metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Chloro-4-nitro­benzoato)(methanol)tri­phenyl­tin(IV)

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 March 2011; accepted 31 March 2011; online 7 April 2011)

In the title complex, [Sn(C6H5)3(C7H3ClNO4)(CH4O)], the five-coordinate SnIV atom exists in a trigonal–bipyramidal environment, formed by a monodentate carboxyl­ate group, three phenyl rings and a methanol mol­ecule. The axial sites are occupied by the O atoms of the methanol mol­ecule and the carboxyl­ate group, while the equatorial plane is formed by the C atoms of three phenyl rings. The benzene ring of the 2-chloro-4-nitro­benzoate ligand makes dihedral angles of 66.18 (7), 74.71 (7) and 77.39 (7)° with respect to the three phenyl rings. In the crystal, the mol­ecules are linked via inter­molecular O—H⋯O and C—H⋯O hydrogen bonds into a column along the b axis.

Related literature

For general background to and the coordination environment of the title complex, see: Yeap & Teoh (2003[Yeap, L.-L. & Teoh, S.-G. (2003). J. Coord. Chem. 56, 701-708.]); Szorcsik et al. (2006[Szorcsik, A., Nagy, L., Scopelliti, M., Deák, A., Pellerito, L., Galbács, G. & Hered, M. (2006). J. Organomet. Chem. 691, 1622-1630.]); Álvarez-Boo et al. (2006[Álvarez-Boo, P., Casas, J. S., Couce, M. D., Farto, R., Fernández-Moreira, V., Freijanes, E., Sordo, J. & Vázquez-López, E. (2006). J. Organomet. Chem. 691, 45-52.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C7H3ClNO4)(CH4O)]

  • Mr = 582.59

  • Monoclinic, P 21 /c

  • a = 9.0287 (3) Å

  • b = 13.5239 (4) Å

  • c = 20.7505 (6) Å

  • β = 108.894 (1)°

  • V = 2397.19 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 100 K

  • 0.27 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.835

  • 42634 measured reflections

  • 10460 independent reflections

  • 9263 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.04

  • 10460 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.82 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 0.79 (3) 1.83 (3) 2.6082 (14) 170 (3)
C16—H16A⋯O4ii 0.93 2.58 3.312 (2) 136
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are a number of well documented literature indicating triphenyltin(IV) carboxylate complexes existing in monomeric five-coordinated structures, e.g. in structures in which the carboxylate anion is bonded to the tin(IV) atom in a monodentate mode and extra coordination being contributed from the coordinating ligands (Yeap & Teoh, 2003; Szorcsik et al., 2006; Álvarez-Boo et al., 2006). The coordinating ligands may be derivatives of coordinating solvents or from pyridine derivatives or amine. Complex (2,6-difluorobenzoato)triphenyltin(IV) showed that the two fluorine atoms at the ortho positions of the benzene fragment while the ethanol molecule was attached to the tin(IV) atom resulting the tin(IV) atom being five-coordinated (Yeap & Teoh, 2003).

The structure of the titled complex (Fig. 1) is similar to (2,6-difluorobenzoato)triphenyltin(IV). The only difference is that the methanol molecule participated in the crystal structure. In the title complex, the five-coordinate tin(IV) (Sn1) atom exists in a trigonal-bipyramidal environment, formed by a monodentate carboxylate group, three phenyl rings and a coordinated methanol molecule. The axial sites are occupied by the O atoms of the methanol and carboxylate [O1—Sn1—O3 = 169.05 (3)°], with the three phenyl rings occupying the equatorial plane. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The benzene ring (C20–C25) of 2-chloro-4-nitrobenzoate ligand makes dihedral angles of 66.18 (7), 74.71 (7) and 77.39 (7)° with respect to the three phenyl rings (C1–C6, C7–C12 and C13–C18). In the crystal structure, the molecules are linked via intermolecular O3–H1O3···O2 and C16–H16A···O4 hydrogen bonds (Table 1) into a column along the b axis (Fig. 2).

Related literature top

For general background to and the coordination environment of the title complex, see: Yeap & Teoh (2003); Szorcsik et al. (2006); Álvarez-Boo et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

The title complex was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (1.10 g, 3 mmol) and 2-chloro-4-nitrobenzoic acid (0.60 g, 3 mmol) in methanol (50 mL) for 2 h. A clear transparent solution was isolated by filtration and kept in a bottle. After a few days, crystals (1.36 g, 78.2 % yield) were collected (m.p.: 119.0-120.0 °C). Analysis for C26H22NO5ClSn: C 53.45, H 3.74, N 2.34%. Calculated for C26H22NO5ClSn: C 53.60, H 3.81, N 2.40%.

Refinement top

H1O3 was located in a difference Fourier map and allowed to refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak and the deepest hole are located at 0.57 and 0.53 Å, respectively, from atom Sn1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
(2-Chloro-4-nitrobenzoato)(methanol)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C7H3ClNO4)(CH4O)]F(000) = 1168
Mr = 582.59Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9909 reflections
a = 9.0287 (3) Åθ = 3.7–37.5°
b = 13.5239 (4) ŵ = 1.22 mm1
c = 20.7505 (6) ÅT = 100 K
β = 108.894 (1)°Block, yellow
V = 2397.19 (13) Å30.27 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
10460 independent reflections
Radiation source: fine-focus sealed tube9263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 35.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.739, Tmax = 0.835k = 2121
42634 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.023P)2 + 1.8694P]
where P = (Fo2 + 2Fc2)/3
10460 reflections(Δ/σ)max = 0.002
312 parametersΔρmax = 2.82 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
[Sn(C6H5)3(C7H3ClNO4)(CH4O)]V = 2397.19 (13) Å3
Mr = 582.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0287 (3) ŵ = 1.22 mm1
b = 13.5239 (4) ÅT = 100 K
c = 20.7505 (6) Å0.27 × 0.25 × 0.15 mm
β = 108.894 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
10460 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
9263 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.835Rint = 0.023
42634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 2.82 e Å3
10460 reflectionsΔρmin = 1.27 e Å3
312 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.122653 (9)0.424304 (6)0.818254 (4)0.01437 (2)
Cl10.40606 (4)0.15616 (2)0.956246 (16)0.02241 (6)
O10.29055 (11)0.30392 (7)0.83558 (5)0.01747 (16)
O20.11079 (11)0.20667 (7)0.76526 (5)0.01919 (17)
O30.03497 (11)0.56098 (7)0.82164 (5)0.01848 (16)
O40.73247 (14)0.13409 (9)0.91070 (7)0.0300 (2)
O50.65369 (15)0.16195 (9)0.80196 (7)0.0315 (2)
N10.65602 (14)0.11287 (9)0.85191 (7)0.0221 (2)
C10.01601 (14)0.35355 (9)0.86993 (6)0.01578 (19)
C20.05009 (15)0.30813 (10)0.93321 (6)0.0186 (2)
H2A0.15830.30750.95350.022*
C30.04454 (18)0.26366 (11)0.96633 (7)0.0228 (2)
H3A0.00060.23451.00880.027*
C40.20606 (18)0.26288 (11)0.93602 (8)0.0256 (3)
H4A0.26910.23310.95810.031*
C50.27347 (17)0.30654 (12)0.87268 (8)0.0262 (3)
H5A0.38150.30530.85210.031*
C60.17904 (15)0.35222 (11)0.84008 (7)0.0220 (2)
H6A0.22480.38220.79800.026*
C70.02070 (15)0.43698 (9)0.71033 (6)0.0180 (2)
C80.09430 (16)0.37151 (10)0.67264 (7)0.0212 (2)
H8A0.12500.31960.69490.025*
C90.16407 (19)0.38189 (13)0.60273 (7)0.0279 (3)
H9A0.24130.33790.57860.033*
C100.1169 (2)0.45913 (14)0.56922 (8)0.0311 (3)
H10A0.16080.46600.52230.037*
C110.0041 (2)0.52566 (12)0.60623 (8)0.0294 (3)
H11A0.02610.57770.58400.035*
C120.06386 (17)0.51509 (10)0.67604 (7)0.0229 (2)
H12A0.13880.56030.70030.027*
C130.31789 (14)0.51920 (9)0.86282 (7)0.0173 (2)
C140.30934 (16)0.61928 (10)0.84459 (8)0.0217 (2)
H14A0.21590.64490.81560.026*
C150.43893 (17)0.68101 (11)0.86929 (8)0.0252 (3)
H15A0.43160.74720.85660.030*
C160.57927 (17)0.64392 (11)0.91288 (8)0.0250 (3)
H16A0.66590.68500.92930.030*
C170.58899 (17)0.54502 (12)0.93165 (8)0.0249 (3)
H17A0.68240.51990.96100.030*
C180.45934 (15)0.48302 (10)0.90679 (7)0.0206 (2)
H18A0.46730.41690.91970.025*
C190.24398 (14)0.22178 (9)0.80545 (6)0.01492 (18)
C200.36213 (13)0.13888 (9)0.82013 (6)0.01443 (18)
C210.39401 (15)0.09388 (10)0.76536 (6)0.0179 (2)
H21A0.34830.11910.72170.021*
C220.49241 (15)0.01247 (10)0.77476 (7)0.0191 (2)
H22A0.51360.01700.73820.023*
C230.55811 (14)0.02348 (9)0.84060 (7)0.0172 (2)
C240.53294 (15)0.02005 (9)0.89647 (7)0.0176 (2)
H24A0.57990.00500.94010.021*
C250.43558 (14)0.10218 (9)0.88556 (6)0.01563 (19)
C260.02762 (18)0.60801 (11)0.88443 (7)0.0240 (2)
H26A0.08950.66720.87500.036*
H26B0.07910.62440.90920.036*
H26D0.06750.56390.91110.036*
H1O30.061 (3)0.600 (2)0.7921 (13)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01494 (4)0.01250 (4)0.01648 (4)0.00049 (2)0.00621 (3)0.00090 (3)
Cl10.03009 (15)0.02303 (13)0.01545 (12)0.00816 (11)0.00921 (10)0.00142 (10)
O10.0181 (4)0.0137 (4)0.0201 (4)0.0010 (3)0.0055 (3)0.0007 (3)
O20.0163 (4)0.0168 (4)0.0221 (4)0.0006 (3)0.0028 (3)0.0003 (3)
O30.0205 (4)0.0156 (4)0.0193 (4)0.0028 (3)0.0063 (3)0.0005 (3)
O40.0276 (5)0.0227 (5)0.0402 (6)0.0081 (4)0.0116 (5)0.0084 (4)
O50.0357 (6)0.0223 (5)0.0446 (7)0.0030 (4)0.0243 (5)0.0055 (5)
N10.0202 (5)0.0152 (4)0.0354 (6)0.0010 (4)0.0152 (4)0.0017 (4)
C10.0150 (4)0.0148 (5)0.0181 (5)0.0006 (4)0.0063 (4)0.0003 (4)
C20.0192 (5)0.0196 (5)0.0173 (5)0.0004 (4)0.0062 (4)0.0006 (4)
C30.0295 (6)0.0213 (6)0.0208 (5)0.0000 (5)0.0124 (5)0.0021 (4)
C40.0281 (6)0.0227 (6)0.0327 (7)0.0043 (5)0.0191 (6)0.0002 (5)
C50.0179 (5)0.0258 (6)0.0369 (7)0.0027 (5)0.0117 (5)0.0017 (6)
C60.0164 (5)0.0232 (6)0.0254 (6)0.0007 (4)0.0051 (4)0.0045 (5)
C70.0198 (5)0.0161 (5)0.0184 (5)0.0027 (4)0.0068 (4)0.0011 (4)
C80.0223 (5)0.0190 (5)0.0198 (5)0.0003 (4)0.0030 (4)0.0000 (4)
C90.0295 (7)0.0317 (7)0.0188 (6)0.0060 (6)0.0028 (5)0.0015 (5)
C100.0347 (8)0.0397 (8)0.0186 (6)0.0145 (7)0.0080 (5)0.0054 (6)
C110.0379 (8)0.0268 (7)0.0282 (7)0.0095 (6)0.0173 (6)0.0111 (5)
C120.0274 (6)0.0193 (5)0.0246 (6)0.0022 (5)0.0121 (5)0.0034 (5)
C130.0170 (5)0.0158 (5)0.0211 (5)0.0021 (4)0.0088 (4)0.0014 (4)
C140.0191 (5)0.0151 (5)0.0325 (7)0.0016 (4)0.0104 (5)0.0015 (5)
C150.0243 (6)0.0172 (5)0.0371 (7)0.0055 (5)0.0140 (5)0.0038 (5)
C160.0229 (6)0.0256 (6)0.0282 (6)0.0084 (5)0.0108 (5)0.0061 (5)
C170.0201 (6)0.0289 (7)0.0240 (6)0.0043 (5)0.0049 (5)0.0013 (5)
C180.0199 (5)0.0206 (5)0.0215 (5)0.0023 (4)0.0070 (4)0.0002 (4)
C190.0160 (4)0.0140 (4)0.0156 (4)0.0007 (4)0.0062 (4)0.0025 (4)
C200.0142 (4)0.0138 (4)0.0159 (4)0.0004 (4)0.0057 (4)0.0007 (4)
C210.0168 (5)0.0217 (5)0.0156 (5)0.0012 (4)0.0058 (4)0.0006 (4)
C220.0178 (5)0.0212 (5)0.0205 (5)0.0002 (4)0.0094 (4)0.0033 (4)
C230.0162 (5)0.0133 (4)0.0244 (5)0.0009 (4)0.0096 (4)0.0006 (4)
C240.0189 (5)0.0156 (5)0.0193 (5)0.0026 (4)0.0077 (4)0.0033 (4)
C250.0176 (5)0.0147 (4)0.0155 (5)0.0012 (4)0.0067 (4)0.0006 (4)
C260.0268 (6)0.0243 (6)0.0232 (6)0.0026 (5)0.0112 (5)0.0036 (5)
Geometric parameters (Å, º) top
Sn1—C12.1218 (12)C10—C111.389 (3)
Sn1—C132.1339 (12)C10—H10A0.9300
Sn1—C72.1346 (13)C11—C121.386 (2)
Sn1—O12.1737 (9)C11—H11A0.9300
Sn1—O32.3477 (9)C12—H12A0.9300
Cl1—C251.7344 (12)C13—C181.3958 (18)
O1—C191.2772 (15)C13—C141.4008 (18)
O2—C191.2385 (15)C14—C151.3929 (19)
O3—C261.4320 (17)C14—H14A0.9300
O3—H1O30.78 (3)C15—C161.390 (2)
O4—N11.2256 (18)C15—H15A0.9300
O5—N11.2252 (17)C16—C171.388 (2)
N1—C231.4709 (17)C16—H16A0.9300
C1—C21.3965 (17)C17—C181.3959 (19)
C1—C61.4001 (17)C17—H17A0.9300
C2—C31.3944 (19)C18—H18A0.9300
C2—H2A0.9300C19—C201.5091 (16)
C3—C41.389 (2)C20—C251.3951 (16)
C3—H3A0.9300C20—C211.3989 (17)
C4—C51.389 (2)C21—C221.3883 (18)
C4—H4A0.9300C21—H21A0.9300
C5—C61.393 (2)C22—C231.3892 (19)
C5—H5A0.9300C22—H22A0.9300
C6—H6A0.9300C23—C241.3831 (18)
C7—C81.3957 (18)C24—C251.3888 (17)
C7—C121.3978 (19)C24—H24A0.9300
C8—C91.3889 (19)C26—H26A0.9600
C8—H8A0.9300C26—H26B0.9600
C9—C101.396 (3)C26—H26D0.9600
C9—H9A0.9300
C1—Sn1—C13126.30 (5)C10—C11—H11A119.7
C1—Sn1—C7116.22 (5)C11—C12—C7120.54 (14)
C13—Sn1—C7114.92 (5)C11—C12—H12A119.7
C1—Sn1—O194.17 (4)C7—C12—H12A119.7
C13—Sn1—O186.84 (4)C18—C13—C14118.29 (12)
C7—Sn1—O1105.92 (4)C18—C13—Sn1121.67 (9)
C1—Sn1—O382.95 (4)C14—C13—Sn1119.91 (9)
C13—Sn1—O386.40 (4)C15—C14—C13120.90 (13)
C7—Sn1—O384.75 (4)C15—C14—H14A119.6
O1—Sn1—O3169.05 (3)C13—C14—H14A119.6
C19—O1—Sn1117.97 (8)C16—C15—C14120.21 (14)
C26—O3—Sn1121.80 (8)C16—C15—H15A119.9
C26—O3—H1O3109.1 (19)C14—C15—H15A119.9
Sn1—O3—H1O3122.4 (19)C17—C16—C15119.46 (13)
O5—N1—O4124.42 (13)C17—C16—H16A120.3
O5—N1—C23117.74 (12)C15—C16—H16A120.3
O4—N1—C23117.83 (12)C16—C17—C18120.39 (14)
C2—C1—C6118.57 (12)C16—C17—H17A119.8
C2—C1—Sn1122.08 (9)C18—C17—H17A119.8
C6—C1—Sn1119.35 (9)C13—C18—C17120.76 (13)
C3—C2—C1120.64 (12)C13—C18—H18A119.6
C3—C2—H2A119.7C17—C18—H18A119.6
C1—C2—H2A119.7O2—C19—O1124.55 (11)
C4—C3—C2120.09 (13)O2—C19—C20118.82 (11)
C4—C3—H3A120.0O1—C19—C20116.63 (10)
C2—C3—H3A120.0C25—C20—C21118.55 (11)
C3—C4—C5119.97 (13)C25—C20—C19122.89 (10)
C3—C4—H4A120.0C21—C20—C19118.50 (10)
C5—C4—H4A120.0C22—C21—C20121.44 (11)
C4—C5—C6119.91 (13)C22—C21—H21A119.3
C4—C5—H5A120.0C20—C21—H21A119.3
C6—C5—H5A120.0C21—C22—C23117.76 (11)
C5—C6—C1120.81 (13)C21—C22—H22A121.1
C5—C6—H6A119.6C23—C22—H22A121.1
C1—C6—H6A119.6C24—C23—C22122.79 (11)
C8—C7—C12118.27 (12)C24—C23—N1118.00 (12)
C8—C7—Sn1121.79 (10)C22—C23—N1119.19 (12)
C12—C7—Sn1119.88 (10)C23—C24—C25118.10 (11)
C9—C8—C7121.64 (14)C23—C24—H24A120.9
C9—C8—H8A119.2C25—C24—H24A120.9
C7—C8—H8A119.2C24—C25—C20121.29 (11)
C8—C9—C10119.19 (15)C24—C25—Cl1117.47 (9)
C8—C9—H9A120.4C20—C25—Cl1121.23 (9)
C10—C9—H9A120.4O3—C26—H26A109.5
C11—C10—C9119.78 (14)O3—C26—H26B109.5
C11—C10—H10A120.1H26A—C26—H26B109.5
C9—C10—H10A120.1O3—C26—H26D109.5
C12—C11—C10120.55 (14)H26A—C26—H26D109.5
C12—C11—H11A119.7H26B—C26—H26D109.5
C1—Sn1—O1—C1967.75 (9)C1—Sn1—C13—C1870.01 (12)
C13—Sn1—O1—C19166.06 (9)C7—Sn1—C13—C18128.94 (11)
C7—Sn1—O1—C1951.03 (10)O1—Sn1—C13—C1822.84 (11)
O3—Sn1—O1—C19142.03 (17)O3—Sn1—C13—C18148.55 (11)
C1—Sn1—O3—C2666.69 (10)C1—Sn1—C13—C14114.27 (11)
C13—Sn1—O3—C2660.57 (10)C7—Sn1—C13—C1446.78 (12)
C7—Sn1—O3—C26176.03 (10)O1—Sn1—C13—C14152.88 (11)
O1—Sn1—O3—C268.6 (2)O3—Sn1—C13—C1435.73 (10)
C13—Sn1—C1—C243.07 (12)C18—C13—C14—C150.4 (2)
C7—Sn1—C1—C2156.10 (10)Sn1—C13—C14—C15175.42 (11)
O1—Sn1—C1—C246.07 (11)C13—C14—C15—C160.2 (2)
O3—Sn1—C1—C2123.32 (11)C14—C15—C16—C170.1 (2)
C13—Sn1—C1—C6136.78 (10)C15—C16—C17—C180.3 (2)
C7—Sn1—C1—C624.06 (12)C14—C13—C18—C170.3 (2)
O1—Sn1—C1—C6134.09 (10)Sn1—C13—C18—C17175.52 (11)
O3—Sn1—C1—C656.53 (10)C16—C17—C18—C130.1 (2)
C6—C1—C2—C30.89 (19)Sn1—O1—C19—O22.35 (16)
Sn1—C1—C2—C3178.95 (10)Sn1—O1—C19—C20178.31 (7)
C1—C2—C3—C41.0 (2)O2—C19—C20—C25121.72 (13)
C2—C3—C4—C50.1 (2)O1—C19—C20—C2558.90 (16)
C3—C4—C5—C60.9 (2)O2—C19—C20—C2155.28 (16)
C4—C5—C6—C10.9 (2)O1—C19—C20—C21124.10 (12)
C2—C1—C6—C50.1 (2)C25—C20—C21—C222.03 (19)
Sn1—C1—C6—C5179.91 (11)C19—C20—C21—C22175.10 (11)
C1—Sn1—C7—C825.33 (12)C20—C21—C22—C230.30 (19)
C13—Sn1—C7—C8171.64 (10)C21—C22—C23—C241.91 (19)
O1—Sn1—C7—C877.66 (11)C21—C22—C23—N1176.70 (11)
O3—Sn1—C7—C8104.81 (11)O5—N1—C23—C24166.13 (12)
C1—Sn1—C7—C12151.78 (10)O4—N1—C23—C2412.73 (18)
C13—Sn1—C7—C1211.26 (12)O5—N1—C23—C2212.54 (18)
O1—Sn1—C7—C12105.24 (10)O4—N1—C23—C22168.60 (12)
O3—Sn1—C7—C1272.30 (11)C22—C23—C24—C251.09 (19)
C12—C7—C8—C90.7 (2)N1—C23—C24—C25177.53 (11)
Sn1—C7—C8—C9177.85 (11)C23—C24—C25—C201.37 (19)
C7—C8—C9—C100.7 (2)C23—C24—C25—Cl1179.71 (10)
C8—C9—C10—C111.5 (2)C21—C20—C25—C242.89 (18)
C9—C10—C11—C121.0 (2)C19—C20—C25—C24174.11 (11)
C10—C11—C12—C70.4 (2)C21—C20—C25—Cl1178.24 (9)
C8—C7—C12—C111.2 (2)C19—C20—C25—Cl14.76 (17)
Sn1—C7—C12—C11178.43 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.79 (3)1.83 (3)2.6082 (14)170 (3)
C16—H16A···O4ii0.932.583.312 (2)136
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C7H3ClNO4)(CH4O)]
Mr582.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0287 (3), 13.5239 (4), 20.7505 (6)
β (°) 108.894 (1)
V3)2397.19 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.27 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.739, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
42634, 10460, 9263
Rint0.023
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.04
No. of reflections10460
No. of parameters312
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.82, 1.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.79 (3)1.83 (3)2.6082 (14)170 (3)
C16—H16A···O4ii0.932.583.312 (2)136
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationÁlvarez-Boo, P., Casas, J. S., Couce, M. D., Farto, R., Fernández-Moreira, V., Freijanes, E., Sordo, J. & Vázquez-López, E. (2006). J. Organomet. Chem. 691, 45–52.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzorcsik, A., Nagy, L., Scopelliti, M., Deák, A., Pellerito, L., Galbács, G. & Hered, M. (2006). J. Organomet. Chem. 691, 1622–1630.  CrossRef CAS Google Scholar
First citationYeap, L.-L. & Teoh, S.-G. (2003). J. Coord. Chem. 56, 701–708.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds