A. R. & Row, T. N. G. (2004). Cryst. Growth Des. 4, 47–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalita, D. & Baruah, J. B. (2010). CrystEngComm, 12, 1562–1567.  CrossRef CAS Google Scholar
First citationKalita, D., Sarma, R. & Baruah, J. B. (2009). CrystEngComm, 11, 803–810.  CrossRef CAS Google Scholar
First citationKarmakar, A., Kalita, D. & Baruah, J. B. (2009). J. Mol. Struct. 935, 47–52.  CrossRef CAS Google Scholar
First citationLiang, F., Xie, Z., Wang, L., Jing, X. & Wang, F. (2002). Tetrahedron Lett. 43, 3427–3430.  CrossRef CAS Google Scholar
First citationMoret, V., Dereudre-Bosquet, N., Clayette, P., Laras, Y., Pietrancosta, N., Rolland, A., Weck, C., Marc, S. & Kraus, J.-L. (2006). Bioorg. Med. Chem. Lett. 16, 5988–5992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuyang, J., Xu, Y. & Khoo, L. E. (1998). J. Organomet. Chem. 561, 143–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasanna, M. D. & Row, T. N. G. (2000). Cryst. Eng. 3, 135–154.  CrossRef CAS Google Scholar
First citationSaraogi, I., Vijay, V. G., Das, S., Sekar, K. & Row, T. N. G. (2003). Cryst. Eng. 6, 69–77.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071–o3072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Li, J.-K., Wu, R.-T. & Sun, Y.-F. (2006). Acta Cryst. E62, o4611–o4612.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1131-o1132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds