organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1211

Ethyl 5,5-di­chloro-3-(4-chloro­phen­yl)-3a-methyl-4a-phenyl-3a,4,4a,5-tetra­hydro-3H-aziridino[2,1-d][1,2,4]triazolo[4,3-a][1,5]benzodiazepine-1-carboxyl­ate

aEquipe de Chimie des Hétérocycles et Valorisation des Extraits des Plantes, Faculté des Sciences-Semlalia, Université Cadi Ayyad, Bd Abdelkrim Khattabi, BP 2390, 40001 Marrakech, Morocco, bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 ElManar II Tunis, Tunisia, and cEquipe de Chimie des Matériaux et de l'Environnement, FSTG–Marrakech, Université Cadi Ayyad, Bd. Abdelkrim Khattabi, BP 549, Marrakech, Morocco
*Correspondence e-mail: eh_soumhi@yahoo.fr

(Received 30 March 2011; accepted 14 April 2011; online 29 April 2011)

In the title compound, C27H23Cl3N4O2, the seven-membered diazepine ring adopts a boat conformation. The triazole ring makes dihedral angles of 17.24 (8) and 82.86 (8)°, respectively, with the chloro­benzene ring and the benzene ring of the benzodiazepine unit.

Related literature

For background to benzodiazepine derivatives, see: Barltrop et al. (1959[Barltrop, J. A., Richards, C. G., Russel, D. M. & Ryback, G. J. (1959). J. Chem. Soc. pp. 1132-1142.]); El Hazazi et al. (2003[El Hazazi, S., Baouid, A., Hasnaoui, A. & Compain, P. (2003). Synth. Commun. 33, 19-27.]); Sharp & Hamilton (1946[Sharp, B. & Hamilton, C. S. (1946). J. Am. Chem. Soc. 68, 588-591.]). For related structures, see: Chiaroni et al. (1995[Chiaroni, A., Riche, C., Baouid, A., Hasnaoui, A., Benharref, A. & Lavergne, J.-P. (1995). Acta Cryst. C51, 1352-1355.]); El Hazazi et al. (2000[El Hazazi, S., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e457-e458.]).

[Scheme 1]

Experimental

Crystal data
  • C27H23Cl3N4O2

  • Mr = 541.84

  • Triclinic, [P \overline 1]

  • a = 9.679 (3) Å

  • b = 11.256 (3) Å

  • c = 12.661 (2) Å

  • α = 79.09 (2)°

  • β = 76.46 (2)°

  • γ = 73.04 (2)°

  • V = 1271.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 300 K

  • 0.3 × 0.15 × 0.1 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 6860 measured reflections

  • 5536 independent reflections

  • 4616 reflections with I > 2σ(I)

  • Rint = 0.010

  • 2 standard reflections every 60 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.05

  • 5536 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Deft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In order to develop work carried out before in our laboratory we were interested in the synthesis of new derivatives benzodiazepinic (El Hazazi et al., 2003). These reactions are either of the reactions of cycloadditions [2 + 1] realising generated carbenes in situ or reactions of transfer of methelyne.

In the present work, we report the synthesis of new benzodiazepine derivatives via addition of dichlorocarbene to [1,2,4]triazolo[4,3-a][1,5]benzodiazepine obtained stereospecifically by the addition of nitrilimines (Sharp et al., 1946) on 1,5-benzodiazepine (Barltrop et al., 1959).

Dichloroazacyclopropanation of [1,2,4]triazolo[4,3-a][1,5]benzodiazepine occurs readily under phase transfer catalysis conditions (liquid-liquid) with chloroform, aqueous sodium hydroxide and benzyltriethylammonium chloride (TBA-Cl) to give the corresponding bichloroadduct 2 (Fig. 1). Thus, the reaction of [1,2,4]triazolo[4,3-a][1,5]benzodiazepine 1 with dichlorocarbene in these conditions produce gem-dichloroaziridino[2,1-d][1,2,4] triazolo[4,3-a][1,5]benzodiazepine 2 in good yield.

The crystallographic study made it possible to determine the stereochemistry of the product 2. The crystalline structure confirms that the condensation of dichlorocarbene is carried out on double bond C=N substituted by the phenyl and shows that the product 2α obtained is of trans relative stereochemistry (Fig. 2). The main geometric features of this group are in good agreement it those observed in similar compound (Chiaroni et al., 1995; El Hazazi et al., 2000).

Related literature top

For backgroundn benzodiazepine derivatives, see: Barltrop et al. (1959); El Hazazi et al. (2003); Sharp & Hamilton (1946). For related structures, see: Chiaroni et al. (1995); El Hazazi et al. (2000).

Experimental top

[1,2,4]Triazolo[4,3-a][1,5]benzodiazepine 1 (0.65 mm l) in 2 ml of chloroform were stirred with 2 ml of aqueous 50% NaOH solution and a catalytic amount of triethylbenzylammonium chloride (TBA-Cl). After 4 h the mixture was poured into 5 ml of water and extracted with ether. The organic phase was then dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was chromatographied on a silica gel column (eluent: hexane/ethyl acetate 95/5) and recrystallized from ethanol/chloroform to give a compound 2α

The observation to be noted is that the condensation of dichlorocarbene to [1,2,4]triazolo[4,3-a][1,5]benzodiazepine is streospecific. The structure elucidation of the compound 2 was determinate on spectral data (1H NMR, 13C NMR and mass spectroscopy). The compound revealed in their spectra of mass the molecular peak located at m/z = 541 compatible with their empirical formula. The NMR spectrum of this product shows that the decalage of the chemical shifts of different grouping from monoadduct. In the 13C NMR spectrum of compound, we remarked the absence of the signals attributed to the double bond C5=N6 of cycle diazepinic. The 13C NMR spectrum of product was consistent with the presence of only one diasterioisomer. These spectral analyses do not enable us to determine relative stereochemistry of the aziridino[2,1-d][1,2,4]]triazolo[4,3-a][1,5]benzodiazepine (trans 2α or cis 2β).

Refinement top

All H atoms were located in a difference map and then refined using a riding model, with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) for CH3, C—H = 0.97 Å and Uiso(H) =1.2Ueq(C) for CH2, and C—H = 0.93 Å and Uiso(H) =1.2Ueq(C) for CH.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The reaction scheme of the title compound
[Figure 2] Fig. 2. The molecular structure of the title compound, with 50% probability ellipsoids.
Ethyl 3,3-dichloro-7-(4-chlorophenyl)-6-methyl-4-phenyl-2,7,8,10- tetraazatetracyclo[9.4.0.02,4.06,10]pentadeca-1(11),8,12,14-tetraene- 9-carboxylate top
Crystal data top
C27H23Cl3N4O2Z = 2
Mr = 541.84F(000) = 560
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.679 (3) ÅCell parameters from 25 reflections
b = 11.256 (3) Åθ = 10–15°
c = 12.661 (2) ŵ = 0.39 mm1
α = 79.09 (2)°T = 300 K
β = 76.46 (2)°Prism, yellow
γ = 73.04 (2)°0.3 × 0.15 × 0.1 mm
V = 1271.8 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.2°
Graphite monochromatorh = 122
ω/2θ scansk = 1414
6860 measured reflectionsl = 1616
5536 independent reflections2 standard reflections every 60 min
4616 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.3226P]
where P = (Fo2 + 2Fc2)/3
5536 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C27H23Cl3N4O2γ = 73.04 (2)°
Mr = 541.84V = 1271.8 (6) Å3
Triclinic, P1Z = 2
a = 9.679 (3) ÅMo Kα radiation
b = 11.256 (3) ŵ = 0.39 mm1
c = 12.661 (2) ÅT = 300 K
α = 79.09 (2)°0.3 × 0.15 × 0.1 mm
β = 76.46 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
6860 measured reflections2 standard reflections every 60 min
5536 independent reflections intensity decay: 1.0%
4616 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
5536 reflectionsΔρmin = 0.33 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.31467 (5)0.06197 (4)0.57617 (5)0.06714 (16)
Cl20.74695 (5)0.33836 (4)0.03031 (4)0.05465 (13)
Cl30.50575 (5)0.37629 (5)0.21522 (4)0.05877 (14)
O11.09072 (14)0.71899 (13)0.20132 (12)0.0619 (3)
O20.85011 (15)0.79523 (12)0.19906 (12)0.0638 (4)
N10.94972 (12)0.42660 (12)0.40621 (10)0.0369 (3)
N21.02302 (13)0.51079 (12)0.34036 (10)0.0366 (3)
N30.78121 (13)0.58997 (11)0.34267 (10)0.0354 (3)
N40.72403 (13)0.50553 (11)0.16401 (10)0.0361 (3)
C11.20506 (17)0.07966 (15)0.52295 (14)0.0444 (3)
C21.26875 (17)0.15749 (15)0.44036 (15)0.0459 (4)
H21.36890.13350.41160.055*
C31.18305 (16)0.27115 (15)0.40070 (13)0.0413 (3)
H31.22580.32300.34440.050*
C41.03279 (15)0.30883 (13)0.44432 (11)0.0346 (3)
C50.97014 (17)0.22829 (16)0.52598 (14)0.0470 (4)
H50.86990.25140.55480.056*
C61.05614 (19)0.11349 (16)0.56493 (15)0.0507 (4)
H61.01350.05960.61910.061*
C70.92343 (15)0.60263 (13)0.30379 (11)0.0345 (3)
C80.78887 (14)0.46551 (13)0.40868 (11)0.0322 (3)
C90.69700 (16)0.47994 (15)0.52411 (12)0.0405 (3)
H9A0.75240.50140.56810.049*
H9B0.67310.40250.55680.049*
H9C0.60790.54500.51970.049*
C100.65238 (15)0.65391 (13)0.29762 (12)0.0355 (3)
C110.55573 (18)0.75943 (15)0.34035 (15)0.0464 (4)
H110.57530.78870.39780.056*
C120.43014 (19)0.82118 (16)0.29742 (17)0.0555 (4)
H120.36580.89180.32590.067*
C130.40124 (19)0.77727 (16)0.21230 (17)0.0567 (5)
H130.31710.81870.18370.068*
C140.49615 (18)0.67216 (16)0.16904 (15)0.0492 (4)
H140.47600.64360.11150.059*
C150.62242 (15)0.60913 (13)0.21222 (12)0.0366 (3)
C160.68332 (17)0.39468 (14)0.15834 (13)0.0403 (3)
C170.78959 (15)0.38713 (12)0.23111 (11)0.0333 (3)
C180.73573 (15)0.37907 (13)0.35398 (11)0.0336 (3)
H18A0.76960.29310.38660.040*
H18B0.62900.40130.36920.040*
C190.94952 (15)0.32550 (13)0.19097 (11)0.0351 (3)
C200.99906 (19)0.19656 (15)0.21963 (14)0.0483 (4)
H200.93420.15180.26250.058*
C211.1452 (2)0.13472 (18)0.18427 (17)0.0628 (5)
H211.17760.04860.20310.075*
C221.2422 (2)0.2009 (2)0.12121 (17)0.0644 (5)
H221.34020.15970.09850.077*
C231.19335 (19)0.3282 (2)0.09202 (15)0.0570 (4)
H231.25880.37260.04940.068*
C241.04672 (17)0.39071 (15)0.12584 (12)0.0427 (3)
H241.01410.47630.10460.051*
C250.96658 (18)0.71092 (15)0.22958 (13)0.0422 (3)
C260.8773 (3)0.9023 (2)0.1207 (2)0.0818 (7)
H26A0.93270.87520.05120.098*
H26B0.93320.94480.14780.098*
C270.7316 (4)0.9875 (2)0.1068 (3)0.0985 (9)
H27A0.68061.01790.17510.118*
H27B0.67500.94280.08440.118*
H27C0.74511.05700.05200.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0493 (3)0.0441 (2)0.0967 (4)0.00124 (19)0.0208 (2)0.0058 (2)
Cl20.0623 (3)0.0590 (3)0.0487 (2)0.0108 (2)0.01682 (19)0.02154 (19)
Cl30.0403 (2)0.0739 (3)0.0728 (3)0.0232 (2)0.0127 (2)0.0197 (2)
O10.0495 (7)0.0679 (8)0.0696 (8)0.0300 (6)0.0053 (6)0.0043 (7)
O20.0588 (8)0.0488 (7)0.0836 (9)0.0227 (6)0.0257 (7)0.0213 (6)
N10.0249 (5)0.0414 (6)0.0421 (6)0.0082 (5)0.0074 (5)0.0008 (5)
N20.0305 (6)0.0423 (6)0.0388 (6)0.0127 (5)0.0072 (5)0.0041 (5)
N30.0284 (6)0.0341 (6)0.0449 (7)0.0084 (5)0.0116 (5)0.0022 (5)
N40.0338 (6)0.0364 (6)0.0382 (6)0.0048 (5)0.0115 (5)0.0060 (5)
C10.0385 (8)0.0380 (8)0.0562 (9)0.0028 (6)0.0162 (7)0.0068 (7)
C20.0280 (7)0.0452 (8)0.0620 (10)0.0033 (6)0.0075 (7)0.0117 (7)
C30.0298 (7)0.0439 (8)0.0488 (8)0.0096 (6)0.0050 (6)0.0060 (6)
C40.0282 (6)0.0395 (7)0.0364 (7)0.0055 (5)0.0094 (5)0.0066 (6)
C50.0310 (7)0.0518 (9)0.0487 (9)0.0049 (7)0.0032 (6)0.0020 (7)
C60.0421 (9)0.0482 (9)0.0530 (9)0.0075 (7)0.0071 (7)0.0056 (7)
C70.0316 (7)0.0377 (7)0.0377 (7)0.0113 (6)0.0083 (6)0.0078 (6)
C80.0250 (6)0.0347 (7)0.0359 (7)0.0057 (5)0.0073 (5)0.0038 (5)
C90.0301 (7)0.0508 (9)0.0400 (8)0.0079 (6)0.0041 (6)0.0116 (6)
C100.0286 (6)0.0324 (7)0.0460 (8)0.0061 (5)0.0114 (6)0.0038 (6)
C110.0435 (8)0.0382 (8)0.0587 (10)0.0036 (6)0.0152 (7)0.0137 (7)
C120.0436 (9)0.0403 (8)0.0784 (12)0.0061 (7)0.0183 (8)0.0160 (8)
C130.0401 (9)0.0470 (9)0.0814 (13)0.0042 (7)0.0291 (9)0.0072 (9)
C140.0435 (9)0.0478 (9)0.0594 (10)0.0026 (7)0.0256 (8)0.0093 (7)
C150.0307 (7)0.0343 (7)0.0444 (8)0.0049 (5)0.0102 (6)0.0056 (6)
C160.0369 (7)0.0444 (8)0.0428 (8)0.0098 (6)0.0095 (6)0.0123 (6)
C170.0313 (7)0.0313 (7)0.0374 (7)0.0071 (5)0.0073 (5)0.0053 (5)
C180.0293 (6)0.0347 (7)0.0371 (7)0.0098 (5)0.0047 (5)0.0046 (5)
C190.0335 (7)0.0362 (7)0.0340 (7)0.0049 (6)0.0063 (5)0.0077 (5)
C200.0481 (9)0.0363 (8)0.0540 (9)0.0037 (7)0.0067 (7)0.0052 (7)
C210.0583 (11)0.0456 (9)0.0701 (12)0.0122 (8)0.0128 (9)0.0124 (9)
C220.0386 (9)0.0769 (13)0.0635 (12)0.0086 (9)0.0027 (8)0.0211 (10)
C230.0388 (9)0.0767 (13)0.0500 (10)0.0136 (8)0.0024 (7)0.0103 (9)
C240.0395 (8)0.0464 (8)0.0393 (8)0.0090 (7)0.0050 (6)0.0052 (6)
C250.0466 (9)0.0430 (8)0.0424 (8)0.0187 (7)0.0096 (7)0.0062 (6)
C260.0976 (18)0.0566 (12)0.0926 (17)0.0362 (12)0.0307 (14)0.0282 (11)
C270.129 (2)0.0516 (12)0.104 (2)0.0106 (14)0.0397 (18)0.0166 (13)
Geometric parameters (Å, º) top
Cl1—C11.7500 (17)C10—C111.392 (2)
Cl2—C161.7614 (16)C10—C151.395 (2)
Cl3—C161.7570 (17)C11—C121.389 (2)
O1—C251.196 (2)C11—H110.9300
O2—C251.327 (2)C12—C131.381 (3)
O2—C261.455 (2)C12—H120.9300
N1—N21.3830 (17)C13—C141.385 (2)
N1—C41.3979 (18)C13—H130.9300
N1—C81.4837 (17)C14—C151.399 (2)
N2—C71.2878 (19)C14—H140.9300
N3—C71.3886 (18)C16—C171.509 (2)
N3—C101.4326 (18)C17—C191.5081 (19)
N3—C81.4804 (18)C17—C181.5148 (19)
N4—C151.4209 (19)C18—H18A0.9700
N4—C161.4322 (19)C18—H18B0.9700
N4—C171.4936 (18)C19—C241.384 (2)
C1—C61.379 (2)C19—C201.394 (2)
C1—C21.381 (2)C20—C211.390 (3)
C2—C31.382 (2)C20—H200.9300
C2—H20.9300C21—C221.380 (3)
C3—C41.397 (2)C21—H210.9300
C3—H30.9300C22—C231.378 (3)
C4—C51.390 (2)C22—H220.9300
C5—C61.389 (2)C23—C241.393 (2)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—H240.9300
C7—C251.491 (2)C26—C271.484 (4)
C8—C91.533 (2)C26—H26A0.9700
C8—C181.5506 (19)C26—H26B0.9700
C9—H9A0.9600C27—H27A0.9600
C9—H9B0.9600C27—H27B0.9600
C9—H9C0.9600C27—H27C0.9600
C25—O2—C26117.07 (16)C13—C14—H14120.1
N2—N1—C4118.46 (11)C15—C14—H14120.1
N2—N1—C8113.24 (11)C10—C15—C14119.52 (14)
C4—N1—C8127.07 (12)C10—C15—N4120.50 (12)
C7—N2—N1106.12 (12)C14—C15—N4119.84 (14)
C7—N3—C10127.78 (12)N4—C16—C1760.97 (9)
C7—N3—C8108.57 (11)N4—C16—Cl3121.86 (11)
C10—N3—C8119.40 (11)C17—C16—Cl3120.64 (11)
C15—N4—C16122.29 (12)N4—C16—Cl2114.44 (11)
C15—N4—C17122.26 (12)C17—C16—Cl2120.61 (11)
C16—N4—C1762.05 (9)Cl3—C16—Cl2110.44 (8)
C6—C1—C2120.55 (15)N4—C17—C19116.19 (12)
C6—C1—Cl1119.73 (14)N4—C17—C1656.97 (9)
C2—C1—Cl1119.71 (12)C19—C17—C16117.06 (12)
C1—C2—C3119.74 (14)N4—C17—C18116.74 (11)
C1—C2—H2120.1C19—C17—C18117.07 (12)
C3—C2—H2120.1C16—C17—C18119.10 (12)
C2—C3—C4120.61 (15)C17—C18—C8113.50 (11)
C2—C3—H3119.7C17—C18—H18A108.9
C4—C3—H3119.7C8—C18—H18A108.9
C5—C4—C3118.81 (14)C17—C18—H18B108.9
C5—C4—N1121.63 (13)C8—C18—H18B108.9
C3—C4—N1119.55 (13)H18A—C18—H18B107.7
C6—C5—C4120.48 (14)C24—C19—C20119.32 (14)
C6—C5—H5119.8C24—C19—C17122.92 (13)
C4—C5—H5119.8C20—C19—C17117.74 (14)
C1—C6—C5119.76 (16)C21—C20—C19120.20 (17)
C1—C6—H6120.1C21—C20—H20119.9
C5—C6—H6120.1C19—C20—H20119.9
N2—C7—N3113.87 (13)C22—C21—C20120.11 (17)
N2—C7—C25119.72 (13)C22—C21—H21119.9
N3—C7—C25126.39 (13)C20—C21—H21119.9
N3—C8—N197.86 (10)C23—C22—C21119.85 (17)
N3—C8—C9110.22 (12)C23—C22—H22120.1
N1—C8—C9113.22 (11)C21—C22—H22120.1
N3—C8—C18111.80 (11)C22—C23—C24120.47 (18)
N1—C8—C18113.43 (11)C22—C23—H23119.8
C9—C8—C18109.85 (11)C24—C23—H23119.8
C8—C9—H9A109.5C19—C24—C23120.03 (16)
C8—C9—H9B109.5C19—C24—H24120.0
H9A—C9—H9B109.5C23—C24—H24120.0
C8—C9—H9C109.5O1—C25—O2125.08 (15)
H9A—C9—H9C109.5O1—C25—C7123.70 (16)
H9B—C9—H9C109.5O2—C25—C7111.22 (13)
C11—C10—C15119.98 (13)O2—C26—C27107.1 (2)
C11—C10—N3119.99 (14)O2—C26—H26A110.3
C15—C10—N3120.01 (13)C27—C26—H26A110.3
C12—C11—C10120.18 (16)O2—C26—H26B110.3
C12—C11—H11119.9C27—C26—H26B110.3
C10—C11—H11119.9H26A—C26—H26B108.6
C13—C12—C11119.76 (16)C26—C27—H27A109.5
C13—C12—H12120.1C26—C27—H27B109.5
C11—C12—H12120.1H27A—C27—H27B109.5
C12—C13—C14120.77 (15)C26—C27—H27C109.5
C12—C13—H13119.6H27A—C27—H27C109.5
C14—C13—H13119.6H27B—C27—H27C109.5
C13—C14—C15119.79 (16)
C4—N1—N2—C7170.77 (12)C16—N4—C15—C10123.80 (15)
C8—N1—N2—C72.53 (16)C17—N4—C15—C1048.67 (19)
C6—C1—C2—C31.1 (3)C16—N4—C15—C1460.6 (2)
Cl1—C1—C2—C3177.96 (13)C17—N4—C15—C14135.70 (15)
C1—C2—C3—C40.8 (2)C15—N4—C16—C17112.30 (14)
C2—C3—C4—C52.0 (2)C15—N4—C16—Cl32.34 (19)
C2—C3—C4—N1177.17 (14)C17—N4—C16—Cl3109.96 (14)
N2—N1—C4—C5168.12 (14)C15—N4—C16—Cl2134.90 (12)
C8—N1—C4—C525.5 (2)C17—N4—C16—Cl2112.80 (12)
N2—N1—C4—C311.0 (2)C15—N4—C17—C19141.09 (13)
C8—N1—C4—C3155.43 (14)C16—N4—C17—C19106.56 (14)
C3—C4—C5—C61.3 (2)C15—N4—C17—C16112.35 (15)
N1—C4—C5—C6177.85 (15)C15—N4—C17—C183.56 (18)
C2—C1—C6—C51.8 (3)C16—N4—C17—C18108.79 (14)
Cl1—C1—C6—C5177.27 (14)Cl3—C16—C17—N4111.90 (13)
C4—C5—C6—C10.6 (3)Cl2—C16—C17—N4102.80 (13)
N1—N2—C7—N31.62 (16)N4—C16—C17—C19105.01 (14)
N1—N2—C7—C25179.78 (12)Cl3—C16—C17—C19143.09 (12)
C10—N3—C7—N2161.35 (14)Cl2—C16—C17—C192.21 (18)
C8—N3—C7—N25.08 (17)N4—C16—C17—C18104.62 (14)
C10—N3—C7—C2520.6 (2)Cl3—C16—C17—C187.28 (18)
C8—N3—C7—C25176.90 (13)Cl2—C16—C17—C18152.58 (11)
C7—N3—C8—N15.69 (13)N4—C17—C18—C870.59 (15)
C10—N3—C8—N1164.27 (12)C19—C17—C18—C873.75 (15)
C7—N3—C8—C9124.04 (12)C16—C17—C18—C8135.88 (13)
C10—N3—C8—C977.37 (15)N3—C8—C18—C1741.51 (15)
C7—N3—C8—C18113.48 (12)N1—C8—C18—C1767.98 (15)
C10—N3—C8—C1845.10 (16)C9—C8—C18—C17164.20 (12)
N2—N1—C8—N35.08 (14)N4—C17—C19—C2424.5 (2)
C4—N1—C8—N3172.10 (13)C16—C17—C19—C2488.97 (18)
N2—N1—C8—C9121.11 (13)C18—C17—C19—C24120.05 (15)
C4—N1—C8—C971.87 (18)N4—C17—C19—C20154.13 (13)
N2—N1—C8—C18112.84 (13)C16—C17—C19—C2089.64 (17)
C4—N1—C8—C1854.18 (18)C18—C17—C19—C2061.34 (18)
C7—N3—C10—C1197.33 (19)C24—C19—C20—C210.9 (3)
C8—N3—C10—C11108.64 (16)C17—C19—C20—C21179.56 (16)
C7—N3—C10—C1583.81 (19)C19—C20—C21—C220.5 (3)
C8—N3—C10—C1570.22 (18)C20—C21—C22—C231.0 (3)
C15—C10—C11—C120.7 (3)C21—C22—C23—C240.1 (3)
N3—C10—C11—C12179.54 (15)C20—C19—C24—C231.7 (2)
C10—C11—C12—C130.2 (3)C17—C19—C24—C23179.67 (15)
C11—C12—C13—C140.0 (3)C22—C23—C24—C191.2 (3)
C12—C13—C14—C150.3 (3)C26—O2—C25—O13.4 (3)
C11—C10—C15—C141.0 (2)C26—O2—C25—C7176.14 (17)
N3—C10—C15—C14179.86 (14)N2—C7—C25—O10.4 (2)
C11—C10—C15—N4176.65 (14)N3—C7—C25—O1177.46 (15)
N3—C10—C15—N44.5 (2)N2—C7—C25—O2179.06 (14)
C13—C14—C15—C100.8 (3)N3—C7—C25—O23.0 (2)
C13—C14—C15—N4176.51 (16)C25—O2—C26—C27175.3 (2)

Experimental details

Crystal data
Chemical formulaC27H23Cl3N4O2
Mr541.84
Crystal system, space groupTriclinic, P1
Temperature (K)300
a, b, c (Å)9.679 (3), 11.256 (3), 12.661 (2)
α, β, γ (°)79.09 (2), 76.46 (2), 73.04 (2)
V3)1271.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.3 × 0.15 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6860, 5536, 4616
Rint0.010
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.05
No. of reflections5536
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBarltrop, J. A., Richards, C. G., Russel, D. M. & Ryback, G. J. (1959). J. Chem. Soc. pp. 1132–1142.  CrossRef Google Scholar
First citationChiaroni, A., Riche, C., Baouid, A., Hasnaoui, A., Benharref, A. & Lavergne, J.-P. (1995). Acta Cryst. C51, 1352–1355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl Hazazi, S., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e457–e458.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl Hazazi, S., Baouid, A., Hasnaoui, A. & Compain, P. (2003). Synth. Commun. 33, 19–27.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Deft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSharp, B. & Hamilton, C. S. (1946). J. Am. Chem. Soc. 68, 588–591.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1211
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds