organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1061

4-[(2′-Cyano­biphen­yl-4-yl)meth­yl]morpholin-4-ium tetra­fluoridoborate

aCollege of Food Engineering, RiZhao Polytechnic, RiZhao 276826, People's Republic of China
*Correspondence e-mail: lxj818@163.com

(Received 21 March 2011; accepted 30 March 2011; online 7 April 2011)

In the crystal structure of the title compound, C18H19N2O+·BF4, bifurcated N—H⋯(F,F) hydrogen bonds link the protonated 4′-morpholine­methyl­biphenyl-2-carbonitrile cations and slightly distorted tetra­fluoro­borate anions. ππ inter­actions [centroid–centroid distance = 3.805 (3) Å] help to consolidate the packing. The dihedral angle between the benzene rings in the cation is 57.24 (11)°.

Related literature

For a related structure, see: SiMa (2010[SiMa, W. (2010). Acta Cryst. E66, o2042.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N2O+·BF4

  • Mr = 366.16

  • Triclinic, [P \overline 1]

  • a = 9.059 (6) Å

  • b = 9.859 (8) Å

  • c = 10.597 (8) Å

  • α = 76.324 (14)°

  • β = 83.71 (2)°

  • γ = 86.50 (3)°

  • V = 913.5 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.978

  • 9817 measured reflections

  • 4098 independent reflections

  • 3039 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.202

  • S = 1.06

  • 4098 reflections

  • 239 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯F1 0.90 (2) 2.14 (2) 2.902 (3) 141 (2)
N2—H2⋯F3 0.90 (2) 2.35 (2) 3.219 (3) 161 (2)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of 4'-morpholinemethylbiphenyl-2-carbonitrile with nitrate is known (SiMa, 2010).

The asymmetric unit of the title compound is built up of one 4'-morpholinemethylbiphenyl-2-carbonitrile cation with the dihedral angle of 57.24 (11)° between two benzene rings and one tetrafluoroborate anion (Fig 1). The intermolecular N—H···F hydrogen bonds link the cations and anions to chains (Table 1). The ππ stacking interactions of adjacent cyanobenzene rings with a centroid–centroid distance of 3.805 (3)Å stabilize the crystal structure (Fig 2).

Related literature top

For a related structure, see: SiMa (2010).

Experimental top

Tetrafluoroboric acid(10 mmol) was added dropwise under stirring to a solution of 4'-morpholinemethylbiphenyl-2-carbonitrile (10 mmol) ethanol solution. Water was added until all suspended substrates disappeared. Colorless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from the solution at room temperature after 5 d, giving a yield of ca 78%.

Refinement top

Positional parameters of all the H atoms for C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C). The H atoms bonded to N atoms were found in a difference Fourier map and refined with restraints for N—H distances of 0.87 (2).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound. Dashed lines indicate hydrogen bonds and π-π interactions.
4-[(2'-Cyanobiphenyl-4-yl)methyl]morpholin-4-ium tetrafluoridoborate top
Crystal data top
C18H19N2O+·BF4Z = 2
Mr = 366.16F(000) = 380
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.059 (6) ÅCell parameters from 2199 reflections
b = 9.859 (8) Åθ = 2.6–27.4°
c = 10.597 (8) ŵ = 0.11 mm1
α = 76.324 (14)°T = 298 K
β = 83.71 (2)°Prism, colourless
γ = 86.50 (3)°0.20 × 0.20 × 0.20 mm
V = 913.5 (12) Å3
Data collection top
Rigaku SCXmini
diffractometer
4098 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.978, Tmax = 0.978l = 1313
9817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1049P)2 + 0.2107P]
where P = (Fo2 + 2Fc2)/3
4098 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C18H19N2O+·BF4γ = 86.50 (3)°
Mr = 366.16V = 913.5 (12) Å3
Triclinic, P1Z = 2
a = 9.059 (6) ÅMo Kα radiation
b = 9.859 (8) ŵ = 0.11 mm1
c = 10.597 (8) ÅT = 298 K
α = 76.324 (14)°0.20 × 0.20 × 0.20 mm
β = 83.71 (2)°
Data collection top
Rigaku SCXmini
diffractometer
4098 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3039 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.978Rint = 0.028
9817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.202H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.49 e Å3
4098 reflectionsΔρmin = 0.30 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9918 (2)0.3886 (3)0.3969 (2)0.0559 (5)
C21.0478 (2)0.2599 (2)0.47565 (19)0.0472 (5)
C31.1901 (2)0.2084 (3)0.4395 (2)0.0613 (6)
H3A1.24630.25700.36580.074*
C41.2460 (3)0.0863 (3)0.5129 (3)0.0662 (7)
H4A1.34040.05220.48900.079*
C51.1631 (3)0.0144 (3)0.6214 (2)0.0644 (6)
H5A1.20090.06920.67000.077*
C61.0234 (2)0.0653 (2)0.6593 (2)0.0533 (5)
H6A0.96950.01620.73410.064*
C70.9623 (2)0.1888 (2)0.58744 (18)0.0436 (4)
C80.8154 (2)0.24449 (19)0.63377 (18)0.0424 (4)
C90.7937 (2)0.2673 (2)0.75930 (19)0.0521 (5)
H9A0.87070.24640.81280.062*
C100.6601 (2)0.3203 (3)0.8053 (2)0.0564 (5)
H10A0.64870.33760.88850.068*
C110.5416 (2)0.3483 (2)0.7281 (2)0.0475 (5)
C120.5617 (2)0.3237 (2)0.6039 (2)0.0513 (5)
H12A0.48310.34090.55190.062*
C130.6973 (2)0.2736 (2)0.55624 (19)0.0480 (5)
H13A0.70980.25940.47200.058*
C140.3952 (2)0.4050 (2)0.7809 (2)0.0570 (6)
H14A0.41190.48970.80810.068*
H14B0.32930.42910.71200.068*
C160.2802 (2)0.1734 (2)0.8569 (2)0.0523 (5)
H16A0.36890.12670.82510.063*
H16B0.21580.19950.78700.063*
C170.2012 (3)0.0752 (2)0.9722 (3)0.0633 (6)
H17A0.17330.00660.94570.076*
H17B0.26780.04461.04000.076*
C180.1109 (3)0.2580 (3)1.0663 (2)0.0645 (6)
H18A0.17680.22671.13450.077*
H18B0.02220.30021.10340.077*
C190.1868 (2)0.3662 (2)0.9572 (2)0.0550 (5)
H19A0.11840.40390.89220.066*
H19B0.21620.44230.99140.066*
N10.9501 (3)0.4903 (3)0.3325 (2)0.0805 (7)
N20.32178 (17)0.30144 (17)0.89484 (16)0.0432 (4)
H20.384 (2)0.273 (3)0.958 (2)0.064 (7)*
O10.07139 (17)0.14212 (18)1.02265 (16)0.0638 (4)
B10.5558 (3)0.2295 (3)1.1710 (3)0.0583 (6)
F10.4631 (2)0.33813 (19)1.1168 (2)0.1044 (7)
F20.70030 (18)0.2643 (2)1.13544 (18)0.0962 (6)
F30.5250 (3)0.1264 (2)1.1129 (3)0.1298 (9)
F40.5317 (2)0.2022 (4)1.29990 (17)0.1466 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0508 (12)0.0678 (14)0.0446 (11)0.0121 (10)0.0021 (9)0.0030 (10)
C20.0432 (10)0.0557 (11)0.0435 (10)0.0053 (8)0.0042 (8)0.0122 (8)
C30.0464 (12)0.0853 (16)0.0557 (12)0.0068 (11)0.0029 (9)0.0257 (12)
C40.0478 (12)0.0833 (17)0.0756 (16)0.0131 (11)0.0107 (11)0.0360 (14)
C50.0664 (14)0.0620 (13)0.0698 (15)0.0143 (11)0.0248 (12)0.0215 (12)
C60.0572 (12)0.0519 (11)0.0503 (11)0.0005 (9)0.0105 (9)0.0090 (9)
C70.0411 (10)0.0486 (10)0.0421 (10)0.0043 (8)0.0064 (7)0.0107 (8)
C80.0398 (9)0.0442 (10)0.0409 (9)0.0062 (7)0.0018 (7)0.0049 (8)
C90.0424 (10)0.0708 (13)0.0423 (10)0.0109 (9)0.0033 (8)0.0099 (9)
C100.0463 (11)0.0756 (15)0.0490 (11)0.0132 (10)0.0053 (8)0.0196 (10)
C110.0411 (10)0.0427 (10)0.0556 (11)0.0074 (8)0.0039 (8)0.0077 (8)
C120.0441 (10)0.0528 (11)0.0541 (11)0.0020 (8)0.0094 (8)0.0047 (9)
C130.0476 (11)0.0542 (11)0.0423 (10)0.0019 (8)0.0062 (8)0.0106 (8)
C140.0495 (11)0.0417 (10)0.0723 (14)0.0059 (8)0.0111 (10)0.0054 (10)
C160.0475 (11)0.0501 (11)0.0614 (12)0.0106 (8)0.0070 (9)0.0208 (10)
C170.0554 (13)0.0523 (12)0.0777 (15)0.0121 (10)0.0077 (11)0.0101 (11)
C180.0563 (13)0.0836 (16)0.0521 (12)0.0033 (11)0.0075 (10)0.0183 (12)
C190.0485 (11)0.0586 (12)0.0594 (12)0.0031 (9)0.0049 (9)0.0224 (10)
N10.0768 (15)0.0817 (15)0.0685 (13)0.0147 (12)0.0147 (11)0.0177 (12)
N20.0370 (8)0.0448 (8)0.0486 (9)0.0033 (6)0.0026 (7)0.0125 (7)
O10.0457 (8)0.0748 (11)0.0671 (10)0.0151 (7)0.0091 (7)0.0123 (8)
B10.0525 (14)0.0645 (15)0.0594 (15)0.0077 (11)0.0145 (11)0.0158 (12)
F10.1023 (14)0.0844 (12)0.1375 (16)0.0327 (10)0.0665 (12)0.0316 (11)
F20.0606 (10)0.1263 (15)0.0970 (12)0.0091 (9)0.0087 (8)0.0145 (11)
F30.1141 (16)0.0880 (13)0.211 (3)0.0028 (11)0.0255 (16)0.0766 (16)
F40.0801 (13)0.281 (3)0.0580 (10)0.0229 (16)0.0057 (8)0.0060 (14)
Geometric parameters (Å, º) top
C1—N11.140 (3)C13—H13A0.9300
C1—C21.441 (3)C14—N21.506 (3)
C2—C71.403 (3)C14—H14A0.9700
C2—C31.403 (3)C14—H14B0.9700
C3—C41.372 (4)C16—N21.493 (3)
C3—H3A0.9300C16—C171.509 (3)
C4—C51.371 (4)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.386 (3)C17—O11.428 (3)
C5—H5A0.9300C17—H17A0.9700
C6—C71.393 (3)C17—H17B0.9700
C6—H6A0.9300C18—O11.408 (3)
C7—C81.486 (3)C18—C191.510 (3)
C8—C91.392 (3)C18—H18A0.9700
C8—C131.395 (3)C18—H18B0.9700
C9—C101.374 (3)C19—N21.505 (3)
C9—H9A0.9300C19—H19A0.9700
C10—C111.396 (3)C19—H19B0.9700
C10—H10A0.9300N2—H20.904 (16)
C11—C121.386 (3)B1—F41.324 (3)
C11—C141.509 (3)B1—F31.363 (3)
C12—C131.384 (3)B1—F21.363 (3)
C12—H12A0.9300B1—F11.374 (3)
N1—C1—C2178.5 (3)N2—C14—H14B109.2
C7—C2—C3120.7 (2)C11—C14—H14B109.2
C7—C2—C1120.47 (18)H14A—C14—H14B107.9
C3—C2—C1118.78 (19)N2—C16—C17110.42 (18)
C4—C3—C2120.0 (2)N2—C16—H16A109.6
C4—C3—H3A120.0C17—C16—H16A109.6
C2—C3—H3A120.0N2—C16—H16B109.6
C5—C4—C3120.1 (2)C17—C16—H16B109.6
C5—C4—H4A120.0H16A—C16—H16B108.1
C3—C4—H4A120.0O1—C17—C16110.81 (19)
C4—C5—C6120.5 (2)O1—C17—H17A109.5
C4—C5—H5A119.8C16—C17—H17A109.5
C6—C5—H5A119.8O1—C17—H17B109.5
C5—C6—C7121.3 (2)C16—C17—H17B109.5
C5—C6—H6A119.4H17A—C17—H17B108.1
C7—C6—H6A119.4O1—C18—C19111.95 (18)
C6—C7—C2117.45 (19)O1—C18—H18A109.2
C6—C7—C8120.07 (17)C19—C18—H18A109.2
C2—C7—C8122.40 (18)O1—C18—H18B109.2
C9—C8—C13118.51 (18)C19—C18—H18B109.2
C9—C8—C7119.17 (17)H18A—C18—H18B107.9
C13—C8—C7122.31 (18)N2—C19—C18110.08 (18)
C10—C9—C8121.01 (19)N2—C19—H19A109.6
C10—C9—H9A119.5C18—C19—H19A109.6
C8—C9—H9A119.5N2—C19—H19B109.6
C9—C10—C11120.4 (2)C18—C19—H19B109.6
C9—C10—H10A119.8H19A—C19—H19B108.2
C11—C10—H10A119.8C16—N2—C19109.84 (16)
C12—C11—C10118.88 (19)C16—N2—C14112.09 (17)
C12—C11—C14121.43 (19)C19—N2—C14111.26 (16)
C10—C11—C14119.7 (2)C16—N2—H2107.1 (16)
C13—C12—C11120.69 (19)C19—N2—H2105.8 (16)
C13—C12—H12A119.7C14—N2—H2110.5 (16)
C11—C12—H12A119.7C18—O1—C17110.10 (17)
C12—C13—C8120.45 (19)F4—B1—F3116.5 (3)
C12—C13—H13A119.8F4—B1—F2108.7 (2)
C8—C13—H13A119.8F3—B1—F2109.0 (2)
N2—C14—C11112.09 (17)F4—B1—F1109.9 (2)
N2—C14—H14A109.2F3—B1—F1102.7 (2)
C11—C14—H14A109.2F2—B1—F1109.9 (2)
C7—C2—C3—C40.8 (3)C9—C10—C11—C14179.33 (19)
C1—C2—C3—C4179.9 (2)C10—C11—C12—C130.8 (3)
C2—C3—C4—C50.1 (3)C14—C11—C12—C13179.01 (18)
C3—C4—C5—C61.1 (4)C11—C12—C13—C81.3 (3)
C4—C5—C6—C71.2 (3)C9—C8—C13—C120.2 (3)
C5—C6—C7—C20.3 (3)C7—C8—C13—C12179.14 (18)
C5—C6—C7—C8177.10 (19)C12—C11—C14—N2114.6 (2)
C3—C2—C7—C60.7 (3)C10—C11—C14—N265.7 (3)
C1—C2—C7—C6179.81 (19)N2—C16—C17—O158.1 (3)
C3—C2—C7—C8176.01 (18)O1—C18—C19—N256.8 (3)
C1—C2—C7—C83.1 (3)C17—C16—N2—C1953.4 (2)
C6—C7—C8—C954.6 (3)C17—C16—N2—C14177.59 (18)
C2—C7—C8—C9122.0 (2)C18—C19—N2—C1652.3 (2)
C6—C7—C8—C13124.7 (2)C18—C19—N2—C14176.95 (18)
C2—C7—C8—C1358.6 (3)C11—C14—N2—C1664.1 (2)
C13—C8—C9—C101.5 (3)C11—C14—N2—C19172.46 (17)
C7—C8—C9—C10179.17 (19)C19—C18—O1—C1761.2 (2)
C8—C9—C10—C112.0 (3)C16—C17—O1—C1861.4 (3)
C9—C10—C11—C120.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F10.90 (2)2.14 (2)2.902 (3)141 (2)
N2—H2···F30.90 (2)2.35 (2)3.219 (3)161 (2)

Experimental details

Crystal data
Chemical formulaC18H19N2O+·BF4
Mr366.16
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.059 (6), 9.859 (8), 10.597 (8)
α, β, γ (°)76.324 (14), 83.71 (2), 86.50 (3)
V3)913.5 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.978, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
9817, 4098, 3039
Rint0.028
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.202, 1.06
No. of reflections4098
No. of parameters239
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.30

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F10.904 (16)2.14 (2)2.902 (3)141 (2)
N2—H2···F30.904 (16)2.353 (18)3.219 (3)161 (2)
 

Acknowledgements

The authors are grateful to RiZhao Polytechnic for support.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiMa, W. (2010). Acta Cryst. E66, o2042.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1061
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds