metal-organic compounds
Poly[[diaqua(μ2-1,4-dioxane-κ2O:O′)(μ2-2,3,5,6-tetrafluorobenzene-1,4-dicarboxylato-κ2O1:O4)copper(II)] 1,4-dioxane disolvate dihydrate]
aKey Laboratory of Fine Petrochemical Technology, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: chenqunjpu@yahoo.com
In the title complex, {[Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2O}n, the CuII ion is six-coordinated by two oxygen donors from two trans 2,3,5,6-tetrafluoro-1,4-dicarboxylate (BDC-F4) ligands, two O atoms from two chair 1,4-dioxane ligands and two O atoms from two terminal water molecules, adopting a distorted octahedral coordinated geometry. Each BDC-F4 anion bridges two CuII ions in a bis-monodentate fashion, forming a [Cu(BDC-F4)]n chain. These chains are further linked by bridging 1,4-dioxane ligands, generating a two-dimensional net with approximately rectangular grids of 11.253 × 7.654 Å. Such adjacent parallel layers are connected by O—H⋯O hydrogen bonds between guest water molecules and the uncoordinated carboxylate O atoms and coordinated water molecules into the final three-dimensional supramolecular network.
Related literature
For the solvent template effect of 1,4-dioxane in the construction of coordination polymers, see: Chen et al. (2008); He et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811009755/jj2078sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811009755/jj2078Isup2.hkl
An aqueous solution (2 ml) of Cu(ClO4)2.6H2O (37.1 mg, 0.10 mmol) was added to a dioxane solution (4 ml) of H2BDC-F4 (23.8 mg, 0.10 mmol) with stirring for 15 min. Then, the reaction mixture was filtered and left to stand at room temperature. After 3 days, well blue block crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of the solvents in 52% yield (33.1 mg, based on H2BDC-F4).
All H atoms bound to C atoms were assigned to calculated positions with C—H = 0.97 Å, and refined using a riding model, with Uiso(H)=1.2Ueq (C). The H atoms of the water molecule were firstly located in a difference Fourier map and then refined with distance restraints O—H = 0.820 (1) Å and H···H = 1.430 (1) Å, and finally constrained to ride on the O atom with [Uiso(H) = 1.5 Ueq (O)].
Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2O | F(000) = 658 |
Mr = 636.00 | Dx = 1.543 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3648 reflections |
a = 7.654 (2) Å | θ = 2.6–29.9° |
b = 11.253 (3) Å | µ = 0.89 mm−1 |
c = 16.126 (4) Å | T = 297 K |
β = 99.634 (6)° | Block, blue |
V = 1369.4 (6) Å3 | 0.20 × 0.15 × 0.12 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 2536 independent reflections |
Radiation source: fine-focus sealed tube | 2011 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −9→9 |
Tmin = 0.842, Tmax = 0.901 | k = −11→13 |
7646 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.1255P)2 + 0.7817P] where P = (Fo2 + 2Fc2)/3 |
2536 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2O | V = 1369.4 (6) Å3 |
Mr = 636.00 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.654 (2) Å | µ = 0.89 mm−1 |
b = 11.253 (3) Å | T = 297 K |
c = 16.126 (4) Å | 0.20 × 0.15 × 0.12 mm |
β = 99.634 (6)° |
Bruker APEXII CCD diffractometer | 2536 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2011 reflections with I > 2σ(I) |
Tmin = 0.842, Tmax = 0.901 | Rint = 0.030 |
7646 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.77 e Å−3 |
2536 reflections | Δρmin = −0.47 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.0000 | 0.0000 | 0.0256 (3) | |
O1 | 0.4795 (5) | 0.2295 (2) | −0.12878 (17) | 0.0582 (9) | |
O2 | 0.4927 (3) | 0.1749 (2) | 0.00527 (13) | 0.0332 (6) | |
O3 | 0.1848 (4) | −0.0053 (3) | 0.0096 (3) | 0.0592 (10) | |
O4 | 0.5645 (4) | 0.00298 (18) | 0.12299 (16) | 0.0356 (6) | |
H4A | 0.5557 | −0.0669 | 0.1362 | 0.053* | |
H4B | 0.5186 | 0.0562 | 0.1466 | 0.053* | |
O5 | −0.0024 (8) | 0.7388 (5) | 0.2701 (5) | 0.135 (2) | |
O6 | 0.2054 (7) | 0.9379 (4) | 0.3007 (4) | 0.1177 (19) | |
O7 | 0.4024 (5) | 0.1145 (4) | 0.2350 (2) | 0.0845 (13) | |
H7C | 0.3248 | 0.0770 | 0.2530 | 0.127* | |
H7D | 0.4640 | 0.1633 | 0.2643 | 0.127* | |
C1 | 0.4872 (4) | 0.2499 (3) | −0.0530 (2) | 0.0317 (8) | |
C2 | 0.4925 (4) | 0.3790 (3) | −0.0259 (2) | 0.0314 (7) | |
C3 | 0.3590 (5) | 0.4308 (3) | 0.0086 (3) | 0.0442 (10) | |
C4 | 0.6337 (5) | 0.4519 (4) | −0.0345 (3) | 0.0431 (9) | |
C5 | 0.1002 (7) | 0.0757 (7) | 0.0515 (6) | 0.111 (3) | |
H5A | 0.1186 | 0.0516 | 0.1101 | 0.133* | |
H5B | 0.1612 | 0.1508 | 0.0492 | 0.133* | |
C6 | 0.0753 (7) | −0.0976 (6) | −0.0285 (6) | 0.101 (3) | |
H6A | 0.1210 | −0.1224 | −0.0784 | 0.121* | |
H6B | 0.0881 | −0.1645 | 0.0099 | 0.121* | |
C7 | 0.1634 (10) | 0.7455 (7) | 0.2473 (5) | 0.109 (2)* | |
H7A | 0.1508 | 0.7722 | 0.1894 | 0.131* | |
H7B | 0.2155 | 0.6667 | 0.2503 | 0.131* | |
C8 | 0.2799 (8) | 0.8240 (5) | 0.2992 (4) | 0.0816 (16) | |
H8A | 0.3044 | 0.7925 | 0.3560 | 0.098* | |
H8B | 0.3912 | 0.8293 | 0.2782 | 0.098* | |
C9 | 0.0421 (9) | 0.9318 (7) | 0.3302 (6) | 0.110 (3) | |
H9A | −0.0091 | 1.0105 | 0.3307 | 0.132* | |
H9B | 0.0606 | 0.9009 | 0.3872 | 0.132* | |
C10 | −0.0808 (8) | 0.8519 (9) | 0.2736 (5) | 0.111 (3) | |
H10A | −0.1918 | 0.8443 | 0.2946 | 0.133* | |
H10B | −0.1058 | 0.8859 | 0.2176 | 0.133* | |
F1 | 0.2156 (4) | 0.3659 (2) | 0.0169 (3) | 0.0886 (12) | |
F2 | 0.7708 (4) | 0.4067 (2) | −0.0662 (2) | 0.0849 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0368 (4) | 0.0138 (4) | 0.0265 (4) | 0.0004 (2) | 0.0061 (2) | −0.00102 (18) |
O1 | 0.118 (3) | 0.0239 (14) | 0.0345 (15) | 0.0042 (15) | 0.0166 (16) | 0.0019 (11) |
O2 | 0.0513 (15) | 0.0138 (12) | 0.0359 (13) | 0.0002 (9) | 0.0113 (11) | −0.0005 (9) |
O3 | 0.0333 (14) | 0.057 (2) | 0.087 (3) | −0.0027 (12) | 0.0096 (15) | −0.0362 (16) |
O4 | 0.0545 (16) | 0.0235 (14) | 0.0279 (13) | 0.0028 (10) | 0.0050 (11) | −0.0025 (8) |
O5 | 0.122 (5) | 0.088 (4) | 0.175 (6) | −0.026 (4) | −0.030 (4) | 0.009 (4) |
O6 | 0.107 (3) | 0.071 (3) | 0.193 (6) | −0.016 (3) | 0.076 (4) | −0.010 (3) |
O7 | 0.100 (3) | 0.085 (3) | 0.081 (2) | −0.040 (2) | 0.052 (2) | −0.047 (2) |
C1 | 0.0404 (18) | 0.0200 (18) | 0.0345 (19) | 0.0026 (13) | 0.0053 (14) | 0.0001 (13) |
C2 | 0.045 (2) | 0.0178 (16) | 0.0322 (17) | 0.0039 (14) | 0.0096 (14) | 0.0022 (15) |
C3 | 0.047 (2) | 0.025 (2) | 0.067 (3) | −0.0066 (15) | 0.027 (2) | −0.0025 (17) |
C4 | 0.049 (2) | 0.0226 (19) | 0.064 (3) | 0.0014 (16) | 0.0288 (19) | −0.0039 (18) |
C5 | 0.048 (3) | 0.108 (5) | 0.175 (7) | −0.011 (3) | 0.018 (4) | −0.102 (5) |
C6 | 0.044 (3) | 0.075 (4) | 0.179 (7) | −0.001 (3) | 0.006 (3) | −0.077 (4) |
C8 | 0.080 (4) | 0.080 (4) | 0.085 (4) | 0.009 (3) | 0.016 (3) | −0.005 (3) |
C9 | 0.093 (5) | 0.090 (5) | 0.159 (8) | 0.012 (4) | 0.053 (5) | −0.018 (5) |
C10 | 0.061 (3) | 0.154 (8) | 0.112 (6) | 0.011 (4) | −0.004 (3) | 0.021 (6) |
F1 | 0.0747 (18) | 0.0350 (15) | 0.175 (4) | −0.0207 (14) | 0.075 (2) | −0.0258 (18) |
F2 | 0.0752 (19) | 0.0419 (15) | 0.157 (3) | −0.0095 (13) | 0.076 (2) | −0.0325 (17) |
Cu1—O4 | 1.962 (3) | C3—F1 | 1.344 (4) |
Cu1—O4i | 1.962 (3) | C3—C4ii | 1.382 (6) |
Cu1—O2i | 1.971 (3) | C4—F2 | 1.343 (4) |
Cu1—O2 | 1.971 (3) | C4—C3ii | 1.382 (6) |
Cu1—O3 | 2.444 (3) | C5—C6iii | 1.355 (8) |
O1—C1 | 1.234 (4) | C5—H5A | 0.9700 |
O2—C1 | 1.259 (4) | C5—H5B | 0.9700 |
O3—C5 | 1.361 (6) | C6—C5iii | 1.355 (8) |
O3—C6 | 1.409 (6) | C6—H6A | 0.9700 |
O4—H4A | 0.8203 | C6—H6B | 0.9700 |
O4—H4B | 0.8202 | C7—C8 | 1.424 (9) |
O5—C7 | 1.381 (9) | C7—H7A | 0.9700 |
O5—C10 | 1.412 (9) | C7—H7B | 0.9700 |
O6—C8 | 1.405 (7) | C8—H8A | 0.9700 |
O6—C9 | 1.411 (8) | C8—H8B | 0.9700 |
O7—H7C | 0.8202 | C9—C10 | 1.496 (11) |
O7—H7D | 0.8203 | C9—H9A | 0.9700 |
C1—C2 | 1.515 (5) | C9—H9B | 0.9700 |
C2—C3 | 1.372 (5) | C10—H10A | 0.9700 |
C2—C4 | 1.382 (5) | C10—H10B | 0.9700 |
O4—Cu1—O4i | 180.0 | O3—C5—H5A | 107.0 |
O4—Cu1—O2i | 93.24 (8) | C6iii—C5—H5B | 107.0 |
O4i—Cu1—O2i | 86.76 (8) | O3—C5—H5B | 107.0 |
O4—Cu1—O2 | 86.76 (8) | H5A—C5—H5B | 106.8 |
O4i—Cu1—O2 | 93.24 (8) | C5iii—C6—O3 | 118.4 (5) |
O2i—Cu1—O2 | 180.0 | C5iii—C6—H6A | 107.7 |
O4—Cu1—O3 | 91.16 (13) | O3—C6—H6A | 107.7 |
O4i—Cu1—O3 | 88.85 (13) | C5iii—C6—H6B | 107.7 |
O2i—Cu1—O3 | 90.79 (9) | O3—C6—H6B | 107.7 |
O2—Cu1—O3 | 89.21 (9) | H6A—C6—H6B | 107.1 |
C1—O2—Cu1 | 129.4 (2) | O5—C7—C8 | 112.9 (6) |
C5—O3—C6 | 114.3 (4) | O5—C7—H7A | 109.0 |
C5—O3—Cu1 | 124.9 (3) | C8—C7—H7A | 109.0 |
C6—O3—Cu1 | 120.7 (3) | O5—C7—H7B | 109.0 |
Cu1—O4—H4A | 103.2 | C8—C7—H7B | 109.0 |
Cu1—O4—H4B | 115.3 | H7A—C7—H7B | 107.8 |
H4A—O4—H4B | 121.3 | O6—C8—C7 | 111.1 (6) |
C7—O5—C10 | 112.2 (6) | O6—C8—H8A | 109.4 |
C8—O6—C9 | 110.2 (5) | C7—C8—H8A | 109.4 |
H7C—O7—H7D | 121.4 | O6—C8—H8B | 109.4 |
O1—C1—O2 | 127.2 (3) | C7—C8—H8B | 109.4 |
O1—C1—C2 | 117.3 (3) | H8A—C8—H8B | 108.0 |
O2—C1—C2 | 115.5 (3) | O6—C9—C10 | 109.0 (6) |
C3—C2—C4 | 115.8 (3) | O6—C9—H9A | 109.9 |
C3—C2—C1 | 122.6 (3) | C10—C9—H9A | 109.9 |
C4—C2—C1 | 121.6 (3) | O6—C9—H9B | 109.9 |
F1—C3—C2 | 119.0 (3) | C10—C9—H9B | 109.9 |
F1—C3—C4ii | 118.7 (3) | H9A—C9—H9B | 108.3 |
C2—C3—C4ii | 122.2 (3) | O5—C10—C9 | 109.7 (5) |
F2—C4—C3ii | 118.9 (3) | O5—C10—H10A | 109.7 |
F2—C4—C2 | 119.1 (3) | C9—C10—H10A | 109.7 |
C3ii—C4—C2 | 122.0 (3) | O5—C10—H10B | 109.7 |
C6iii—C5—O3 | 121.3 (5) | C9—C10—H10B | 109.7 |
C6iii—C5—H5A | 107.0 | H10A—C10—H10B | 108.2 |
O4—Cu1—O2—C1 | 166.7 (3) | C1—C2—C3—F1 | −1.6 (6) |
O4i—Cu1—O2—C1 | −13.3 (3) | C4—C2—C3—C4ii | −1.1 (7) |
O3—Cu1—O2—C1 | −102.1 (3) | C1—C2—C3—C4ii | 178.9 (4) |
O4—Cu1—O3—C5 | 55.5 (6) | C3—C2—C4—F2 | 178.8 (4) |
O4i—Cu1—O3—C5 | −124.5 (6) | C1—C2—C4—F2 | −1.2 (6) |
O2i—Cu1—O3—C5 | 148.8 (6) | C3—C2—C4—C3ii | 1.1 (7) |
O2—Cu1—O3—C5 | −31.2 (6) | C1—C2—C4—C3ii | −178.9 (4) |
O4—Cu1—O3—C6 | −123.5 (5) | C6—O3—C5—C6iii | −27.8 (12) |
O4i—Cu1—O3—C6 | 56.5 (5) | Cu1—O3—C5—C6iii | 153.1 (6) |
O2i—Cu1—O3—C6 | −30.2 (5) | C5—O3—C6—C5iii | 26.9 (12) |
O2—Cu1—O3—C6 | 149.8 (5) | Cu1—O3—C6—C5iii | −154.0 (6) |
Cu1—O2—C1—O1 | 2.5 (6) | C10—O5—C7—C8 | 54.0 (9) |
Cu1—O2—C1—C2 | −176.9 (2) | C9—O6—C8—C7 | 58.4 (8) |
O1—C1—C2—C3 | 115.0 (4) | O5—C7—C8—O6 | −55.3 (9) |
O2—C1—C2—C3 | −65.5 (5) | C8—O6—C9—C10 | −59.1 (9) |
O1—C1—C2—C4 | −65.0 (5) | C7—O5—C10—C9 | −54.3 (9) |
O2—C1—C2—C4 | 114.5 (4) | O6—C9—C10—O5 | 57.0 (10) |
C4—C2—C3—F1 | 178.4 (4) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4B···O7 | 0.82 | 1.92 | 2.670 (5) | 152 |
C5—H5B···F1 | 0.97 | 2.53 | 3.453 (8) | 160 |
O4—H4A···O1i | 0.82 | 1.85 | 2.641 (3) | 162 |
O7—H7C···O6iv | 0.82 | 2.03 | 2.807 (7) | 158 |
O7—H7D···O1v | 0.82 | 2.09 | 2.797 (5) | 144 |
Symmetry codes: (i) −x+1, −y, −z; (iv) x, y−1, z; (v) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2O |
Mr | 636.00 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 7.654 (2), 11.253 (3), 16.126 (4) |
β (°) | 99.634 (6) |
V (Å3) | 1369.4 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.20 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.842, 0.901 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7646, 2536, 2011 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.182, 1.07 |
No. of reflections | 2536 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.77, −0.47 |
Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4B···O7 | 0.82 | 1.92 | 2.670 (5) | 152 |
C5—H5B···F1 | 0.97 | 2.53 | 3.453 (8) | 160 |
O4—H4A···O1i | 0.82 | 1.85 | 2.641 (3) | 162 |
O7—H7C···O6ii | 0.82 | 2.03 | 2.807 (7) | 158 |
O7—H7D···O1iii | 0.82 | 2.09 | 2.797 (5) | 144 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, y−1, z; (iii) x, −y+1/2, z+1/2. |
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Chen, Q., He, M.-Y., Cui, A.-J., Li, C., Liu, Q. & Du, M. (2008). Cryst. Growth Des. 8, 3473–3445. Google Scholar
He, M.-Y., Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Yin, F.-H. & Chen, Q. (2009). Inorg. Chim. Acta, 362, 2569–2576. CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, our group has been engaged in studying the influence that a range of solvent species have on the structures of a series of MnII—BDC-Cl4 polymers with 2,3,5,6-tetracholorobenzene-1,4-dicarboxylate (BDC-Cl4) ligand (Chen et al., 2008; He et al.., 2009). Among them, the 1,4-dioxane (dioxane) solvent molecule may serve as a solvent template to play a key role in controlling the resulting polymeric network. To further understand the solvent template effect of 1,4-dioxane, we employed the tetrafluorinated benzene-1,4-dicarboxylic acid (H2BDC-F4) ligand to assemble with a copper(II) ion in the presence of dioxane and obtained the title two-dimensional coordination polymer {[Cu(BDC-F4)(dioxane)(H2O)2].(dioxane)2(H2O)2}n, (I).
The asymmetric unit of (I) is composed of one CuII center, one 2,3,5,6-tetrafluoro-1,4-dicarboxylate (BDC-F4) anion, one dioxane ligand, two coordinated water molecules, and two lattice dioxane as well as two water moieties (Fig. 1). Each CuII ion is six-coordinated by two oxygen donors from two trans 2,3,5,6-tetrafluoro-1,4-dicarboxylate (BDC-F4) ligands, two oxygen atoms from two chair dioxane ligands, and two oxygen atoms from two terminal water molecules, adopting a distorted octahedral coordinated geometry. Each BDC-F4 anion bridges two CuII ions in a bis-monodentate fashion to form a one-dimensional [Cu(BDC-F4)]n chain, which is further joined together by bridging dioxane ligands to generate a two-dimensional net with approximately rectangular grids of 11.253 Å × 7.654 Å (Cu···Cu nucleus-to-nucleus), where the Cu···Cu···Cu angles are 90.8 and 89.2°, respectively (Fig. 2). Such adjacent parallel layers are connected by O—H···O hydrogen bonds between guest water molecules with the uncoordinated carboxylate oxygen atoms and coordinated water molecules to fulfill the final three-dimensional supramolecular network.