metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(E)-N′-(5-Chloro-2-oxido­benzyl­­idene-κO)-3,4,5-trimeth­­oxy­benzohydrazidato-κ2N′,O](pyridine-κN)copper(II)

aSchool of Chemistry and Chemical Engineering, Taishan Medical University, Tai an 271016, People's Republic of China
*Correspondence e-mail: minwangyu@126.com

(Received 7 March 2011; accepted 16 March 2011; online 7 April 2011)

In the title compound, [Cu(C17H15ClN2O5)(C5H5N)], the CuII atom is coordinated by one N atom and two O atoms from an anionic salicyl­aldehyde benzoyl­hydrazone ligand and one pyridine N atom in a distorted square-planar geometry. The bonds displays the usual elongation with mean Cu—O and Cu—N bond lengths of 1.926 and 1.976 Å, respectively. The pyridine ring makes dihedral angles of 26.12 (13) and 11.08 (12)°, respectively, with the trimeth­oxy­phenyl and phenolate rings, which make a dihedral angle of 16.05 (12)° with one another.

Related literature

For the biolgical activity of salicyl­aldehyde derivatives, see: Chan et al. (1995[Chan, S. C., Koh, L. L., Leung, P. H., Ranford, J. D. & Sim, K. Y. (1995). Inorg. Chim. Acta, 236, 101-108.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]); Monfared et al. (2009[Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791-3795.]). For related structures, see: Lee et al. (2003[Lee, P. F., Yang, C. T., Fan, D., Vittal, J. J. & Ranford, J. D. (2003). Polyhedron, 22, 2781-2786.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H15ClN2O5)(C5H5N)]

  • Mr = 505.40

  • Monoclinic, P 21 /n

  • a = 14.274 (4) Å

  • b = 7.5763 (18) Å

  • c = 20.753 (5) Å

  • β = 99.108 (4)°

  • V = 2216.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 298 K

  • 0.19 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.875

  • 11265 measured reflections

  • 3908 independent reflections

  • 3184 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.04

  • 3908 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with potential biological activity are the focus of extensive investigation. Salicylaldehyde benzoylhydrazone possess mild bacteriostatic activity and inhibits DNA synthesis and cell growth (Chan et al.; 1995). Salicylaldehyde acetylhydrazone displays radioprotective properties (Ranford et al.; 1998). Because of the biological interest in this type of chelate system, several structural studies have been carried out on copper with their analogues (Lee et al.; 2003). The copper(II) complex was shown to be significantly more potent than the metal-free chelate, leading to the suggestion that the metal complex was the biologically active species (Monfared et al.; 2009). We report here the crystal structure of the title compound, (I) (Fig. 1). It can be seen that the coordination environment of the copper atom consists of two oxygen atoms and one nitrogen atom from the salicylaldehyde benzoylhydrazone, and one nitrogen atom from the pyridine groups, making up a distorted square-planar environment. The bond length displays the usual elongation: Cu—O = 1.9256 (average) and Cu—N = 1.9755 (average). The pyridine ring makes dihedral angles of 26.12° and 11.08°, respectively, with the C9—C14 and C1—C6 phenyl rings. The C1—C6 benzene ring system makes a dihedral angle of 16.05° with the other C9—C14 benzene ring.

Related literature top

For the biolgical activity of salicylaldehyde derivatives, see: Chan et al. (1995); Ranford et al. (1998); Monfared et al. (2009). For related structures, see: Lee et al. (2003).

Experimental top

Mixture of 20 ml aqueous solution of copper (II) acetate (0.2 mmol) with 2 ml of pyridine was stirred with 20 ml e thanolic solution of (E)-N'-(5-chloro-2-hydroxybenzylidene) -3,4,5-trimethoxybenzohydrazide for 1 h. The resulted solution was leaved in dark place for evaporation. After 1 week of stating blue needle-like shape crystals were grown.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram.
[(E)-N'-(5-Chloro-2-oxidobenzylidene-κO)-3,4,5- trimethoxybenzohydrazidato-κ2N',O](pyridine- κN)copper(II) top
Crystal data top
[Cu(C17H15ClN2O5)(C5H5N)]F(000) = 1036
Mr = 505.40Dx = 1.515 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3527 reflections
a = 14.274 (4) Åθ = 2.9–25.3°
b = 7.5763 (18) ŵ = 1.15 mm1
c = 20.753 (5) ÅT = 298 K
β = 99.108 (4)°Block, blue
V = 2216.1 (9) Å30.19 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3908 independent reflections
Radiation source: fine-focus sealed tube3184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1517
Tmin = 0.812, Tmax = 0.875k = 89
11265 measured reflectionsl = 2024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.808P]
where P = (Fo2 + 2Fc2)/3
3908 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C17H15ClN2O5)(C5H5N)]V = 2216.1 (9) Å3
Mr = 505.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.274 (4) ŵ = 1.15 mm1
b = 7.5763 (18) ÅT = 298 K
c = 20.753 (5) Å0.19 × 0.16 × 0.12 mm
β = 99.108 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3908 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3184 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.875Rint = 0.027
11265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
3908 reflectionsΔρmin = 0.37 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54442 (2)0.14856 (4)0.056192 (13)0.03244 (11)
Cl10.26557 (6)0.62229 (10)0.21238 (3)0.0569 (2)
O10.52842 (12)0.1751 (2)0.03651 (8)0.0393 (4)
O20.54254 (12)0.1224 (2)0.14894 (8)0.0364 (4)
O30.5244 (2)0.0473 (3)0.38634 (10)0.0825 (8)
O40.41727 (15)0.2050 (3)0.42842 (8)0.0565 (5)
O50.33613 (15)0.4566 (3)0.34986 (9)0.0655 (6)
N10.67522 (14)0.0438 (3)0.05888 (9)0.0324 (4)
N20.43295 (14)0.2875 (3)0.06254 (9)0.0312 (4)
N30.40808 (14)0.2968 (3)0.12482 (9)0.0352 (5)
C10.46948 (17)0.2826 (3)0.07312 (11)0.0337 (5)
C20.39692 (17)0.3819 (3)0.04970 (11)0.0315 (5)
C30.33515 (18)0.4867 (3)0.09362 (12)0.0370 (6)
H30.28780.55160.07840.044*
C40.34372 (18)0.4943 (3)0.15816 (12)0.0386 (6)
C50.4148 (2)0.3997 (3)0.18158 (12)0.0421 (6)
H50.42090.40630.22550.051*
C60.47585 (19)0.2969 (3)0.13977 (12)0.0399 (6)
H60.52310.23460.15610.048*
C70.38229 (18)0.3777 (3)0.01742 (12)0.0346 (6)
H70.33290.44480.02890.042*
C80.47163 (17)0.2079 (3)0.16524 (11)0.0328 (5)
C90.45815 (17)0.2063 (3)0.23496 (11)0.0333 (5)
C100.50005 (19)0.0761 (4)0.27666 (12)0.0423 (6)
H100.53820.00890.26150.051*
C110.4850 (2)0.0729 (4)0.34094 (12)0.0464 (7)
C120.42910 (18)0.2013 (4)0.36393 (11)0.0411 (6)
C130.38825 (18)0.3340 (4)0.32232 (12)0.0410 (6)
C140.40278 (18)0.3369 (3)0.25749 (12)0.0393 (6)
H140.37570.42530.22950.047*
C150.5491 (3)0.2135 (5)0.36663 (18)0.0856 (12)
H15A0.49790.26090.33600.128*
H15B0.56160.28990.40390.128*
H15C0.60490.20460.34640.128*
C160.3549 (3)0.0777 (6)0.44687 (19)0.1005 (15)
H16A0.29590.08190.41740.151*
H16B0.34370.10180.49040.151*
H16C0.38260.03740.44540.151*
C170.2831 (3)0.5821 (5)0.30812 (17)0.0887 (13)
H17A0.32570.65500.28830.133*
H17B0.24690.65450.33310.133*
H17C0.24090.52160.27470.133*
C180.71659 (18)0.0346 (4)0.00516 (12)0.0414 (6)
H180.68560.08490.03320.050*
C190.80282 (19)0.0460 (4)0.00440 (13)0.0497 (7)
H190.82960.04870.03360.060*
C200.8487 (2)0.1221 (4)0.06053 (14)0.0481 (7)
H200.90640.17930.06100.058*
C210.80784 (19)0.1126 (4)0.11634 (13)0.0447 (7)
H210.83780.16290.15510.054*
C220.72216 (18)0.0276 (3)0.11392 (12)0.0368 (6)
H220.69570.01920.15200.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03527 (18)0.03684 (19)0.02615 (17)0.00328 (13)0.00780 (12)0.00003 (12)
Cl10.0675 (5)0.0611 (5)0.0370 (4)0.0104 (4)0.0071 (3)0.0082 (3)
O10.0453 (11)0.0446 (10)0.0289 (9)0.0119 (8)0.0083 (8)0.0031 (8)
O20.0374 (10)0.0434 (10)0.0296 (9)0.0054 (8)0.0092 (7)0.0010 (7)
O30.136 (2)0.0742 (16)0.0376 (12)0.0460 (16)0.0132 (13)0.0155 (11)
O40.0654 (13)0.0796 (14)0.0270 (10)0.0020 (11)0.0151 (9)0.0004 (9)
O50.0726 (15)0.0912 (16)0.0354 (11)0.0362 (13)0.0167 (10)0.0040 (11)
N10.0345 (11)0.0330 (11)0.0300 (11)0.0024 (9)0.0065 (9)0.0012 (9)
N20.0341 (11)0.0341 (11)0.0261 (10)0.0016 (9)0.0071 (8)0.0000 (9)
N30.0374 (12)0.0442 (12)0.0253 (10)0.0027 (10)0.0088 (9)0.0001 (9)
C10.0393 (14)0.0309 (13)0.0310 (13)0.0036 (11)0.0061 (10)0.0003 (11)
C20.0351 (13)0.0283 (13)0.0308 (13)0.0037 (10)0.0044 (10)0.0007 (10)
C30.0400 (15)0.0337 (13)0.0368 (14)0.0004 (11)0.0043 (11)0.0005 (11)
C40.0484 (16)0.0319 (13)0.0321 (14)0.0032 (12)0.0038 (11)0.0046 (11)
C50.0558 (17)0.0419 (15)0.0285 (13)0.0072 (13)0.0063 (12)0.0020 (11)
C60.0484 (16)0.0393 (14)0.0339 (14)0.0017 (12)0.0125 (12)0.0002 (11)
C70.0367 (14)0.0347 (13)0.0333 (13)0.0020 (11)0.0083 (11)0.0010 (11)
C80.0365 (14)0.0342 (13)0.0285 (12)0.0069 (11)0.0076 (11)0.0035 (10)
C90.0328 (13)0.0422 (14)0.0255 (12)0.0041 (11)0.0064 (10)0.0023 (11)
C100.0471 (16)0.0467 (15)0.0342 (14)0.0078 (13)0.0097 (12)0.0018 (12)
C110.0548 (18)0.0527 (17)0.0309 (14)0.0034 (14)0.0043 (12)0.0055 (12)
C120.0426 (15)0.0576 (17)0.0242 (13)0.0049 (13)0.0083 (11)0.0043 (12)
C130.0369 (14)0.0573 (17)0.0300 (13)0.0056 (12)0.0094 (11)0.0066 (12)
C140.0403 (15)0.0478 (15)0.0297 (13)0.0050 (12)0.0053 (11)0.0002 (11)
C150.110 (3)0.072 (2)0.075 (2)0.030 (2)0.018 (2)0.024 (2)
C160.132 (4)0.113 (3)0.069 (3)0.036 (3)0.056 (3)0.000 (2)
C170.089 (3)0.115 (3)0.062 (2)0.061 (3)0.009 (2)0.010 (2)
C180.0392 (15)0.0530 (16)0.0325 (14)0.0007 (12)0.0073 (11)0.0036 (12)
C190.0411 (16)0.071 (2)0.0405 (16)0.0039 (14)0.0158 (12)0.0036 (14)
C200.0358 (15)0.0576 (18)0.0512 (17)0.0086 (13)0.0082 (13)0.0046 (14)
C210.0419 (16)0.0521 (17)0.0387 (15)0.0044 (13)0.0016 (12)0.0022 (12)
C220.0392 (14)0.0402 (14)0.0313 (13)0.0005 (11)0.0065 (11)0.0015 (11)
Geometric parameters (Å, º) top
Cu1—O11.9119 (16)C7—H70.9300
Cu1—N21.930 (2)C8—C91.490 (3)
Cu1—O21.9394 (16)C9—C101.384 (4)
Cu1—N12.021 (2)C9—C141.393 (3)
Cl1—C41.747 (3)C10—C111.385 (3)
O1—C11.321 (3)C10—H100.9300
O2—C81.291 (3)C11—C121.390 (4)
O3—C111.366 (3)C12—C131.392 (4)
O3—C151.386 (4)C13—C141.394 (3)
O4—C121.375 (3)C14—H140.9300
O4—C161.406 (4)C15—H15A0.9600
O5—C131.370 (3)C15—H15B0.9600
O5—C171.421 (4)C15—H15C0.9600
N1—C221.343 (3)C16—H16A0.9600
N1—C181.344 (3)C16—H16B0.9600
N2—C71.285 (3)C16—H16C0.9600
N2—N31.395 (2)C17—H17A0.9600
N3—C81.319 (3)C17—H17B0.9600
C1—C61.405 (3)C17—H17C0.9600
C1—C21.426 (3)C18—C191.376 (4)
C2—C31.408 (3)C18—H180.9300
C2—C71.441 (3)C19—C201.370 (4)
C3—C41.365 (3)C19—H190.9300
C3—H30.9300C20—C211.378 (4)
C4—C51.391 (4)C20—H200.9300
C5—C61.371 (4)C21—C221.376 (4)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—H220.9300
O1—Cu1—N292.45 (7)C11—C10—H10120.1
O1—Cu1—O2172.44 (7)O3—C11—C10124.5 (3)
N2—Cu1—O281.20 (7)O3—C11—C12115.2 (2)
O1—Cu1—N191.82 (7)C10—C11—C12120.2 (2)
N2—Cu1—N1168.60 (8)O4—C12—C11120.9 (2)
O2—Cu1—N195.18 (7)O4—C12—C13119.0 (2)
C1—O1—Cu1127.39 (15)C11—C12—C13120.0 (2)
C8—O2—Cu1110.09 (14)O5—C13—C12115.6 (2)
C11—O3—C15119.9 (2)O5—C13—C14124.4 (2)
C12—O4—C16115.6 (2)C12—C13—C14119.9 (2)
C13—O5—C17118.1 (2)C9—C14—C13119.5 (2)
C22—N1—C18117.3 (2)C9—C14—H14120.3
C22—N1—Cu1121.05 (16)C13—C14—H14120.3
C18—N1—Cu1121.52 (17)O3—C15—H15A109.5
C7—N2—N3116.9 (2)O3—C15—H15B109.5
C7—N2—Cu1127.97 (16)H15A—C15—H15B109.5
N3—N2—Cu1115.09 (14)O3—C15—H15C109.5
C8—N3—N2108.26 (19)H15A—C15—H15C109.5
O1—C1—C6118.6 (2)H15B—C15—H15C109.5
O1—C1—C2124.0 (2)O4—C16—H16A109.5
C6—C1—C2117.3 (2)O4—C16—H16B109.5
C3—C2—C1119.4 (2)H16A—C16—H16B109.5
C3—C2—C7117.8 (2)O4—C16—H16C109.5
C1—C2—C7122.8 (2)H16A—C16—H16C109.5
C4—C3—C2121.0 (2)H16B—C16—H16C109.5
C4—C3—H3119.5O5—C17—H17A109.5
C2—C3—H3119.5O5—C17—H17B109.5
C3—C4—C5120.3 (2)H17A—C17—H17B109.5
C3—C4—Cl1120.5 (2)O5—C17—H17C109.5
C5—C4—Cl1119.17 (19)H17A—C17—H17C109.5
C6—C5—C4119.8 (2)H17B—C17—H17C109.5
C6—C5—H5120.1N1—C18—C19122.9 (2)
C4—C5—H5120.1N1—C18—H18118.5
C5—C6—C1122.2 (2)C19—C18—H18118.5
C5—C6—H6118.9C20—C19—C18119.0 (2)
C1—C6—H6118.9C20—C19—H19120.5
N2—C7—C2124.4 (2)C18—C19—H19120.5
N2—C7—H7117.8C19—C20—C21119.0 (3)
C2—C7—H7117.8C19—C20—H20120.5
O2—C8—N3125.3 (2)C21—C20—H20120.5
O2—C8—C9118.5 (2)C22—C21—C20119.0 (2)
N3—C8—C9116.1 (2)C22—C21—H21120.5
C10—C9—C14120.6 (2)C20—C21—H21120.5
C10—C9—C8120.2 (2)N1—C22—C21122.7 (2)
C14—C9—C8119.2 (2)N1—C22—H22118.6
C9—C10—C11119.8 (2)C21—C22—H22118.6
C9—C10—H10120.1
N2—Cu1—O1—C110.7 (2)Cu1—O2—C8—C9179.27 (16)
N1—Cu1—O1—C1158.7 (2)N2—N3—C8—O22.2 (3)
N2—Cu1—O2—C80.24 (15)N2—N3—C8—C9178.60 (19)
N1—Cu1—O2—C8168.87 (15)O2—C8—C9—C1020.0 (3)
O1—Cu1—N1—C22171.09 (18)N3—C8—C9—C10159.3 (2)
N2—Cu1—N1—C2276.9 (4)O2—C8—C9—C14160.2 (2)
O2—Cu1—N1—C226.06 (19)N3—C8—C9—C1420.5 (3)
O1—Cu1—N1—C185.5 (2)C14—C9—C10—C111.6 (4)
N2—Cu1—N1—C18106.5 (4)C8—C9—C10—C11178.2 (2)
O2—Cu1—N1—C18177.36 (19)C15—O3—C11—C1027.1 (5)
O1—Cu1—N2—C78.4 (2)C15—O3—C11—C12155.1 (3)
O2—Cu1—N2—C7175.7 (2)C9—C10—C11—O3178.7 (3)
N1—Cu1—N2—C7103.5 (4)C9—C10—C11—C120.9 (4)
O1—Cu1—N2—N3175.03 (16)C16—O4—C12—C1176.1 (4)
O2—Cu1—N2—N30.85 (15)C16—O4—C12—C13107.2 (3)
N1—Cu1—N2—N373.0 (4)O3—C11—C12—O41.2 (4)
C7—N2—N3—C8175.3 (2)C10—C11—C12—O4176.8 (2)
Cu1—N2—N3—C81.7 (2)O3—C11—C12—C13177.8 (3)
Cu1—O1—C1—C6172.93 (17)C10—C11—C12—C130.2 (4)
Cu1—O1—C1—C29.2 (3)C17—O5—C13—C12172.3 (3)
O1—C1—C2—C3177.2 (2)C17—O5—C13—C148.6 (4)
C6—C1—C2—C30.7 (3)O4—C12—C13—O51.9 (4)
O1—C1—C2—C71.6 (4)C11—C12—C13—O5178.6 (3)
C6—C1—C2—C7179.5 (2)O4—C12—C13—C14177.3 (2)
C1—C2—C3—C40.1 (4)C11—C12—C13—C140.6 (4)
C7—C2—C3—C4178.8 (2)C10—C9—C14—C131.2 (4)
C2—C3—C4—C50.8 (4)C8—C9—C14—C13178.7 (2)
C2—C3—C4—Cl1179.08 (18)O5—C13—C14—C9179.2 (3)
C3—C4—C5—C60.7 (4)C12—C13—C14—C90.1 (4)
Cl1—C4—C5—C6179.1 (2)C22—N1—C18—C191.0 (4)
C4—C5—C6—C10.1 (4)Cu1—N1—C18—C19175.7 (2)
O1—C1—C6—C5177.2 (2)N1—C18—C19—C200.7 (4)
C2—C1—C6—C50.8 (4)C18—C19—C20—C211.2 (4)
N3—N2—C7—C2179.1 (2)C19—C20—C21—C220.3 (4)
Cu1—N2—C7—C24.4 (4)C18—N1—C22—C212.0 (4)
C3—C2—C7—N2179.7 (2)Cu1—N1—C22—C21174.66 (19)
C1—C2—C7—N20.9 (4)C20—C21—C22—N11.5 (4)
Cu1—O2—C8—N31.5 (3)

Experimental details

Crystal data
Chemical formula[Cu(C17H15ClN2O5)(C5H5N)]
Mr505.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.274 (4), 7.5763 (18), 20.753 (5)
β (°) 99.108 (4)
V3)2216.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.19 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.812, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
11265, 3908, 3184
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.04
No. of reflections3908
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. C., Koh, L. L., Leung, P. H., Ranford, J. D. & Sim, K. Y. (1995). Inorg. Chim. Acta, 236, 101–108.  CrossRef CAS Web of Science Google Scholar
First citationLee, P. F., Yang, C. T., Fan, D., Vittal, J. J. & Ranford, J. D. (2003). Polyhedron, 22, 2781–2786.  CrossRef CAS Google Scholar
First citationMonfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795.  CrossRef CAS Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds