organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1209

2-{4-[(Quinolin-8-yl­­oxy)meth­yl]phen­yl}benzo­nitrile

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 31 March 2011; accepted 6 April 2011; online 29 April 2011)

In the title compound, C23H16N2O, the bond angle at the O atom that connects the benzene ring and the quinoline ring system is 116.0 (2)°. The quinoline ring system make a dihedral angle of 16.5 (2)° with the adjacent benzene ring. The dihedral angle between the biphenyl benzene rings is 70.8 (2)°.

Related literature

For background to tetra­zoles, see: Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]). For our investigation of tetra­zole compounds and their coordination modes, see: Xiong et al. (2002[Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]). For the preparation of tetra­zoles using in situ synthesis of tetra­zole through cyclo­addition between organotin azide and organic cyano groups, see: Chen et al. (2010[Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16-21.]); Ye et al. (2006[Ye, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chan, P. W. H., Zhu, J. S., Huang, S. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 128, 6554-6556.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16N2O

  • Mr = 336.38

  • Orthorhombic, P b c a

  • a = 14.526 (4) Å

  • b = 8.957 (3) Å

  • c = 27.126 (8) Å

  • V = 3529.3 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) Tmin = 0.842, Tmax = 1.000

  • 36455 measured reflections

  • 4036 independent reflections

  • 2865 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.222

  • S = 1.24

  • 4036 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrazole compounds have been studied for more than one hundred years and applied in various areas (Hang et al., 2009). As a part of systematic investigation of new tetrazole compounds and discovery of new coordination mode (Xiong et al., 2002), we get the synthesis of the title compound C22 H16 N2 O,and preparation of tetrazoles in situ synthesis of tetrazole through cycloaddition between organotin azide and organic cyano group (Ye et al., 2006; Chen et al., 2010).

In the asymmetric unit of the title compound, the planes angle between the two benzene rings is 70.8°. O1 connect quinoline ring and sartan ring with a 115.9 bond-angle and the bond length O1—C10 is 1.4261 (35) Å, O1—C9 is 1.3691 (33) Å). The quinoline ring make a small dihedral angle of 16.5° with adjacent benzene ring (Fig 1). Fig 2 shows that the molecules assemble as straight chain in the crystal structure along the a axis.

Related literature top

For background to tetrazoles, see: Hang et al. (2009). For our investigation of tetrazole compounds and their coordination modes, see: Xiong et al. (2002). For the preparation of tetrazoles using in situ synthesis of tetrazole through cycloaddition between organotin azide and organic cyano groups, see: Chen et al. (2010); Ye et al. (2006).

Experimental top

8-hydroxyquinoline(1.45 g,10 mmol) was added in a solution of 4'-Bromoethyl-2-cyanobiphenyl(2.71 g,10 mmol) in methanol(20 ml).After the mixture was stirred for 10 h at 355 K,the precipitate was filtered off and the solution was evaporated in vacuum. The crude product was then crystallized form ethanol to yield colourless prisms of the title compound.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H respectively, and constrained to ride on their parent atoms with Uĩso~(H) = xU~eq~(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Intermolecular interactions are shown as dashed lines.
2-{4-[(Quinolin-8-yloxy)methyl]phenyl}benzonitrile top
Crystal data top
C23H16N2ODx = 1.266 Mg m3
Mr = 336.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6593 reflections
a = 14.526 (4) Åθ = 2.3–27.5°
b = 8.957 (3) ŵ = 0.08 mm1
c = 27.126 (8) ÅT = 293 K
V = 3529.3 (18) Å3Prism, colorless
Z = 80.20 × 0.20 × 0.20 mm
F(000) = 1408
Data collection top
Rigaku Mercury CCD
diffractometer
4036 independent reflections
Radiation source: fine-focus sealed tube2865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 1.5°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.842, Tmax = 1.000l = 3535
36455 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.082H-atom parameters constrained
wR(F2) = 0.222 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.8691P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
4036 reflectionsΔρmax = 0.19 e Å3
235 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0000
Crystal data top
C23H16N2OV = 3529.3 (18) Å3
Mr = 336.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.526 (4) ŵ = 0.08 mm1
b = 8.957 (3) ÅT = 293 K
c = 27.126 (8) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4036 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2865 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.073
36455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 1.24Δρmax = 0.19 e Å3
4036 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28089 (13)0.1887 (2)0.29588 (6)0.0503 (5)
N10.43511 (16)0.3299 (3)0.26974 (8)0.0494 (6)
C80.38445 (18)0.2633 (3)0.23340 (9)0.0421 (6)
C110.17557 (18)0.1423 (3)0.36270 (10)0.0430 (6)
C100.2001 (2)0.1096 (3)0.30999 (10)0.0501 (7)
H10A0.21030.00320.30600.060*
H10B0.14940.13830.28870.060*
C90.30312 (19)0.1836 (3)0.24685 (9)0.0435 (6)
C40.4091 (2)0.2693 (3)0.18282 (10)0.0481 (7)
C160.2179 (2)0.2507 (4)0.39095 (10)0.0534 (7)
H16A0.26750.30360.37810.064*
C170.0766 (2)0.2387 (3)0.50852 (10)0.0502 (7)
C140.11330 (18)0.2051 (3)0.45827 (10)0.0462 (6)
C70.2541 (2)0.1086 (3)0.21157 (11)0.0542 (7)
H7A0.20250.05370.22070.065*
C50.3561 (2)0.1925 (4)0.14748 (11)0.0608 (8)
H5A0.37270.19600.11440.073*
C220.1263 (2)0.2008 (3)0.55117 (10)0.0540 (7)
C150.1872 (2)0.2815 (4)0.43839 (10)0.0566 (8)
H15A0.21670.35440.45700.068*
C130.0722 (2)0.0939 (3)0.42995 (11)0.0536 (7)
H13A0.02310.03990.44280.064*
C120.1033 (2)0.0629 (3)0.38308 (10)0.0534 (7)
H12A0.07530.01250.36490.064*
C60.2808 (2)0.1134 (4)0.16163 (11)0.0627 (9)
H6A0.24650.06200.13820.075*
C20.5370 (2)0.4211 (4)0.20652 (13)0.0682 (9)
H2A0.58880.47760.19880.082*
C30.4879 (2)0.3538 (4)0.17066 (11)0.0592 (8)
H3A0.50590.36300.13790.071*
C10.5086 (2)0.4045 (4)0.25572 (12)0.0626 (8)
H1A0.54420.44920.28010.075*
C230.2152 (3)0.1308 (4)0.54694 (12)0.0694 (9)
C210.0894 (3)0.2274 (4)0.59785 (12)0.0677 (9)
H21A0.12260.20130.62590.081*
C180.0090 (2)0.3026 (4)0.51433 (13)0.0685 (9)
H18A0.04340.32740.48660.082*
C200.0046 (3)0.2917 (4)0.60239 (14)0.0755 (11)
H20A0.02000.30930.63350.091*
N20.2850 (3)0.0735 (5)0.54410 (13)0.0980 (12)
C190.0448 (3)0.3306 (4)0.56077 (16)0.0808 (11)
H19A0.10210.37560.56390.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0526 (11)0.0582 (12)0.0403 (10)0.0130 (9)0.0084 (8)0.0045 (8)
N10.0530 (14)0.0500 (13)0.0452 (13)0.0064 (11)0.0065 (11)0.0081 (10)
C80.0484 (15)0.0366 (13)0.0413 (14)0.0055 (11)0.0039 (12)0.0010 (10)
C110.0430 (14)0.0442 (14)0.0419 (13)0.0008 (12)0.0014 (11)0.0029 (11)
C100.0508 (16)0.0548 (17)0.0446 (15)0.0085 (13)0.0050 (12)0.0010 (12)
C90.0477 (15)0.0438 (14)0.0390 (13)0.0023 (12)0.0022 (11)0.0024 (11)
C40.0576 (17)0.0451 (15)0.0417 (14)0.0078 (13)0.0067 (13)0.0003 (11)
C160.0488 (16)0.0679 (18)0.0434 (15)0.0165 (14)0.0076 (12)0.0006 (13)
C170.0560 (17)0.0472 (15)0.0475 (16)0.0096 (13)0.0073 (13)0.0010 (12)
C140.0454 (15)0.0493 (15)0.0439 (14)0.0000 (12)0.0026 (12)0.0031 (12)
C70.0549 (16)0.0600 (18)0.0477 (15)0.0070 (14)0.0022 (14)0.0087 (13)
C50.071 (2)0.073 (2)0.0380 (15)0.0056 (17)0.0026 (14)0.0006 (14)
C220.0641 (19)0.0542 (16)0.0438 (15)0.0110 (15)0.0077 (14)0.0029 (13)
C150.0585 (18)0.0662 (19)0.0452 (16)0.0195 (15)0.0037 (13)0.0071 (14)
C130.0552 (17)0.0577 (17)0.0479 (15)0.0166 (14)0.0076 (13)0.0020 (13)
C120.0611 (18)0.0536 (16)0.0455 (15)0.0181 (14)0.0011 (14)0.0025 (13)
C60.066 (2)0.077 (2)0.0458 (16)0.0022 (17)0.0065 (15)0.0132 (15)
C20.070 (2)0.0615 (19)0.073 (2)0.0180 (17)0.0265 (18)0.0058 (17)
C30.072 (2)0.0546 (17)0.0515 (17)0.0007 (16)0.0188 (16)0.0033 (14)
C10.0637 (19)0.0588 (18)0.065 (2)0.0146 (16)0.0060 (16)0.0129 (15)
C230.075 (2)0.089 (3)0.0438 (17)0.001 (2)0.0009 (17)0.0068 (16)
C210.089 (3)0.066 (2)0.0479 (17)0.0169 (19)0.0109 (17)0.0081 (15)
C180.065 (2)0.074 (2)0.066 (2)0.0056 (18)0.0153 (17)0.0038 (17)
C200.103 (3)0.060 (2)0.063 (2)0.014 (2)0.036 (2)0.0132 (17)
N20.088 (3)0.135 (3)0.071 (2)0.025 (2)0.0001 (19)0.015 (2)
C190.080 (3)0.070 (2)0.092 (3)0.005 (2)0.036 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C91.369 (3)C5—C61.359 (5)
O1—C101.423 (3)C5—H5A0.9300
N1—C11.316 (4)C22—C211.395 (4)
N1—C81.367 (3)C22—C231.441 (5)
C8—C41.419 (4)C15—H15A0.9300
C8—C91.427 (4)C13—C121.378 (4)
C11—C161.381 (4)C13—H13A0.9300
C11—C121.383 (4)C12—H12A0.9300
C11—C101.503 (4)C6—H6A0.9300
C10—H10A0.9700C2—C31.349 (5)
C10—H10B0.9700C2—C11.405 (4)
C9—C71.369 (4)C2—H2A0.9300
C4—C51.409 (4)C3—H3A0.9300
C4—C31.410 (4)C1—H1A0.9300
C16—C151.390 (4)C23—N21.139 (5)
C16—H16A0.9300C21—C201.365 (5)
C17—C181.378 (4)C21—H21A0.9300
C17—C221.405 (4)C18—C191.385 (5)
C17—C141.494 (4)C18—H18A0.9300
C14—C151.383 (4)C20—C191.382 (6)
C14—C131.393 (4)C20—H20A0.9300
C7—C61.410 (4)C19—H19A0.9300
C7—H7A0.9300
C9—O1—C10116.0 (2)C21—C22—C23119.4 (3)
C1—N1—C8116.8 (2)C17—C22—C23120.0 (3)
N1—C8—C4123.0 (2)C14—C15—C16120.8 (3)
N1—C8—C9118.6 (2)C14—C15—H15A119.6
C4—C8—C9118.4 (2)C16—C15—H15A119.6
C16—C11—C12118.5 (3)C12—C13—C14120.8 (3)
C16—C11—C10124.0 (2)C12—C13—H13A119.6
C12—C11—C10117.4 (2)C14—C13—H13A119.6
O1—C10—C11110.8 (2)C13—C12—C11120.9 (3)
O1—C10—H10A109.5C13—C12—H12A119.5
C11—C10—H10A109.5C11—C12—H12A119.5
O1—C10—H10B109.5C5—C6—C7120.6 (3)
C11—C10—H10B109.5C5—C6—H6A119.7
H10A—C10—H10B108.1C7—C6—H6A119.7
O1—C9—C7124.9 (3)C3—C2—C1118.8 (3)
O1—C9—C8115.3 (2)C3—C2—H2A120.6
C7—C9—C8119.8 (2)C1—C2—H2A120.6
C5—C4—C3123.1 (3)C2—C3—C4120.0 (3)
C5—C4—C8120.1 (3)C2—C3—H3A120.0
C3—C4—C8116.8 (3)C4—C3—H3A120.0
C11—C16—C15120.7 (3)N1—C1—C2124.5 (3)
C11—C16—H16A119.6N1—C1—H1A117.7
C15—C16—H16A119.6C2—C1—H1A117.7
C18—C17—C22118.0 (3)N2—C23—C22178.8 (4)
C18—C17—C14120.7 (3)C20—C21—C22120.0 (3)
C22—C17—C14121.3 (3)C20—C21—H21A120.0
C15—C14—C13118.2 (3)C22—C21—H21A120.0
C15—C14—C17122.2 (3)C17—C18—C19121.2 (4)
C13—C14—C17119.6 (2)C17—C18—H18A119.4
C9—C7—C6120.9 (3)C19—C18—H18A119.4
C9—C7—H7A119.5C21—C20—C19120.0 (3)
C6—C7—H7A119.5C21—C20—H20A120.0
C6—C5—C4120.2 (3)C19—C20—H20A120.0
C6—C5—H5A119.9C20—C19—C18120.2 (4)
C4—C5—H5A119.9C20—C19—H19A119.9
C21—C22—C17120.6 (3)C18—C19—H19A119.9
C1—N1—C8—C41.3 (4)C18—C17—C22—C23178.7 (3)
C1—N1—C8—C9178.8 (3)C14—C17—C22—C231.2 (4)
C9—O1—C10—C11171.6 (2)C13—C14—C15—C161.7 (5)
C16—C11—C10—O18.7 (4)C17—C14—C15—C16178.0 (3)
C12—C11—C10—O1174.3 (2)C11—C16—C15—C140.4 (5)
C10—O1—C9—C70.4 (4)C15—C14—C13—C121.2 (5)
C10—O1—C9—C8179.8 (2)C17—C14—C13—C12178.6 (3)
N1—C8—C9—O13.3 (3)C14—C13—C12—C110.7 (5)
C4—C8—C9—O1176.8 (2)C16—C11—C12—C132.0 (4)
N1—C8—C9—C7176.2 (3)C10—C11—C12—C13175.2 (3)
C4—C8—C9—C73.7 (4)C4—C5—C6—C70.8 (5)
N1—C8—C4—C5177.1 (3)C9—C7—C6—C50.2 (5)
C9—C8—C4—C52.7 (4)C1—C2—C3—C40.4 (5)
N1—C8—C4—C32.5 (4)C5—C4—C3—C2178.1 (3)
C9—C8—C4—C3177.6 (2)C8—C4—C3—C21.5 (4)
C12—C11—C16—C151.4 (5)C8—N1—C1—C20.9 (5)
C10—C11—C16—C15175.6 (3)C3—C2—C1—N11.8 (5)
C18—C17—C14—C15111.6 (4)C21—C22—C23—N254 (24)
C22—C17—C14—C1571.0 (4)C17—C22—C23—N2125 (23)
C18—C17—C14—C1368.1 (4)C17—C22—C21—C200.5 (5)
C22—C17—C14—C13109.3 (3)C23—C22—C21—C20179.0 (3)
O1—C9—C7—C6178.1 (3)C22—C17—C18—C190.7 (5)
C8—C9—C7—C62.5 (4)C14—C17—C18—C19178.3 (3)
C3—C4—C5—C6179.8 (3)C22—C21—C20—C190.0 (5)
C8—C4—C5—C60.5 (4)C21—C20—C19—C180.9 (6)
C18—C17—C22—C210.1 (4)C17—C18—C19—C201.3 (6)
C14—C17—C22—C21177.4 (3)

Experimental details

Crystal data
Chemical formulaC23H16N2O
Mr336.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.526 (4), 8.957 (3), 27.126 (8)
V3)3529.3 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.842, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
36455, 4036, 2865
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.222, 1.24
No. of reflections4036
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationChen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  CrossRef CAS Google Scholar
First citationYe, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chan, P. W. H., Zhu, J. S., Huang, S. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 128, 6554–6556.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1209
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds