organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1220

Absolute configuration of 3β-acet­­oxy­olean-11,12-aziridin-28,13-β-olide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 April 2011; accepted 20 April 2011; online 29 April 2011)

The title compound, C32H49NO4, has been isolated from the dichloro­methane extract of the stem bark of Garcinia atroviridis Griff. ex T. Anders. Rings A and B, B and C, and C and D are trans-fused, whereas rings D and E are cis-fused. Rings A, B, C and E have slightly distorted chair conformations, while ring D is most heavily distorted towards a half-chair conformation owing to the strain induced by the lactonization. The ester group attached to ring A is in an equatorial position.

Related literature

For details and applications of Garcinia atroviridis Griff. ex T. Anders, see: Permana et al. (2001[Permana, D., Lajis, N. H., Mackeen, M. M., Ali, A. M., Aimi, N., Kitajima, M. & Takayama, H. (2001). J. Nat. Prod. 64, 976-979.]); Amran et al. (2009[Amran, A. A., Zaiton, Z., Faizah, O. & Morat, P. (2009). Singapore Med. J. 50, 295-299.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C32H49NO4

  • Mr = 511.72

  • Monoclinic, C 2

  • a = 13.0197 (2) Å

  • b = 6.7460 (1) Å

  • c = 32.0674 (5) Å

  • β = 100.6452 (4)°

  • V = 2768.04 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.73 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.659, Tmax = 0.917

  • 8407 measured reflections

  • 3061 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.02

  • 3061 reflections

  • 342 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 721 Friedel pairs

  • Flack parameter: 0.1 (2)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Garcinia atroviridis Griff. ex T. Anders. (Clusiaceae) is a medium-sized fruit tree which may be found growing wild or cultivated throughout Peninsular Malaysia (Permana et al., 2001). In folkloric medicine, it has been used as a postpartum medication agent as well as an agent to treat earache, throat irritation, cough, dandruff and some stomachache associated with pregnancy (Amran et al., 2009). In our research on this plant, the stem bark extracts of G. atroviridis were examined. The title compound (I), 3β-acetoxyolean-11,12-aziridin-28,13-β-olide, has been isolated from the dichloromethane extract.

The title molecule presented in Fig. 1 contains five six-membered rings, namely, A (C15–C20), B (C14/C15/C20–C23), C (C9/C8/C12–C14/C23), D (C2/C7–C11) and E (C2–C7). The ester group attached to ring A is in an equatorial position. The bond distances (Allen et al., 1987) and angles in (I) are as expected. Rings A/B, B/C and C/D are trans-fused, whereas rings D/E are cis-fused. Rings A, B, C and E have slightly distorted chair conformations, ring D being most heavily distorted towards a half-chair conformation due to the strain induced by the lactonization, as shown by the Cremer & Pople, (1975) parameters: [ring A: Q = 0.572 (2) Å, θ = 175.5 (2)° and ϕ = 325 (3)°; B: Q = 0.584 (2) Å, θ = 11.6 (2)° and f = 118.6 (10)°; C: Q = 0.574 (2) Å, θ = 46.9 (2)° and ϕ = 111.4 (3)°; D: Q = 0.629 (2) Å, θ = 166.06 (18)° and f = 236.5 (8); E: Q = 0.571 (2) Å, θ = 3.8 (2)° and f = 202 (4)°]. The absolute configurations of the natural product molecule were determined by the refinement of the Flack parameter to 0.1 (2). There are eleven chiral centres in the molecule. From the structure presented, these centers exhibit the following chiralities: C2 = S, C7 = R, C8 = S, C9 = S, C12 = S, C13 = S, C14 = R, C15 = S, C18 = S, C20 = R and C23 = R. There are no classical hydrogen bond, weak interaction, CgCg and C—H···π interactions in the crystal packing.

Related literature top

For details and applications of Garcinia atroviridis Griff. ex T. Anders, see: Permana et al. (2001); Amran et al. (2009). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Air-dried stem bark of G. atroviridis was ground and sequentially extracted in a Soxhlet apparatus with hexane, dichloromethane and methanol. The dichloromethane extract after concentration was subjected to silica gel column chromatography using a hexane-chloroform-ethylacetate-methanol gradient to afford 58 fractions (D1–D58). Fraction D8 was further fractionated with hexane-ethyl acetate gradient as the eluting solvent, to afford 25 sub-fractions (D8a–D8y). The solid from fractions D8c–D8d was recrystallized from ethanol to yield the title compound (m.p. 581–583 K) as a colourless crystalline solid.

Refinement top

All hydrogen atoms were positioned geometrically (N—H = 0.88 Å and C—H = 0.98–1.0 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). 721 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms omitted for clarity.
3β-acetoxyolean-11,12-aziridin-28,13-β-olide top
Crystal data top
C32H49NO4F(000) = 1120
Mr = 511.72Dx = 1.228 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54178 Å
Hall symbol: C 2yCell parameters from 8407 reflections
a = 13.0197 (2) Åθ = 4.2–62.5°
b = 6.7460 (1) ŵ = 0.62 mm1
c = 32.0674 (5) ÅT = 100 K
β = 100.6452 (4)°Block, colourless
V = 2768.04 (7) Å30.73 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
3061 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 62.5°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.659, Tmax = 0.917k = 75
8407 measured reflectionsl = 3636
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0534P)2 + 1.724P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3061 reflectionsΔρmax = 0.32 e Å3
342 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 721 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C32H49NO4V = 2768.04 (7) Å3
Mr = 511.72Z = 4
Monoclinic, C2Cu Kα radiation
a = 13.0197 (2) ŵ = 0.62 mm1
b = 6.7460 (1) ÅT = 100 K
c = 32.0674 (5) Å0.73 × 0.15 × 0.14 mm
β = 100.6452 (4)°
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
3061 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3050 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.917Rint = 0.018
8407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.32 e Å3
S = 1.02Δρmin = 0.37 e Å3
3061 reflectionsAbsolute structure: Flack (1983), 721 Friedel pairs
342 parametersAbsolute structure parameter: 0.1 (2)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32106 (11)0.0737 (2)0.17064 (4)0.0246 (3)
O20.62607 (11)0.4500 (2)0.44068 (4)0.0270 (4)
O30.67821 (13)0.7573 (3)0.42805 (4)0.0378 (4)
O40.19103 (13)0.2023 (3)0.12291 (5)0.0355 (4)
N10.55624 (13)0.2185 (4)0.21012 (6)0.0339 (5)
H10.59370.31720.20300.041*
C10.24506 (16)0.0616 (4)0.13528 (6)0.0246 (5)
C20.24394 (14)0.1455 (3)0.11795 (6)0.0205 (4)
C30.21283 (15)0.1641 (4)0.06963 (6)0.0218 (4)
H3A0.13630.14780.06110.026*
H3B0.24720.05820.05580.026*
C40.24546 (15)0.3678 (4)0.05499 (6)0.0243 (5)
H4A0.20390.47150.06610.029*
H4B0.22830.37340.02360.029*
C50.36277 (16)0.4152 (4)0.06945 (6)0.0256 (5)
C60.39041 (15)0.4014 (4)0.11863 (6)0.0234 (5)
H6A0.46630.42290.12830.028*
H6B0.35250.50550.13140.028*
C70.36000 (15)0.1978 (3)0.13284 (6)0.0196 (4)
H7A0.39930.10120.11810.023*
C80.37372 (15)0.1226 (3)0.17907 (6)0.0197 (4)
C90.31546 (14)0.2417 (3)0.20917 (5)0.0169 (4)
C100.19759 (14)0.2301 (4)0.19046 (5)0.0217 (4)
H10A0.15990.32870.20490.026*
H10B0.17130.09690.19610.026*
C110.17391 (14)0.2695 (4)0.14213 (5)0.0214 (4)
H11A0.18450.41200.13690.026*
H11B0.09970.23770.13090.026*
C120.48492 (15)0.0697 (4)0.19851 (6)0.0282 (5)
H12A0.51310.04800.18540.034*
C130.52441 (15)0.0924 (4)0.24330 (6)0.0304 (6)
H13A0.57630.00870.25680.036*
C140.46077 (14)0.1942 (3)0.27216 (5)0.0184 (4)
H14A0.46920.33910.26720.022*
C150.50418 (14)0.1640 (3)0.32060 (6)0.0194 (4)
C160.61602 (14)0.2523 (4)0.32994 (6)0.0234 (5)
H16A0.66390.16250.31830.028*
H16B0.61580.38140.31530.028*
C170.65743 (15)0.2823 (4)0.37752 (6)0.0243 (5)
H17A0.66270.15280.39230.029*
H17B0.72800.34230.38180.029*
C180.58362 (15)0.4169 (3)0.39561 (5)0.0230 (5)
H18A0.58010.54720.38050.028*
C190.47224 (15)0.3357 (3)0.39178 (6)0.0222 (5)
C200.43358 (14)0.2950 (3)0.34356 (5)0.0192 (4)
H20A0.43390.42810.32990.023*
C210.31921 (14)0.2264 (4)0.33240 (5)0.0218 (4)
H21A0.31460.08430.33960.026*
H21B0.27650.30260.34930.026*
C220.27630 (14)0.2569 (4)0.28508 (5)0.0217 (4)
H22A0.27410.40070.27880.026*
H22B0.20380.20610.27850.026*
C230.34200 (14)0.1521 (3)0.25602 (6)0.0183 (4)
C240.66861 (15)0.6269 (3)0.45241 (6)0.0240 (5)
C250.7020 (2)0.6407 (4)0.49973 (7)0.0368 (6)
H25A0.66680.75330.51040.055*
H25B0.77780.65980.50680.055*
H25C0.68310.51820.51290.055*
C260.43081 (16)0.2772 (4)0.04793 (6)0.0336 (6)
H26A0.50470.30780.05820.050*
H26B0.41400.29640.01710.050*
H26C0.41710.13910.05470.050*
C270.38219 (18)0.6281 (4)0.05690 (6)0.0342 (6)
H27A0.45480.66470.06840.051*
H27B0.33490.71740.06840.051*
H27C0.36930.63910.02590.051*
C280.34752 (16)0.4625 (3)0.20954 (6)0.0227 (5)
H28A0.30000.53370.18730.034*
H28B0.41920.47310.20430.034*
H28C0.34380.52050.23720.034*
C290.51138 (16)0.0556 (4)0.33404 (6)0.0255 (5)
H29A0.56530.07110.35950.038*
H29B0.52960.13620.31100.038*
H29C0.44380.09920.34010.038*
C300.40528 (17)0.5014 (4)0.40603 (6)0.0296 (5)
H30A0.43920.55060.43390.044*
H30B0.33600.44900.40780.044*
H30C0.39800.61010.38540.044*
C310.46755 (16)0.1551 (4)0.42054 (6)0.0270 (5)
H31A0.48450.19640.45030.040*
H31B0.51810.05540.41500.040*
H31C0.39710.09840.41460.040*
C320.31756 (17)0.0706 (3)0.25724 (6)0.0246 (5)
H32A0.31630.11050.28650.037*
H32B0.37160.14600.24650.037*
H32C0.24930.09710.23950.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0363 (8)0.0157 (8)0.0206 (6)0.0029 (7)0.0019 (5)0.0023 (6)
O20.0373 (8)0.0246 (9)0.0164 (6)0.0043 (7)0.0025 (5)0.0014 (6)
O30.0515 (9)0.0313 (10)0.0270 (7)0.0149 (9)0.0024 (6)0.0025 (8)
O40.0508 (9)0.0236 (10)0.0292 (7)0.0085 (8)0.0001 (7)0.0039 (7)
N10.0171 (8)0.0479 (14)0.0367 (9)0.0027 (9)0.0048 (7)0.0081 (10)
C10.0309 (10)0.0235 (13)0.0194 (9)0.0020 (10)0.0045 (7)0.0024 (9)
C20.0205 (9)0.0193 (11)0.0212 (9)0.0002 (9)0.0024 (7)0.0009 (9)
C30.0224 (9)0.0237 (12)0.0180 (9)0.0003 (9)0.0001 (7)0.0030 (8)
C40.0265 (10)0.0295 (13)0.0157 (8)0.0002 (10)0.0008 (7)0.0017 (9)
C50.0271 (10)0.0305 (14)0.0188 (9)0.0020 (10)0.0033 (7)0.0029 (9)
C60.0196 (9)0.0314 (14)0.0185 (9)0.0025 (9)0.0017 (7)0.0008 (9)
C70.0203 (9)0.0213 (13)0.0173 (8)0.0031 (8)0.0038 (7)0.0021 (8)
C80.0231 (9)0.0150 (12)0.0210 (9)0.0025 (9)0.0043 (7)0.0018 (8)
C90.0182 (9)0.0143 (11)0.0183 (8)0.0028 (8)0.0035 (7)0.0014 (8)
C100.0199 (9)0.0254 (12)0.0200 (9)0.0040 (9)0.0043 (7)0.0003 (9)
C110.0185 (8)0.0236 (12)0.0205 (9)0.0019 (9)0.0003 (7)0.0001 (9)
C120.0246 (10)0.0370 (15)0.0241 (10)0.0137 (11)0.0074 (8)0.0003 (10)
C130.0234 (9)0.0482 (17)0.0193 (9)0.0122 (11)0.0035 (8)0.0008 (10)
C140.0198 (9)0.0177 (12)0.0177 (8)0.0022 (8)0.0036 (7)0.0008 (8)
C150.0205 (9)0.0210 (12)0.0163 (8)0.0031 (9)0.0025 (7)0.0002 (8)
C160.0205 (9)0.0301 (13)0.0195 (9)0.0031 (9)0.0034 (7)0.0017 (9)
C170.0225 (9)0.0295 (13)0.0195 (9)0.0016 (10)0.0006 (7)0.0038 (9)
C180.0318 (10)0.0221 (13)0.0135 (8)0.0025 (10)0.0005 (7)0.0010 (9)
C190.0280 (10)0.0217 (12)0.0176 (9)0.0017 (9)0.0059 (7)0.0002 (8)
C200.0224 (9)0.0182 (12)0.0172 (8)0.0023 (9)0.0041 (7)0.0020 (8)
C210.0217 (9)0.0256 (12)0.0194 (9)0.0003 (9)0.0072 (7)0.0019 (9)
C220.0193 (8)0.0243 (12)0.0216 (9)0.0035 (9)0.0042 (7)0.0007 (9)
C230.0194 (9)0.0168 (11)0.0191 (9)0.0013 (8)0.0044 (7)0.0022 (8)
C240.0228 (9)0.0257 (13)0.0228 (10)0.0004 (10)0.0019 (7)0.0003 (10)
C250.0522 (13)0.0316 (15)0.0242 (10)0.0048 (12)0.0009 (9)0.0020 (10)
C260.0277 (10)0.0529 (18)0.0213 (9)0.0005 (12)0.0069 (8)0.0001 (11)
C270.0378 (11)0.0404 (16)0.0229 (10)0.0111 (12)0.0018 (9)0.0070 (10)
C280.0300 (10)0.0180 (12)0.0192 (9)0.0017 (9)0.0021 (7)0.0006 (9)
C290.0321 (10)0.0210 (12)0.0213 (9)0.0071 (10)0.0005 (8)0.0009 (9)
C300.0349 (11)0.0317 (15)0.0215 (9)0.0058 (10)0.0038 (8)0.0042 (9)
C310.0317 (10)0.0299 (13)0.0195 (9)0.0041 (10)0.0053 (8)0.0015 (9)
C320.0342 (11)0.0181 (12)0.0210 (9)0.0048 (10)0.0033 (8)0.0016 (9)
Geometric parameters (Å, º) top
O1—C11.363 (2)C15—C201.555 (3)
O1—C81.493 (3)C16—C171.535 (2)
O2—C241.340 (3)C16—H16A0.9900
O2—C181.466 (2)C16—H16B0.9900
O3—C241.198 (3)C17—C181.514 (3)
O4—C11.204 (3)C17—H17A0.9900
N1—C121.371 (3)C17—H17B0.9900
N1—C131.480 (3)C18—C191.534 (3)
N1—H10.8800C18—H18A1.0000
C1—C21.502 (3)C19—C311.536 (3)
C2—C31.533 (2)C19—C301.538 (3)
C2—C71.539 (3)C19—C201.560 (2)
C2—C111.547 (3)C20—C211.537 (2)
C3—C41.537 (3)C20—H20A1.0000
C3—H3A0.9900C21—C221.531 (2)
C3—H3B0.9900C21—H21A0.9900
C4—C51.546 (3)C21—H21B0.9900
C4—H4A0.9900C22—C231.547 (3)
C4—H4B0.9900C22—H22A0.9900
C5—C271.525 (4)C22—H22B0.9900
C5—C261.534 (3)C23—C321.538 (3)
C5—C61.554 (2)C24—C251.502 (3)
C6—C71.522 (3)C25—H25A0.9800
C6—H6A0.9900C25—H25B0.9800
C6—H6B0.9900C25—H25C0.9800
C7—C81.546 (2)C26—H26A0.9800
C7—H7A1.0000C26—H26B0.9800
C8—C121.510 (3)C26—H26C0.9800
C8—C91.557 (2)C27—H27A0.9800
C9—C101.543 (2)C27—H27B0.9800
C9—C281.546 (3)C27—H27C0.9800
C9—C231.597 (2)C28—H28A0.9800
C10—C111.546 (2)C28—H28B0.9800
C10—H10A0.9900C28—H28C0.9800
C10—H10B0.9900C29—H29A0.9800
C11—H11A0.9900C29—H29B0.9800
C11—H11B0.9900C29—H29C0.9800
C12—C131.442 (3)C30—H30A0.9800
C12—H12A1.0000C30—H30B0.9800
C13—C141.516 (3)C30—H30C0.9800
C13—H13A1.0000C31—H31A0.9800
C14—C231.563 (2)C31—H31B0.9800
C14—C151.565 (2)C31—H31C0.9800
C14—H14A1.0000C32—H32A0.9800
C15—C291.541 (3)C32—H32B0.9800
C15—C161.550 (3)C32—H32C0.9800
C1—O1—C8109.63 (16)C15—C16—H16B109.0
C24—O2—C18118.26 (16)H16A—C16—H16B107.8
C12—N1—C1360.61 (15)C18—C17—C16109.20 (15)
C12—N1—H1149.7C18—C17—H17A109.8
C13—N1—H1149.7C16—C17—H17A109.8
O4—C1—O1121.1 (2)C18—C17—H17B109.8
O4—C1—C2130.24 (18)C16—C17—H17B109.8
O1—C1—C2108.64 (18)H17A—C17—H17B108.3
C1—C2—C3115.65 (17)O2—C18—C17108.59 (15)
C1—C2—C799.01 (16)O2—C18—C19108.18 (14)
C3—C2—C7110.84 (15)C17—C18—C19114.38 (18)
C1—C2—C11106.48 (16)O2—C18—H18A108.5
C3—C2—C11113.10 (16)C17—C18—H18A108.5
C7—C2—C11110.87 (16)C19—C18—H18A108.5
C2—C3—C4110.22 (16)C18—C19—C31112.16 (16)
C2—C3—H3A109.6C18—C19—C30107.22 (18)
C4—C3—H3A109.6C31—C19—C30108.08 (16)
C2—C3—H3B109.6C18—C19—C20105.63 (14)
C4—C3—H3B109.6C31—C19—C20114.48 (18)
H3A—C3—H3B108.1C30—C19—C20109.00 (16)
C3—C4—C5114.01 (17)C21—C20—C15110.54 (16)
C3—C4—H4A108.8C21—C20—C19113.90 (14)
C5—C4—H4A108.8C15—C20—C19117.30 (15)
C3—C4—H4B108.8C21—C20—H20A104.5
C5—C4—H4B108.8C15—C20—H20A104.5
H4A—C4—H4B107.6C19—C20—H20A104.5
C27—C5—C26108.38 (18)C22—C21—C20110.53 (15)
C27—C5—C4108.57 (18)C22—C21—H21A109.5
C26—C5—C4111.10 (18)C20—C21—H21A109.5
C27—C5—C6107.80 (18)C22—C21—H21B109.5
C26—C5—C6112.04 (17)C20—C21—H21B109.5
C4—C5—C6108.83 (15)H21A—C21—H21B108.1
C7—C6—C5109.49 (17)C21—C22—C23113.23 (16)
C7—C6—H6A109.8C21—C22—H22A108.9
C5—C6—H6A109.8C23—C22—H22A108.9
C7—C6—H6B109.8C21—C22—H22B108.9
C5—C6—H6B109.8C23—C22—H22B108.9
H6A—C6—H6B108.2H22A—C22—H22B107.7
C6—C7—C2114.13 (17)C32—C23—C22106.92 (17)
C6—C7—C8126.37 (17)C32—C23—C14111.44 (17)
C2—C7—C898.92 (15)C22—C23—C14109.92 (15)
C6—C7—H7A105.2C32—C23—C9112.57 (16)
C2—C7—H7A105.2C22—C23—C9110.26 (16)
C8—C7—H7A105.2C14—C23—C9105.77 (14)
O1—C8—C12103.81 (17)O3—C24—O2123.95 (18)
O1—C8—C798.61 (14)O3—C24—C25124.6 (2)
C12—C8—C7113.93 (15)O2—C24—C25111.48 (19)
O1—C8—C9108.06 (14)C24—C25—H25A109.5
C12—C8—C9113.95 (15)C24—C25—H25B109.5
C7—C8—C9116.24 (17)H25A—C25—H25B109.5
C10—C9—C28107.43 (17)C24—C25—H25C109.5
C10—C9—C8107.23 (15)H25A—C25—H25C109.5
C28—C9—C8109.88 (15)H25B—C25—H25C109.5
C10—C9—C23111.93 (15)C5—C26—H26A109.5
C28—C9—C23110.24 (16)C5—C26—H26B109.5
C8—C9—C23110.04 (16)H26A—C26—H26B109.5
C9—C10—C11112.39 (14)C5—C26—H26C109.5
C9—C10—H10A109.1H26A—C26—H26C109.5
C11—C10—H10A109.1H26B—C26—H26C109.5
C9—C10—H10B109.1C5—C27—H27A109.5
C11—C10—H10B109.1C5—C27—H27B109.5
H10A—C10—H10B107.9H27A—C27—H27B109.5
C10—C11—C2112.49 (16)C5—C27—H27C109.5
C10—C11—H11A109.1H27A—C27—H27C109.5
C2—C11—H11A109.1H27B—C27—H27C109.5
C10—C11—H11B109.1C9—C28—H28A109.5
C2—C11—H11B109.1C9—C28—H28B109.5
H11A—C11—H11B107.8H28A—C28—H28B109.5
N1—C12—C1363.43 (16)C9—C28—H28C109.5
N1—C12—C8119.3 (2)H28A—C28—H28C109.5
C13—C12—C8121.65 (17)H28B—C28—H28C109.5
N1—C12—H12A114.4C15—C29—H29A109.5
C13—C12—H12A114.4C15—C29—H29B109.5
C8—C12—H12A114.4H29A—C29—H29B109.5
C12—C13—N155.96 (15)C15—C29—H29C109.5
C12—C13—C14121.46 (17)H29A—C29—H29C109.5
N1—C13—C14115.9 (2)H29B—C29—H29C109.5
C12—C13—H13A116.5C19—C30—H30A109.5
N1—C13—H13A116.5C19—C30—H30B109.5
C14—C13—H13A116.5H30A—C30—H30B109.5
C13—C14—C23109.54 (15)C19—C30—H30C109.5
C13—C14—C15114.15 (16)H30A—C30—H30C109.5
C23—C14—C15117.30 (15)H30B—C30—H30C109.5
C13—C14—H14A104.8C19—C31—H31A109.5
C23—C14—H14A104.8C19—C31—H31B109.5
C15—C14—H14A104.8H31A—C31—H31B109.5
C29—C15—C16107.99 (18)C19—C31—H31C109.5
C29—C15—C20115.13 (16)H31A—C31—H31C109.5
C16—C15—C20107.86 (17)H31B—C31—H31C109.5
C29—C15—C14113.26 (16)C23—C32—H32A109.5
C16—C15—C14107.20 (15)C23—C32—H32B109.5
C20—C15—C14105.03 (15)H32A—C32—H32B109.5
C17—C16—C15112.80 (15)C23—C32—H32C109.5
C17—C16—H16A109.0H32A—C32—H32C109.5
C15—C16—H16A109.0H32B—C32—H32C109.5
C17—C16—H16B109.0
C8—O1—C1—O4178.70 (18)C12—N1—C13—C14111.9 (2)
C8—O1—C1—C20.5 (2)C12—C13—C14—C2333.2 (3)
O4—C1—C2—C333.0 (3)N1—C13—C14—C2397.6 (2)
O1—C1—C2—C3147.89 (16)C12—C13—C14—C15167.0 (2)
O4—C1—C2—C7151.4 (2)N1—C13—C14—C15128.61 (18)
O1—C1—C2—C729.49 (19)C13—C14—C15—C2958.5 (2)
O4—C1—C2—C1193.6 (2)C23—C14—C15—C2971.6 (2)
O1—C1—C2—C1185.54 (19)C13—C14—C15—C1660.5 (2)
C1—C2—C3—C4163.28 (17)C23—C14—C15—C16169.39 (18)
C7—C2—C3—C451.7 (2)C13—C14—C15—C20175.07 (19)
C11—C2—C3—C473.6 (2)C23—C14—C15—C2054.8 (2)
C2—C3—C4—C555.2 (2)C29—C15—C16—C1772.5 (2)
C3—C4—C5—C27174.19 (16)C20—C15—C16—C1752.5 (2)
C3—C4—C5—C2666.7 (2)C14—C15—C16—C17165.10 (18)
C3—C4—C5—C657.1 (2)C15—C16—C17—C1857.9 (3)
C27—C5—C6—C7173.35 (17)C24—O2—C18—C17106.1 (2)
C26—C5—C6—C767.5 (2)C24—O2—C18—C19129.18 (19)
C4—C5—C6—C755.8 (2)C16—C17—C18—O2177.98 (17)
C5—C6—C7—C257.1 (2)C16—C17—C18—C1961.1 (2)
C5—C6—C7—C8179.84 (18)O2—C18—C19—C3152.2 (2)
C1—C2—C7—C6177.12 (15)C17—C18—C19—C3169.0 (2)
C3—C2—C7—C655.2 (2)O2—C18—C19—C3066.3 (2)
C11—C2—C7—C671.3 (2)C17—C18—C19—C30172.55 (16)
C1—C2—C7—C846.17 (17)O2—C18—C19—C20177.56 (17)
C3—C2—C7—C8168.12 (18)C17—C18—C19—C2056.4 (2)
C11—C2—C7—C865.4 (2)C29—C15—C20—C2164.4 (2)
C1—O1—C8—C12147.48 (15)C16—C15—C20—C21175.02 (16)
C1—O1—C8—C730.11 (18)C14—C15—C20—C2160.9 (2)
C1—O1—C8—C991.20 (17)C29—C15—C20—C1968.5 (2)
C6—C7—C8—O1175.33 (17)C16—C15—C20—C1952.1 (2)
C2—C7—C8—O146.32 (17)C14—C15—C20—C19166.21 (17)
C6—C7—C8—C1275.3 (3)C18—C19—C20—C21175.71 (18)
C2—C7—C8—C12155.67 (19)C31—C19—C20—C2160.4 (2)
C6—C7—C8—C960.2 (2)C30—C19—C20—C2160.8 (2)
C2—C7—C8—C968.8 (2)C18—C19—C20—C1553.0 (2)
O1—C8—C9—C1048.83 (19)C31—C19—C20—C1571.0 (2)
C12—C8—C9—C10163.63 (19)C30—C19—C20—C15167.88 (18)
C7—C8—C9—C1060.8 (2)C15—C20—C21—C2264.6 (2)
O1—C8—C9—C28165.30 (14)C19—C20—C21—C22160.85 (18)
C12—C8—C9—C2879.9 (2)C20—C21—C22—C2356.1 (2)
C7—C8—C9—C2855.6 (2)C21—C22—C23—C3274.7 (2)
O1—C8—C9—C2373.13 (18)C21—C22—C23—C1446.4 (2)
C12—C8—C9—C2341.7 (2)C21—C22—C23—C9162.63 (17)
C7—C8—C9—C23177.21 (16)C13—C14—C23—C3262.1 (2)
C28—C9—C10—C1172.3 (2)C15—C14—C23—C3270.1 (2)
C8—C9—C10—C1145.8 (2)C13—C14—C23—C22179.53 (19)
C23—C9—C10—C11166.56 (18)C15—C14—C23—C2248.3 (2)
C9—C10—C11—C249.1 (3)C13—C14—C23—C960.5 (2)
C1—C2—C11—C1045.1 (2)C15—C14—C23—C9167.27 (17)
C3—C2—C11—C10173.17 (18)C10—C9—C23—C3263.8 (2)
C7—C2—C11—C1061.6 (2)C28—C9—C23—C32176.72 (16)
C13—N1—C12—C8113.1 (2)C8—C9—C23—C3255.4 (2)
O1—C8—C12—N1179.68 (16)C10—C9—C23—C2255.5 (2)
C7—C8—C12—N173.5 (2)C28—C9—C23—C2264.0 (2)
C9—C8—C12—N163.0 (2)C8—C9—C23—C22174.65 (16)
O1—C8—C12—C13105.2 (2)C10—C9—C23—C14174.31 (17)
C7—C8—C12—C13148.7 (2)C28—C9—C23—C1454.80 (19)
C9—C8—C12—C1312.1 (3)C8—C9—C23—C1466.6 (2)
C8—C12—C13—N1109.5 (3)C18—O2—C24—O33.3 (3)
N1—C12—C13—C14101.7 (3)C18—O2—C24—C25176.38 (17)
C8—C12—C13—C147.8 (4)

Experimental details

Crystal data
Chemical formulaC32H49NO4
Mr511.72
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)13.0197 (2), 6.7460 (1), 32.0674 (5)
β (°) 100.6452 (4)
V3)2768.04 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.73 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.659, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
8407, 3061, 3050
Rint0.018
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.02
No. of reflections3061
No. of parameters342
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37
Absolute structureFlack (1983), 721 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

TWN, WKC and MK wish to acknowledge the research grant RU1001/PKIMIA/811129 provided by the Universiti Sains Malaysia, Penang, that has resulted in this article. TWN would like to thank USM for the award of a postgraduate fellowship. MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmran, A. A., Zaiton, Z., Faizah, O. & Morat, P. (2009). Singapore Med. J. 50, 295–299.  Web of Science PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPermana, D., Lajis, N. H., Mackeen, M. M., Ali, A. M., Aimi, N., Kitajima, M. & Takayama, H. (2001). J. Nat. Prod. 64, 976–979.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1220
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds