organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1196

4-(2-{[4-Amino-6-(4-nitro­benz­yl)-5-oxo-4,5-di­hydro-1,2,4-triazin-3-yl]sulfan­yl}acet­yl)-3-phenyl­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 12 April 2011; accepted 18 April 2011; online 22 April 2011)

In the crystal, C20H15N7O6S, the dihedral angle between the oxadiazole and triazine rings is 86.94 (7)°. The oxadiazole ring makes a dihedral angle of 52.96 (8)° with the phenyl ring, while the triazine ring makes a dihedral angle of 82.08 (7)° with the benzene ring. In the structure, mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming an inversion dimer. The dimers are further stacked along the a axis via N—H⋯N hydrogen bonds. Weak inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For the biological activity of sydnone derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Jyothi et al. (2008[Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Kalluraya et al. (2008a[Kalluraya, B., Nayak, J., Adhikari, A., Sujith, K. V., Shetty, N. S. & Winter, M. (2008a). Phosphorus Sulfur Silicon Relat. Elem. 183, 1870-1883.],b[Kalluraya, B., Rao, J. N. & Sujith, K. V. (2008b). Indian J. Heterocycl. Chem. 17, 359-362.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o1004.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N7O6S

  • Mr = 481.45

  • Triclinic, [P \overline 1]

  • a = 6.4071 (1) Å

  • b = 10.1629 (2) Å

  • c = 17.1521 (3) Å

  • α = 106.372 (1)°

  • β = 92.400 (1)°

  • γ = 97.551 (1)°

  • V = 1058.61 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 297 K

  • 0.51 × 0.34 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.965

  • 21821 measured reflections

  • 7793 independent reflections

  • 5330 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.04

  • 7793 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H2N7⋯O4i 0.89 (2) 2.15 (2) 3.0152 (19) 163.5 (18)
N7—H1N7⋯N4ii 0.89 (2) 2.43 (2) 3.1019 (17) 133.1 (17)
N7—H1N7⋯N5ii 0.89 (2) 2.45 (2) 3.0166 (16) 122.5 (16)
C3—H3A⋯O5iii 0.93 2.57 3.345 (3) 141
C14—H14A⋯O3iv 0.97 2.53 3.4443 (18) 157
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) x+1, y, z-1; (iv) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities displayed by some of them (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Kalluraya et al., 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Because of wide variety of properties displayed by sydnones ,we were prompted to synthesize a new S-substituted triazinones containing a sydnone ring.

Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 4-amino-6-(p-nitrobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one with 3-phenyl-4-bromoacetylsydnones yielded S-substituted triazinone derivatives (Jyothi et al., 2008).

All parameters in (I), Fig. 1, are within normal ranges and comparable with the related structure (Fun et al., 2011). The dihedral angle between oxadiazole (C7/C8/N1/N2/O1) and triazine (C11/N3/C12/C13/N4/N5) groups is 86.94 (7)°. The oxadiazole and triazine groups make dihedral angles of 52.96 (8) and 83.08 (7)° with the C1–C6 phneyl ring and 9.51 (8) and 82.08 (7)° with the C15–C20 benzene ring, respectively.

In the crystal structure, the N7—H2N7···O4i, N7—H1N7···N4ii, N7—H1N7···N5ii, C3—H3A···O5iii and C14—H14A···O3iv intermolecular interactions (Table 1) link the molecules into two-dimensional sheets parallel to the ac-plane (Fig. 2).

Related literature top

For the biological activity of sydnone derivatives, see: Rai et al. (2008); Jyothi et al. (2008); Kalluraya et al. (2008). For a related structure, see: Fun et al. (2011).

Experimental top

To a solution of 4-bromoacetyl-3-phenylsydnone (0.01mol) and 4-amino-6-(p-nitrobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2-3 hours. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

N-bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
4-(2-{[4-Amino-6-(4-nitrobenzyl)-5-oxo-4,5-dihydro-1,2,4- triazin-3-yl]sulfanyl}acetyl)-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C20H15N7O6SZ = 2
Mr = 481.45F(000) = 496
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4071 (1) ÅCell parameters from 5430 reflections
b = 10.1629 (2) Åθ = 3.7–30.1°
c = 17.1521 (3) ŵ = 0.21 mm1
α = 106.372 (1)°T = 297 K
β = 92.400 (1)°Block, yellow
γ = 97.551 (1)°0.51 × 0.34 × 0.17 mm
V = 1058.61 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7793 independent reflections
Radiation source: fine-focus sealed tube5330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 32.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.900, Tmax = 0.965k = 1515
21821 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.084P]
where P = (Fo2 + 2Fc2)/3
7793 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H15N7O6Sγ = 97.551 (1)°
Mr = 481.45V = 1058.61 (3) Å3
Triclinic, P1Z = 2
a = 6.4071 (1) ÅMo Kα radiation
b = 10.1629 (2) ŵ = 0.21 mm1
c = 17.1521 (3) ÅT = 297 K
α = 106.372 (1)°0.51 × 0.34 × 0.17 mm
β = 92.400 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7793 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5330 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.965Rint = 0.030
21821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
7793 reflectionsΔρmin = 0.23 e Å3
315 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76158 (5)0.56912 (4)0.39458 (2)0.04815 (10)
N11.40303 (17)0.45428 (11)0.21692 (6)0.0388 (2)
N21.5454 (2)0.37194 (13)0.20533 (8)0.0525 (3)
N30.73930 (15)0.81262 (11)0.49757 (6)0.0362 (2)
N41.14452 (17)0.85392 (13)0.56156 (7)0.0460 (3)
N51.06998 (16)0.73678 (12)0.49822 (7)0.0430 (2)
N60.8522 (4)0.87248 (18)0.93514 (10)0.0851 (6)
N70.52842 (19)0.77429 (15)0.46377 (9)0.0531 (3)
O11.51411 (17)0.29797 (10)0.26042 (7)0.0531 (3)
O21.29331 (18)0.28459 (11)0.35900 (7)0.0565 (3)
O31.07909 (19)0.62369 (11)0.28170 (7)0.0604 (3)
O40.68160 (17)1.01247 (11)0.58890 (6)0.0536 (3)
O50.6980 (4)0.9118 (2)0.96790 (12)0.1335 (8)
O60.9522 (4)0.7945 (2)0.95653 (11)0.1279 (8)
C11.2266 (3)0.54038 (16)0.11647 (9)0.0520 (3)
H1A1.10030.48750.12100.062*
C21.2384 (3)0.61847 (18)0.06204 (10)0.0643 (4)
H2A1.11810.61980.03020.077*
C31.4275 (3)0.69420 (17)0.05489 (10)0.0653 (5)
H3A1.43470.74440.01710.078*
C41.6052 (3)0.69646 (18)0.10286 (11)0.0660 (4)
H4A1.73150.74910.09800.079*
C51.5974 (3)0.62030 (16)0.15882 (10)0.0541 (3)
H5A1.71660.62130.19190.065*
C61.4068 (2)0.54316 (13)0.16354 (7)0.0412 (3)
C71.3425 (2)0.33732 (13)0.30715 (8)0.0411 (3)
C81.27298 (19)0.44150 (12)0.27599 (7)0.0352 (2)
C91.1124 (2)0.52770 (12)0.30653 (7)0.0382 (2)
C100.9904 (2)0.48508 (14)0.37157 (8)0.0438 (3)
H10A1.08340.50660.42100.053*
H10B0.94640.38550.35350.053*
C110.87411 (17)0.71923 (13)0.47012 (7)0.0347 (2)
C120.8018 (2)0.93081 (13)0.56189 (7)0.0380 (2)
C131.0230 (2)0.94417 (13)0.59158 (7)0.0392 (3)
C141.1084 (2)1.06316 (14)0.66524 (8)0.0484 (3)
H14A1.04971.14560.66350.058*
H14B1.26091.08310.66620.058*
C151.0474 (2)1.02257 (13)0.74039 (8)0.0418 (3)
C160.8680 (3)1.05963 (15)0.77747 (9)0.0516 (3)
H16A0.78981.11760.75920.062*
C170.8036 (3)1.01111 (17)0.84163 (10)0.0592 (4)
H17A0.68211.03500.86630.071*
C180.9234 (3)0.92666 (15)0.86812 (9)0.0575 (4)
C191.1038 (3)0.89030 (17)0.83385 (10)0.0652 (5)
H19A1.18340.83420.85330.078*
C201.1651 (3)0.93889 (16)0.76961 (9)0.0559 (4)
H20A1.28750.91510.74550.067*
H2N70.492 (3)0.848 (2)0.4511 (12)0.084 (6)*
H1N70.456 (3)0.764 (2)0.5051 (13)0.077 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03577 (16)0.0519 (2)0.0551 (2)0.01356 (13)0.00911 (13)0.00898 (15)
N10.0436 (5)0.0376 (5)0.0387 (5)0.0140 (4)0.0093 (4)0.0123 (4)
N20.0569 (7)0.0522 (7)0.0586 (7)0.0271 (5)0.0224 (6)0.0211 (6)
N30.0302 (4)0.0467 (5)0.0407 (5)0.0173 (4)0.0105 (4)0.0210 (4)
N40.0339 (5)0.0572 (7)0.0483 (6)0.0106 (5)0.0098 (4)0.0150 (5)
N50.0310 (5)0.0536 (6)0.0477 (6)0.0155 (4)0.0102 (4)0.0147 (5)
N60.1383 (18)0.0596 (9)0.0504 (8)0.0176 (10)0.0025 (10)0.0201 (7)
N70.0326 (5)0.0653 (8)0.0628 (8)0.0238 (5)0.0036 (5)0.0135 (6)
O10.0586 (6)0.0485 (5)0.0657 (6)0.0301 (5)0.0198 (5)0.0259 (5)
O20.0658 (7)0.0529 (6)0.0680 (6)0.0225 (5)0.0167 (5)0.0374 (5)
O30.0766 (7)0.0571 (6)0.0694 (7)0.0392 (6)0.0293 (6)0.0371 (5)
O40.0598 (6)0.0541 (6)0.0554 (6)0.0336 (5)0.0097 (5)0.0177 (5)
O50.181 (2)0.1328 (17)0.1005 (13)0.0027 (15)0.0624 (14)0.0588 (12)
O60.212 (2)0.1014 (12)0.0919 (11)0.0126 (13)0.0041 (13)0.0687 (11)
C10.0579 (8)0.0514 (8)0.0478 (7)0.0030 (6)0.0001 (6)0.0193 (6)
C20.0845 (12)0.0638 (10)0.0494 (8)0.0089 (9)0.0052 (8)0.0264 (7)
C30.0971 (14)0.0556 (9)0.0515 (8)0.0105 (9)0.0159 (9)0.0280 (7)
C40.0753 (11)0.0606 (10)0.0676 (10)0.0017 (8)0.0239 (9)0.0287 (8)
C50.0531 (8)0.0571 (8)0.0553 (8)0.0070 (7)0.0109 (6)0.0209 (7)
C60.0510 (7)0.0393 (6)0.0364 (6)0.0113 (5)0.0102 (5)0.0131 (5)
C70.0440 (6)0.0350 (6)0.0491 (7)0.0139 (5)0.0080 (5)0.0157 (5)
C80.0373 (6)0.0334 (5)0.0390 (6)0.0113 (4)0.0073 (4)0.0139 (4)
C90.0417 (6)0.0365 (6)0.0401 (6)0.0141 (5)0.0074 (5)0.0126 (5)
C100.0462 (7)0.0436 (7)0.0486 (7)0.0187 (5)0.0152 (5)0.0178 (5)
C110.0305 (5)0.0442 (6)0.0386 (5)0.0149 (4)0.0137 (4)0.0211 (5)
C120.0436 (6)0.0423 (6)0.0388 (6)0.0177 (5)0.0119 (5)0.0230 (5)
C130.0400 (6)0.0438 (6)0.0413 (6)0.0083 (5)0.0116 (5)0.0221 (5)
C140.0534 (8)0.0445 (7)0.0499 (7)0.0040 (6)0.0077 (6)0.0190 (6)
C150.0499 (7)0.0350 (6)0.0403 (6)0.0085 (5)0.0014 (5)0.0102 (5)
C160.0597 (9)0.0499 (8)0.0527 (8)0.0211 (6)0.0097 (6)0.0205 (6)
C170.0697 (10)0.0567 (9)0.0513 (8)0.0109 (7)0.0181 (7)0.0132 (7)
C180.0912 (12)0.0417 (7)0.0373 (6)0.0004 (7)0.0020 (7)0.0130 (5)
C190.0953 (13)0.0524 (8)0.0544 (9)0.0241 (9)0.0070 (9)0.0219 (7)
C200.0632 (9)0.0554 (8)0.0547 (8)0.0252 (7)0.0043 (7)0.0177 (7)
Geometric parameters (Å, º) top
S1—C111.7448 (13)C3—C41.370 (3)
S1—C101.7951 (13)C3—H3A0.9300
N1—N21.3013 (15)C4—C51.391 (2)
N1—C81.3616 (15)C4—H4A0.9300
N1—C61.4550 (16)C5—C61.380 (2)
N2—O11.3693 (15)C5—H5A0.9300
N3—C111.3660 (14)C7—C81.4242 (16)
N3—C121.3820 (17)C8—C91.4572 (16)
N3—N71.4079 (15)C9—C101.5165 (17)
N4—C131.2914 (17)C10—H10A0.9700
N4—N51.3797 (16)C10—H10B0.9700
N5—C111.2966 (15)C12—C131.4615 (18)
N6—O61.205 (3)C13—C141.5049 (19)
N6—O51.214 (3)C14—C151.5112 (18)
N6—C181.472 (2)C14—H14A0.9700
N7—H2N70.90 (2)C14—H14B0.9700
N7—H1N70.89 (2)C15—C161.381 (2)
O1—C71.4212 (16)C15—C201.3856 (19)
O2—C71.1937 (16)C16—C171.384 (2)
O3—C91.2083 (15)C16—H16A0.9300
O4—C121.2156 (15)C17—C181.377 (2)
C1—C61.373 (2)C17—H17A0.9300
C1—C21.384 (2)C18—C191.366 (3)
C1—H1A0.9300C19—C201.380 (2)
C2—C31.377 (3)C19—H19A0.9300
C2—H2A0.9300C20—H20A0.9300
C11—S1—C10100.23 (6)O3—C9—C10123.28 (11)
N2—N1—C8114.78 (10)C8—C9—C10113.88 (10)
N2—N1—C6114.59 (10)C9—C10—S1113.41 (9)
C8—N1—C6130.62 (10)C9—C10—H10A108.9
N1—N2—O1105.29 (10)S1—C10—H10A108.9
C11—N3—C12121.18 (10)C9—C10—H10B108.9
C11—N3—N7116.60 (11)S1—C10—H10B108.9
C12—N3—N7121.80 (10)H10A—C10—H10B107.7
C13—N4—N5120.91 (11)N5—C11—N3123.75 (12)
C11—N5—N4118.18 (11)N5—C11—S1121.37 (9)
O6—N6—O5122.9 (2)N3—C11—S1114.86 (9)
O6—N6—C18118.8 (2)O4—C12—N3122.00 (12)
O5—N6—C18118.2 (2)O4—C12—C13125.50 (12)
N3—N7—H2N7106.2 (14)N3—C12—C13112.50 (10)
N3—N7—H1N7104.2 (14)N4—C13—C12123.40 (12)
H2N7—N7—H1N7107.5 (19)N4—C13—C14118.21 (12)
N2—O1—C7110.84 (9)C12—C13—C14118.20 (11)
C6—C1—C2118.12 (15)C13—C14—C15108.09 (10)
C6—C1—H1A120.9C13—C14—H14A110.1
C2—C1—H1A120.9C15—C14—H14A110.1
C3—C2—C1120.27 (16)C13—C14—H14B110.1
C3—C2—H2A119.9C15—C14—H14B110.1
C1—C2—H2A119.9H14A—C14—H14B108.4
C4—C3—C2120.72 (14)C16—C15—C20119.09 (13)
C4—C3—H3A119.6C16—C15—C14121.16 (12)
C2—C3—H3A119.6C20—C15—C14119.60 (13)
C3—C4—C5120.24 (16)C15—C16—C17120.48 (14)
C3—C4—H4A119.9C15—C16—H16A119.8
C5—C4—H4A119.9C17—C16—H16A119.8
C6—C5—C4117.79 (16)C18—C17—C16118.61 (16)
C6—C5—H5A121.1C18—C17—H17A120.7
C4—C5—H5A121.1C16—C17—H17A120.7
C1—C6—C5122.84 (13)C19—C18—C17122.36 (14)
C1—C6—N1119.32 (12)C19—C18—N6119.06 (17)
C5—C6—N1117.71 (13)C17—C18—N6118.58 (19)
O2—C7—O1120.32 (11)C18—C19—C20118.29 (15)
O2—C7—C8136.17 (13)C18—C19—H19A120.9
O1—C7—C8103.50 (10)C20—C19—H19A120.9
N1—C8—C7105.59 (10)C19—C20—C15121.14 (16)
N1—C8—C9126.62 (10)C19—C20—H20A119.4
C7—C8—C9127.47 (11)C15—C20—H20A119.4
O3—C9—C8122.84 (12)
C8—N1—N2—O10.65 (15)C12—N3—C11—N53.89 (17)
C6—N1—N2—O1179.61 (10)N7—N3—C11—N5176.56 (12)
C13—N4—N5—C110.56 (18)C12—N3—C11—S1174.64 (8)
N1—N2—O1—C70.50 (15)N7—N3—C11—S11.97 (14)
C6—C1—C2—C31.2 (3)C10—S1—C11—N55.61 (11)
C1—C2—C3—C41.7 (3)C10—S1—C11—N3175.82 (8)
C2—C3—C4—C50.9 (3)C11—N3—C12—O4177.39 (11)
C3—C4—C5—C60.4 (3)N7—N3—C12—O45.09 (18)
C2—C1—C6—C50.1 (2)C11—N3—C12—C132.88 (15)
C2—C1—C6—N1175.51 (14)N7—N3—C12—C13175.17 (11)
C4—C5—C6—C10.9 (2)N5—N4—C13—C120.10 (18)
C4—C5—C6—N1174.80 (13)N5—N4—C13—C14174.79 (11)
N2—N1—C6—C1124.32 (14)O4—C12—C13—N4179.22 (12)
C8—N1—C6—C154.43 (19)N3—C12—C13—N41.05 (16)
N2—N1—C6—C551.51 (17)O4—C12—C13—C144.33 (18)
C8—N1—C6—C5129.74 (15)N3—C12—C13—C14175.94 (10)
N2—O1—C7—O2179.23 (13)N4—C13—C14—C1592.98 (14)
N2—O1—C7—C80.19 (14)C12—C13—C14—C1582.18 (14)
N2—N1—C8—C70.54 (15)C13—C14—C15—C1694.98 (15)
C6—N1—C8—C7179.29 (12)C13—C14—C15—C2080.63 (16)
N2—N1—C8—C9174.43 (12)C20—C15—C16—C171.6 (2)
C6—N1—C8—C96.8 (2)C14—C15—C16—C17174.06 (13)
O2—C7—C8—N1178.62 (16)C15—C16—C17—C180.7 (2)
O1—C7—C8—N10.19 (13)C16—C17—C18—C190.6 (2)
O2—C7—C8—C94.8 (3)C16—C17—C18—N6178.61 (14)
O1—C7—C8—C9174.00 (12)O6—N6—C18—C191.9 (3)
N1—C8—C9—O30.7 (2)O5—N6—C18—C19176.04 (19)
C7—C8—C9—O3171.92 (13)O6—N6—C18—C17177.31 (17)
N1—C8—C9—C10178.87 (12)O5—N6—C18—C174.7 (3)
C7—C8—C9—C108.56 (19)C17—C18—C19—C201.0 (3)
O3—C9—C10—S110.82 (18)N6—C18—C19—C20178.23 (14)
C8—C9—C10—S1168.69 (9)C18—C19—C20—C150.1 (2)
C11—S1—C10—C988.06 (10)C16—C15—C20—C191.2 (2)
N4—N5—C11—N32.54 (18)C14—C15—C20—C19174.51 (14)
N4—N5—C11—S1175.89 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H2N7···O4i0.89 (2)2.15 (2)3.0152 (19)163.5 (18)
N7—H1N7···N4ii0.89 (2)2.43 (2)3.1019 (17)133.1 (17)
N7—H1N7···N5ii0.89 (2)2.45 (2)3.0166 (16)122.5 (16)
C3—H3A···O5iii0.932.573.345 (3)141
C14—H14A···O3iv0.972.533.4443 (18)157
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H15N7O6S
Mr481.45
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.4071 (1), 10.1629 (2), 17.1521 (3)
α, β, γ (°)106.372 (1), 92.400 (1), 97.551 (1)
V3)1058.61 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.51 × 0.34 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.900, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
21821, 7793, 5330
Rint0.030
(sin θ/λ)max1)0.763
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.04
No. of reflections7793
No. of parameters315
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H2N7···O4i0.89 (2)2.15 (2)3.0152 (19)163.5 (18)
N7—H1N7···N4ii0.89 (2)2.43 (2)3.1019 (17)133.1 (17)
N7—H1N7···N5ii0.89 (2)2.45 (2)3.0166 (16)122.5 (16)
C3—H3A···O5iii0.93002.57003.345 (3)141.00
C14—H14A···O3iv0.97002.53003.4443 (18)157.00
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x+2, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o1004.  Google Scholar
First citationJyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B., Nayak, J., Adhikari, A., Sujith, K. V., Shetty, N. S. & Winter, M. (2008a). Phosphorus Sulfur Silicon Relat. Elem. 183, 1870–1883.  CrossRef CAS Google Scholar
First citationKalluraya, B., Rao, J. N. & Sujith, K. V. (2008b). Indian J. Heterocycl. Chem. 17, 359–362.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1196
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds