metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m527-m528

Poly[[di­aqua­(μ2-1,4-dioxane-κ2O:O′)(μ2-2,3,5,6-tetra­fluoro­benzene-1,4-di­carboxyl­ato-κ2O1:O4)copper(II)] 1,4-dioxane disolvate dihydrate]

aKey Laboratory of Fine Petrochemical Technology, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: chenqunjpu@yahoo.com

(Received 27 February 2011; accepted 15 March 2011; online 7 April 2011)

In the title complex, {[Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2O}n, the CuII ion is six-coordinated by two oxygen donors from two trans 2,3,5,6-tetra­fluoro-1,4-dicarboxyl­ate (BDC-F4) ligands, two O atoms from two chair 1,4-dioxane ligands and two O atoms from two terminal water mol­ecules, adopting a distorted octa­hedral coordinated geometry. Each BDC-F4 anion bridges two CuII ions in a bis-monodentate fashion, forming a [Cu(BDC-F4)]n chain. These chains are further linked by bridging 1,4-dioxane ligands, generating a two-dimensional net with approximately recta­ngular grids of 11.253 × 7.654 Å. Such adjacent parallel layers are connected by O—H⋯O hydrogen bonds between guest water mol­ecules and the uncoordinated carboxyl­ate O atoms and coordinated water mol­ecules into the final three-dimensional supra­molecular network.

Related literature

For the solvent template effect of 1,4-dioxane in the construction of coordination polymers, see: Chen et al. (2008[Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Chen, Q., He, M.-Y., Cui, A.-J., Li, C., Liu, Q. & Du, M. (2008). Cryst. Growth Des. 8, 3473-3445.]); He et al. (2009[He, M.-Y., Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Yin, F.-H. & Chen, Q. (2009). Inorg. Chim. Acta, 362, 2569-2576.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2O

  • Mr = 636.00

  • Monoclinic, P 21 /c

  • a = 7.654 (2) Å

  • b = 11.253 (3) Å

  • c = 16.126 (4) Å

  • β = 99.634 (6)°

  • V = 1369.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 297 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.842, Tmax = 0.901

  • 7646 measured reflections

  • 2536 independent reflections

  • 2011 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.182

  • S = 1.07

  • 2536 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O7 0.82 1.92 2.670 (5) 152
O4—H4A⋯O1i 0.82 1.85 2.641 (3) 162
O7—H7C⋯O6ii 0.82 2.03 2.807 (7) 158
O7—H7D⋯O1iii 0.82 2.09 2.797 (5) 144
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y-1, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, our group has been engaged in studying the influence that a range of solvent species have on the structures of a series of MnII—BDC-Cl4 polymers with 2,3,5,6-tetracholorobenzene-1,4-dicarboxylate (BDC-Cl4) ligand (Chen et al., 2008; He et al.., 2009). Among them, the 1,4-dioxane (dioxane) solvent molecule may serve as a solvent template to play a key role in controlling the resulting polymeric network. To further understand the solvent template effect of 1,4-dioxane, we employed the tetrafluorinated benzene-1,4-dicarboxylic acid (H2BDC-F4) ligand to assemble with a copper(II) ion in the presence of dioxane and obtained the title two-dimensional coordination polymer {[Cu(BDC-F4)(dioxane)(H2O)2].(dioxane)2(H2O)2}n, (I).

The asymmetric unit of (I) is composed of one CuII center, one 2,3,5,6-tetrafluoro-1,4-dicarboxylate (BDC-F4) anion, one dioxane ligand, two coordinated water molecules, and two lattice dioxane as well as two water moieties (Fig. 1). Each CuII ion is six-coordinated by two oxygen donors from two trans 2,3,5,6-tetrafluoro-1,4-dicarboxylate (BDC-F4) ligands, two oxygen atoms from two chair dioxane ligands, and two oxygen atoms from two terminal water molecules, adopting a distorted octahedral coordinated geometry. Each BDC-F4 anion bridges two CuII ions in a bis-monodentate fashion to form a one-dimensional [Cu(BDC-F4)]n chain, which is further joined together by bridging dioxane ligands to generate a two-dimensional net with approximately rectangular grids of 11.253 Å × 7.654 Å (Cu···Cu nucleus-to-nucleus), where the Cu···Cu···Cu angles are 90.8 and 89.2°, respectively (Fig. 2). Such adjacent parallel layers are connected by O—H···O hydrogen bonds between guest water molecules with the uncoordinated carboxylate oxygen atoms and coordinated water molecules to fulfill the final three-dimensional supramolecular network.

Related literature top

For the solvent template effect of 1,4-dioxane in the construction of coordination polymers, see Chen et al. (2008); He et al. (2009).

Experimental top

An aqueous solution (2 ml) of Cu(ClO4)2.6H2O (37.1 mg, 0.10 mmol) was added to a dioxane solution (4 ml) of H2BDC-F4 (23.8 mg, 0.10 mmol) with stirring for 15 min. Then, the reaction mixture was filtered and left to stand at room temperature. After 3 days, well blue block crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of the solvents in 52% yield (33.1 mg, based on H2BDC-F4).

Refinement top

All H atoms bound to C atoms were assigned to calculated positions with C—H = 0.97 Å, and refined using a riding model, with Uiso(H)=1.2Ueq (C). The H atoms of the water molecule were firstly located in a difference Fourier map and then refined with distance restraints O—H = 0.820 (1) Å and H···H = 1.430 (1) Å, and finally constrained to ride on the O atom with [Uiso(H) = 1.5 Ueq (O)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), with the atom-numbering scheme. Displacement ellipsoids are draw at the 30% probability level. Hydrogen atoms are omitted for clarity. Symmetry code: (A) 1 - x, 1 - y, -z; (B) 1 - x, -y, -z.
[Figure 2] Fig. 2. The two-dimensional structure of the title compound viewed down the c axis. Hydrogen atoms are omitted for clarity.
Poly[[diaqua(µ2-1,4-dioxane-κ2O:O')(µ2-2,3,5,6- tetrafluorobenzene-1,4-dicarboxylato-κ2O1:O4)copper(II)] 1,4-dioxane disolvate dihydrate] top
Crystal data top
[Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2OF(000) = 658
Mr = 636.00Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3648 reflections
a = 7.654 (2) Åθ = 2.6–29.9°
b = 11.253 (3) ŵ = 0.89 mm1
c = 16.126 (4) ÅT = 297 K
β = 99.634 (6)°Block, blue
V = 1369.4 (6) Å30.20 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2536 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.842, Tmax = 0.901k = 1113
7646 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1255P)2 + 0.7817P]
where P = (Fo2 + 2Fc2)/3
2536 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2OV = 1369.4 (6) Å3
Mr = 636.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.654 (2) ŵ = 0.89 mm1
b = 11.253 (3) ÅT = 297 K
c = 16.126 (4) Å0.20 × 0.15 × 0.12 mm
β = 99.634 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2536 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2011 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.901Rint = 0.030
7646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.07Δρmax = 0.77 e Å3
2536 reflectionsΔρmin = 0.47 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.00000.0256 (3)
O10.4795 (5)0.2295 (2)0.12878 (17)0.0582 (9)
O20.4927 (3)0.1749 (2)0.00527 (13)0.0332 (6)
O30.1848 (4)0.0053 (3)0.0096 (3)0.0592 (10)
O40.5645 (4)0.00298 (18)0.12299 (16)0.0356 (6)
H4A0.55570.06690.13620.053*
H4B0.51860.05620.14660.053*
O50.0024 (8)0.7388 (5)0.2701 (5)0.135 (2)
O60.2054 (7)0.9379 (4)0.3007 (4)0.1177 (19)
O70.4024 (5)0.1145 (4)0.2350 (2)0.0845 (13)
H7C0.32480.07700.25300.127*
H7D0.46400.16330.26430.127*
C10.4872 (4)0.2499 (3)0.0530 (2)0.0317 (8)
C20.4925 (4)0.3790 (3)0.0259 (2)0.0314 (7)
C30.3590 (5)0.4308 (3)0.0086 (3)0.0442 (10)
C40.6337 (5)0.4519 (4)0.0345 (3)0.0431 (9)
C50.1002 (7)0.0757 (7)0.0515 (6)0.111 (3)
H5A0.11860.05160.11010.133*
H5B0.16120.15080.04920.133*
C60.0753 (7)0.0976 (6)0.0285 (6)0.101 (3)
H6A0.12100.12240.07840.121*
H6B0.08810.16450.00990.121*
C70.1634 (10)0.7455 (7)0.2473 (5)0.109 (2)*
H7A0.15080.77220.18940.131*
H7B0.21550.66670.25030.131*
C80.2799 (8)0.8240 (5)0.2992 (4)0.0816 (16)
H8A0.30440.79250.35600.098*
H8B0.39120.82930.27820.098*
C90.0421 (9)0.9318 (7)0.3302 (6)0.110 (3)
H9A0.00911.01050.33070.132*
H9B0.06060.90090.38720.132*
C100.0808 (8)0.8519 (9)0.2736 (5)0.111 (3)
H10A0.19180.84430.29460.133*
H10B0.10580.88590.21760.133*
F10.2156 (4)0.3659 (2)0.0169 (3)0.0886 (12)
F20.7708 (4)0.4067 (2)0.0662 (2)0.0849 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0368 (4)0.0138 (4)0.0265 (4)0.0004 (2)0.0061 (2)0.00102 (18)
O10.118 (3)0.0239 (14)0.0345 (15)0.0042 (15)0.0166 (16)0.0019 (11)
O20.0513 (15)0.0138 (12)0.0359 (13)0.0002 (9)0.0113 (11)0.0005 (9)
O30.0333 (14)0.057 (2)0.087 (3)0.0027 (12)0.0096 (15)0.0362 (16)
O40.0545 (16)0.0235 (14)0.0279 (13)0.0028 (10)0.0050 (11)0.0025 (8)
O50.122 (5)0.088 (4)0.175 (6)0.026 (4)0.030 (4)0.009 (4)
O60.107 (3)0.071 (3)0.193 (6)0.016 (3)0.076 (4)0.010 (3)
O70.100 (3)0.085 (3)0.081 (2)0.040 (2)0.052 (2)0.047 (2)
C10.0404 (18)0.0200 (18)0.0345 (19)0.0026 (13)0.0053 (14)0.0001 (13)
C20.045 (2)0.0178 (16)0.0322 (17)0.0039 (14)0.0096 (14)0.0022 (15)
C30.047 (2)0.025 (2)0.067 (3)0.0066 (15)0.027 (2)0.0025 (17)
C40.049 (2)0.0226 (19)0.064 (3)0.0014 (16)0.0288 (19)0.0039 (18)
C50.048 (3)0.108 (5)0.175 (7)0.011 (3)0.018 (4)0.102 (5)
C60.044 (3)0.075 (4)0.179 (7)0.001 (3)0.006 (3)0.077 (4)
C80.080 (4)0.080 (4)0.085 (4)0.009 (3)0.016 (3)0.005 (3)
C90.093 (5)0.090 (5)0.159 (8)0.012 (4)0.053 (5)0.018 (5)
C100.061 (3)0.154 (8)0.112 (6)0.011 (4)0.004 (3)0.021 (6)
F10.0747 (18)0.0350 (15)0.175 (4)0.0207 (14)0.075 (2)0.0258 (18)
F20.0752 (19)0.0419 (15)0.157 (3)0.0095 (13)0.076 (2)0.0325 (17)
Geometric parameters (Å, º) top
Cu1—O41.962 (3)C3—F11.344 (4)
Cu1—O4i1.962 (3)C3—C4ii1.382 (6)
Cu1—O2i1.971 (3)C4—F21.343 (4)
Cu1—O21.971 (3)C4—C3ii1.382 (6)
Cu1—O32.444 (3)C5—C6iii1.355 (8)
O1—C11.234 (4)C5—H5A0.9700
O2—C11.259 (4)C5—H5B0.9700
O3—C51.361 (6)C6—C5iii1.355 (8)
O3—C61.409 (6)C6—H6A0.9700
O4—H4A0.8203C6—H6B0.9700
O4—H4B0.8202C7—C81.424 (9)
O5—C71.381 (9)C7—H7A0.9700
O5—C101.412 (9)C7—H7B0.9700
O6—C81.405 (7)C8—H8A0.9700
O6—C91.411 (8)C8—H8B0.9700
O7—H7C0.8202C9—C101.496 (11)
O7—H7D0.8203C9—H9A0.9700
C1—C21.515 (5)C9—H9B0.9700
C2—C31.372 (5)C10—H10A0.9700
C2—C41.382 (5)C10—H10B0.9700
O4—Cu1—O4i180.0O3—C5—H5A107.0
O4—Cu1—O2i93.24 (8)C6iii—C5—H5B107.0
O4i—Cu1—O2i86.76 (8)O3—C5—H5B107.0
O4—Cu1—O286.76 (8)H5A—C5—H5B106.8
O4i—Cu1—O293.24 (8)C5iii—C6—O3118.4 (5)
O2i—Cu1—O2180.0C5iii—C6—H6A107.7
O4—Cu1—O391.16 (13)O3—C6—H6A107.7
O4i—Cu1—O388.85 (13)C5iii—C6—H6B107.7
O2i—Cu1—O390.79 (9)O3—C6—H6B107.7
O2—Cu1—O389.21 (9)H6A—C6—H6B107.1
C1—O2—Cu1129.4 (2)O5—C7—C8112.9 (6)
C5—O3—C6114.3 (4)O5—C7—H7A109.0
C5—O3—Cu1124.9 (3)C8—C7—H7A109.0
C6—O3—Cu1120.7 (3)O5—C7—H7B109.0
Cu1—O4—H4A103.2C8—C7—H7B109.0
Cu1—O4—H4B115.3H7A—C7—H7B107.8
H4A—O4—H4B121.3O6—C8—C7111.1 (6)
C7—O5—C10112.2 (6)O6—C8—H8A109.4
C8—O6—C9110.2 (5)C7—C8—H8A109.4
H7C—O7—H7D121.4O6—C8—H8B109.4
O1—C1—O2127.2 (3)C7—C8—H8B109.4
O1—C1—C2117.3 (3)H8A—C8—H8B108.0
O2—C1—C2115.5 (3)O6—C9—C10109.0 (6)
C3—C2—C4115.8 (3)O6—C9—H9A109.9
C3—C2—C1122.6 (3)C10—C9—H9A109.9
C4—C2—C1121.6 (3)O6—C9—H9B109.9
F1—C3—C2119.0 (3)C10—C9—H9B109.9
F1—C3—C4ii118.7 (3)H9A—C9—H9B108.3
C2—C3—C4ii122.2 (3)O5—C10—C9109.7 (5)
F2—C4—C3ii118.9 (3)O5—C10—H10A109.7
F2—C4—C2119.1 (3)C9—C10—H10A109.7
C3ii—C4—C2122.0 (3)O5—C10—H10B109.7
C6iii—C5—O3121.3 (5)C9—C10—H10B109.7
C6iii—C5—H5A107.0H10A—C10—H10B108.2
O4—Cu1—O2—C1166.7 (3)C1—C2—C3—F11.6 (6)
O4i—Cu1—O2—C113.3 (3)C4—C2—C3—C4ii1.1 (7)
O3—Cu1—O2—C1102.1 (3)C1—C2—C3—C4ii178.9 (4)
O4—Cu1—O3—C555.5 (6)C3—C2—C4—F2178.8 (4)
O4i—Cu1—O3—C5124.5 (6)C1—C2—C4—F21.2 (6)
O2i—Cu1—O3—C5148.8 (6)C3—C2—C4—C3ii1.1 (7)
O2—Cu1—O3—C531.2 (6)C1—C2—C4—C3ii178.9 (4)
O4—Cu1—O3—C6123.5 (5)C6—O3—C5—C6iii27.8 (12)
O4i—Cu1—O3—C656.5 (5)Cu1—O3—C5—C6iii153.1 (6)
O2i—Cu1—O3—C630.2 (5)C5—O3—C6—C5iii26.9 (12)
O2—Cu1—O3—C6149.8 (5)Cu1—O3—C6—C5iii154.0 (6)
Cu1—O2—C1—O12.5 (6)C10—O5—C7—C854.0 (9)
Cu1—O2—C1—C2176.9 (2)C9—O6—C8—C758.4 (8)
O1—C1—C2—C3115.0 (4)O5—C7—C8—O655.3 (9)
O2—C1—C2—C365.5 (5)C8—O6—C9—C1059.1 (9)
O1—C1—C2—C465.0 (5)C7—O5—C10—C954.3 (9)
O2—C1—C2—C4114.5 (4)O6—C9—C10—O557.0 (10)
C4—C2—C3—F1178.4 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O70.821.922.670 (5)152
C5—H5B···F10.972.533.453 (8)160
O4—H4A···O1i0.821.852.641 (3)162
O7—H7C···O6iv0.822.032.807 (7)158
O7—H7D···O1v0.822.092.797 (5)144
Symmetry codes: (i) x+1, y, z; (iv) x, y1, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C8F4O4)(C4H8O2)(H2O)2]·2C4H8O2·2H2O
Mr636.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)7.654 (2), 11.253 (3), 16.126 (4)
β (°) 99.634 (6)
V3)1369.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.842, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
7646, 2536, 2011
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.182, 1.07
No. of reflections2536
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.47

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O70.821.922.670 (5)152
C5—H5B···F10.972.533.453 (8)160
O4—H4A···O1i0.821.852.641 (3)162
O7—H7C···O6ii0.822.032.807 (7)158
O7—H7D···O1iii0.822.092.797 (5)144
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-C., Zhang, Z.-H., Huang, K.-L., Chen, Q., He, M.-Y., Cui, A.-J., Li, C., Liu, Q. & Du, M. (2008). Cryst. Growth Des. 8, 3473–3445.  Google Scholar
First citationHe, M.-Y., Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Yin, F.-H. & Chen, Q. (2009). Inorg. Chim. Acta, 362, 2569–2576.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m527-m528
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds