metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m624-m625

A dinuclear zinc complex with (E)-4-di­methyl­amino-N′-(2-hy­dr­oxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: linlr@xmu.edu.cn

(Received 8 April 2011; accepted 18 April 2011; online 22 April 2011)

The title compound, bis­[μ-(E)-2-({2-[4-(dimethyl­amino)­benzo­yl]hydrazinyl­idene}meth­yl)phenolato]bis­[formato­zinc], [Zn2(C16H16N3O2)2(CHO2)2], is a dinuclear ZnII complex containing two ZnII cations, two monovalent anions of a Schiff base ligand, 4-dimethyl­amino-N′-(2-hy­droxy­benzyl­idene)benzohydrazide (L), and two formate ions. Each ZnII atom chelates with the hy­droxy O atom of salicyl­aldehyde, the imine N atom, the carbonyl O atom, the formate carboxyl­ate O atom and the hy­droxy O atom of the salicyl­aldehyde moiety in a symmetry-related unit. The five-coordinate ZnII atoms form a dimeric centrosymmetric unit with a central parallelepiped Zn2O2 core and parallel faces derived from the Schiff base ligands. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds between the amide N atom and the formate carboxyl­ate O atom.

Related literature

For details of Zn complexes and related applications, see: Shamsipur et al. (2001[Shamsipur, M., Yousefi, M., Hosseini, M., Reza Ganjali, M., Sharghi, H. & Naeimi, H. (2001). Anal. Chem. 73, 2869-2874.]); Cametti et al. (2008[Cametti, M., Cort, A. D., Mandolini, L., Nissinen, M. & Rissanen, K. (2008). New J. Chem. 32, 1113-1116.]); Winter et al. (2009[Winter, A., Friebe, C., Chiper, M., Hager, M. D. & Schubert, U. S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 4083-4098.]); Shi et al. (2009[Shi, L., Mao, W.-J., Yang, Y. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 3471-3477.]); Rai et al. (2009[Rai, V. K., Srivastava, R. & Kamalasanan, M. N. (2009). Synth. Met. 159, 234-237.]). For potential applications in luminescence materials, see: Erxleben (2001[Erxleben, A. (2001). Inorg. Chem. 40, 208-213.]). For recent advances in biosensory and medicinal therapeutic applications of ZnII complexes, see: Drewry & Gunning (2011[Drewry, J. A. & Gunning, P. T. (2011). Coord. Chem. Rev. 255, 459-472.]). For other applications of Schiff base–zinc complexes, see: Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.]); Sunatsuki et al. (2002[Sunatsuki, Y., Motoda, Y. & Matsumoto, N. (2002). Coord. Chem. Rev. 226, 199-209.]); Jiang et al. (2010[Jiang, J.-C., Chu, Z.-L., Huang, W., Wang, G. & You, X.-Z. (2010). Inorg. Chem. 49, 5897-5911.]); Li et al. (2010[Li, G.-B., Fang, H.-C., Cai, Y.-P., Zhou, Z.-Y., Thallapally, P. K. & Tian, J. (2010). Inorg. Chem. 49, 7241-7243.]). For details of the synthesis of the Schiff base ligand, see: Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]). For related literature on zinc complex applications, see: Consiglio et al. (2010[Consiglio, G., Failla, S., Finocchiaro, P., Oliveri, I. P., Purrello, R. & Bella, S. D. (2010). Inorg. Chem. 49, 5134-5142.]); Kwok et al. (2004[Kwok, C.-C., Yu, S.-C., Sham, I. H. T. & Che, C.-M. (2004). Chem. Commun. pp. 2758-2759.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C16H16N3O2)2(CHO2)2]

  • Mr = 785.41

  • Monoclinic, P 21 /n

  • a = 14.556 (3) Å

  • b = 6.7607 (14) Å

  • c = 17.085 (3) Å

  • β = 101.63 (3)°

  • V = 1646.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 173 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.863, Tmax = 0.888

  • 13433 measured reflections

  • 3213 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.07

  • 3213 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H8⋯O3i 0.88 2.00 2.838 (2) 158
Symmetry code: (i) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Zinc(II) Schiff base compounds, which are thermally stable, structurally diverse and easily modified, have attracted great interest due to their potential applications in luminescence materials (Andrea, 2001), biosensory and medicinal therapeutic (Drewry & Gunning, 2011). As part of our ongoing work in the biosensory area, the title Zn-Schiff base complex was synthesized by solvothermal methods and the crystal structure is herein reported. The title molecule consists of two subparallel, tridentate Schiff base ligands, two five coodinate zinc cations and two formyl groups (from the decomposion of dimethylformamide (DMF)). The center plane assumes a parallelogram geometry which is comprised of the alternate atoms of Zn and O atoms (Fig. 1). Crystal packing is stabilized by weak N—H···O intermolecular hydrogen bonds between the amide nitrogen atom and the formate carboxyl oxygen atom (Table 1).

Related literature top

For details of Zn complexes and related applications, see: Shamsipur et al. (2001); Cametti et al. (2008); Winter et al. (2009); Shi et al. (2009); Rai et al. (2009). For potential applications in luminescence materials, see: Andrea (2001). For recent advances in biosensory and medicinal therapeutic applications of ZnII complexes, see: Drewry & Gunning (2011). For other applications of Schiff base–zinc complexes, see: Costamagna et al.(1992); Sunatsuki et al. (2002); Jiang et al. (2010); Li et al. (2010). For details of the synthesis of the Schiff base ligand, see: Pouralimardan et al. (2007).

For related literature [on what subject?], see: Erxleben (2001); Consiglio et al. (2010); Kwok et al. (2004).

Experimental top

A mixture of ethyl-4-(dimethylamino) benzoate(10 mmol) and hydrazinium hydroxide (50%, 70ml) was stirred at 120 °C for 3h and then filtered. The resulting white residues were recrystallization by ethanol. Then, 2-hydroxybenzaldehyde (2 mmol) was added to the solution of the above powder (2 mmol) in 50 ml ethanol and refluxed for 3h to obtain the crude product. The crude product was purified by recrystallization with the ethanol and dichloromethane mixed solvent(v/v=2:1) to give white solid Schiff base ligand (N-(2-hydroxybenzylidene)-4-(dimethylamino)benzohydrazide, HL) with 85% yield. A DMF solution containing HL (0.2 mmol) and Zn(ClO4)2.6H2O (0.1 mmol) was stirred at room temperature for 5h and then was sealed in a 20 ml Teflon-lined stainless-steel autoclave, which was heated to 110o and kept at this temperature for 35h. Yellow block crystals were obtained after the reactor was cooled to room temperature in about 40h.

Refinement top

H atoms were placed at calculated positions with C—H = 0.95 (aromatic), 0.98 (methyl) Å and were refined with Uiso(H)= 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for aromatic moieties.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms are removed for clarity.
bis[µ-(E)-2-({2-[4- (dimethylamino)benzoyl]hydrazinylidene}methyl)phenolato]bis[formatozinc] top
Crystal data top
[Zn2(C16H16N3O2)2(CHO2)2]F(000) = 808
Mr = 785.41Dx = 1.584 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11481 reflections
a = 14.556 (3) Åθ = 6.1–55.0°
b = 6.7607 (14) ŵ = 1.52 mm1
c = 17.085 (3) ÅT = 173 K
β = 101.63 (3)°Block, yellow
V = 1646.8 (6) Å30.10 × 0.10 × 0.08 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3213 independent reflections
Radiation source: Rotating anode2679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.863, Tmax = 0.888k = 88
13433 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0838P]
where P = (Fo2 + 2Fc2)/3
3213 reflections(Δ/σ)max = 0.002
228 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn2(C16H16N3O2)2(CHO2)2]V = 1646.8 (6) Å3
Mr = 785.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.556 (3) ŵ = 1.52 mm1
b = 6.7607 (14) ÅT = 173 K
c = 17.085 (3) Å0.10 × 0.10 × 0.08 mm
β = 101.63 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3213 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2679 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.888Rint = 0.032
13433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.07Δρmax = 0.33 e Å3
3213 reflectionsΔρmin = 0.30 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.604524 (15)0.57545 (3)0.527904 (16)0.03564 (10)
O10.47575 (10)0.5761 (2)0.56269 (10)0.0401 (4)
N20.68239 (11)0.9705 (2)0.53175 (12)0.0381 (4)
H80.69591.09480.54440.046*
N10.60914 (11)0.8734 (2)0.55588 (11)0.0344 (4)
O20.71192 (10)0.6870 (2)0.47370 (10)0.0436 (4)
C110.90778 (14)1.2366 (3)0.44114 (14)0.0418 (5)
H110.92471.37100.45200.050*
C90.80890 (13)0.9595 (3)0.45818 (13)0.0339 (5)
C120.95679 (14)1.1247 (3)0.39372 (14)0.0378 (5)
C130.92810 (15)0.9259 (3)0.37917 (15)0.0419 (5)
H130.95910.84460.34720.050*
C80.73176 (13)0.8649 (3)0.48804 (13)0.0347 (5)
C60.48425 (14)0.8912 (3)0.62988 (14)0.0378 (5)
N31.02861 (13)1.2013 (3)0.36293 (13)0.0476 (5)
C100.83602 (14)1.1570 (3)0.47224 (14)0.0385 (5)
H100.80421.23740.50390.046*
C10.44444 (13)0.7007 (3)0.61235 (13)0.0355 (5)
C70.56179 (15)0.9695 (3)0.59851 (15)0.0414 (5)
H70.57891.10340.61060.050*
C140.85623 (15)0.8488 (3)0.41056 (15)0.0418 (5)
H140.83830.71510.39930.050*
C151.08257 (17)1.0784 (4)0.31949 (17)0.0560 (7)
H15A1.13471.15540.30680.084*
H15B1.04221.03220.26990.084*
H15C1.10740.96420.35240.084*
C161.06386 (17)1.3985 (3)0.38441 (18)0.0547 (6)
H16A1.01121.49110.37880.082*
H16B1.10581.43890.34900.082*
H16C1.09851.39870.43990.082*
C20.37002 (15)0.6489 (4)0.64826 (15)0.0461 (6)
H20.34280.52120.63870.055*
C30.33486 (16)0.7778 (4)0.69733 (16)0.0540 (6)
H30.28350.73800.72020.065*
C50.44609 (16)1.0176 (4)0.68003 (16)0.0504 (6)
H50.47231.14580.69090.060*
C40.37272 (17)0.9632 (4)0.71382 (16)0.0559 (7)
H40.34831.05120.74790.067*
O30.68177 (10)0.3641 (2)0.58935 (10)0.0429 (4)
O40.71583 (15)0.5810 (3)0.68721 (13)0.0722 (6)
C170.72061 (16)0.4179 (3)0.65971 (16)0.0455 (6)
H170.75630.32160.69330.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03384 (15)0.02593 (14)0.04950 (19)0.00573 (9)0.01398 (11)0.00385 (10)
O10.0353 (7)0.0404 (8)0.0478 (10)0.0092 (6)0.0162 (7)0.0117 (7)
N20.0372 (9)0.0266 (8)0.0540 (13)0.0070 (7)0.0180 (9)0.0025 (8)
N10.0336 (8)0.0281 (8)0.0432 (11)0.0063 (7)0.0117 (8)0.0007 (7)
O20.0469 (8)0.0292 (7)0.0604 (11)0.0115 (6)0.0246 (8)0.0085 (7)
C110.0446 (11)0.0323 (10)0.0517 (15)0.0104 (9)0.0171 (10)0.0037 (10)
C90.0335 (10)0.0320 (10)0.0368 (13)0.0043 (8)0.0084 (9)0.0010 (8)
C120.0349 (10)0.0399 (11)0.0396 (14)0.0026 (9)0.0097 (9)0.0037 (9)
C130.0449 (11)0.0382 (11)0.0469 (15)0.0002 (9)0.0194 (11)0.0060 (10)
C80.0329 (9)0.0319 (10)0.0389 (13)0.0036 (8)0.0067 (9)0.0014 (9)
C60.0371 (10)0.0364 (10)0.0416 (14)0.0006 (9)0.0124 (9)0.0042 (9)
N30.0465 (10)0.0476 (10)0.0548 (14)0.0094 (9)0.0250 (10)0.0018 (9)
C100.0410 (11)0.0333 (10)0.0443 (14)0.0055 (9)0.0159 (10)0.0053 (9)
C10.0315 (9)0.0402 (11)0.0347 (13)0.0008 (9)0.0065 (9)0.0020 (9)
C70.0427 (11)0.0305 (10)0.0536 (16)0.0054 (9)0.0161 (11)0.0061 (10)
C140.0459 (11)0.0307 (10)0.0511 (15)0.0066 (9)0.0150 (11)0.0037 (10)
C150.0486 (13)0.0675 (16)0.0584 (18)0.0044 (12)0.0259 (13)0.0030 (13)
C160.0475 (12)0.0561 (14)0.0650 (19)0.0153 (11)0.0220 (12)0.0036 (13)
C20.0411 (11)0.0556 (13)0.0436 (15)0.0127 (10)0.0138 (10)0.0057 (11)
C30.0392 (11)0.0807 (18)0.0466 (16)0.0074 (12)0.0191 (11)0.0078 (13)
C50.0490 (13)0.0467 (12)0.0576 (17)0.0018 (11)0.0154 (12)0.0139 (12)
C40.0472 (13)0.0709 (17)0.0537 (17)0.0033 (12)0.0196 (12)0.0178 (13)
O30.0489 (8)0.0299 (7)0.0510 (11)0.0020 (6)0.0125 (8)0.0009 (7)
O40.1017 (16)0.0525 (11)0.0617 (14)0.0037 (10)0.0148 (12)0.0154 (9)
C170.0452 (12)0.0419 (12)0.0513 (17)0.0026 (10)0.0144 (11)0.0063 (11)
Geometric parameters (Å, º) top
Zn1—O31.9829 (16)C6—C71.444 (3)
Zn1—O1i2.0204 (16)N3—C151.447 (3)
Zn1—N12.0681 (17)N3—C161.449 (3)
Zn1—O12.0776 (15)C10—H100.9500
Zn1—O22.1104 (15)C1—C21.393 (3)
O1—C11.339 (2)C7—H70.9500
O1—Zn1i2.0204 (16)C14—H140.9500
N2—C81.342 (3)C15—H15A0.9800
N2—N11.384 (2)C15—H15B0.9800
N2—H80.8800C15—H15C0.9800
N1—C71.277 (3)C16—H16A0.9800
O2—C81.250 (2)C16—H16B0.9800
C11—C101.374 (3)C16—H16C0.9800
C11—C121.404 (3)C2—C31.378 (3)
C11—H110.9500C2—H20.9500
C9—C141.387 (3)C3—C41.375 (4)
C9—C101.399 (3)C3—H30.9500
C9—C81.470 (3)C5—C41.363 (3)
C12—N31.364 (3)C5—H50.9500
C12—C131.415 (3)C4—H40.9500
C13—C141.371 (3)O3—C171.274 (3)
C13—H130.9500O4—C171.206 (3)
C6—C51.402 (3)C17—H170.9500
C6—C11.419 (3)
O3—Zn1—O1i102.64 (7)C11—C10—C9121.2 (2)
O3—Zn1—N1126.22 (7)C11—C10—H10119.4
O1i—Zn1—N1131.13 (7)C9—C10—H10119.4
O3—Zn1—O1107.34 (6)O1—C1—C2120.97 (18)
O1i—Zn1—O178.72 (7)O1—C1—C6121.88 (18)
N1—Zn1—O185.47 (6)C2—C1—C6117.1 (2)
O3—Zn1—O295.66 (6)N1—C7—C6125.24 (19)
O1i—Zn1—O2102.13 (6)N1—C7—H7117.4
N1—Zn1—O276.17 (6)C6—C7—H7117.4
O1—Zn1—O2156.30 (6)C13—C14—C9122.20 (19)
C1—O1—Zn1i125.90 (12)C13—C14—H14118.9
C1—O1—Zn1128.65 (12)C9—C14—H14118.9
Zn1i—O1—Zn1101.28 (7)N3—C15—H15A109.5
C8—N2—N1116.42 (16)N3—C15—H15B109.5
C8—N2—H8121.8H15A—C15—H15B109.5
N1—N2—H8121.8N3—C15—H15C109.5
C7—N1—N2117.73 (17)H15A—C15—H15C109.5
C7—N1—Zn1129.16 (14)H15B—C15—H15C109.5
N2—N1—Zn1112.60 (12)N3—C16—H16A109.5
C8—O2—Zn1114.85 (13)N3—C16—H16B109.5
C10—C11—C12121.76 (19)H16A—C16—H16B109.5
C10—C11—H11119.1N3—C16—H16C109.5
C12—C11—H11119.1H16A—C16—H16C109.5
C14—C9—C10117.34 (18)H16B—C16—H16C109.5
C14—C9—C8118.27 (18)C3—C2—C1121.7 (2)
C10—C9—C8124.35 (19)C3—C2—H2119.1
N3—C12—C11122.44 (19)C1—C2—H2119.1
N3—C12—C13121.0 (2)C4—C3—C2121.3 (2)
C11—C12—C13116.57 (18)C4—C3—H3119.4
C14—C13—C12120.9 (2)C2—C3—H3119.4
C14—C13—H13119.5C4—C5—C6122.4 (2)
C12—C13—H13119.5C4—C5—H5118.8
O2—C8—N2119.51 (18)C6—C5—H5118.8
O2—C8—C9120.87 (19)C5—C4—C3118.3 (2)
N2—C8—C9119.62 (17)C5—C4—H4120.8
C5—C6—C1119.1 (2)C3—C4—H4120.8
C5—C6—C7116.03 (19)C17—O3—Zn1112.98 (14)
C1—C6—C7124.82 (19)O4—C17—O3125.4 (2)
C12—N3—C15121.18 (19)O4—C17—H17117.3
C12—N3—C16120.76 (19)O3—C17—H17117.3
C15—N3—C16117.20 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H8···O3ii0.882.002.838 (2)158
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C16H16N3O2)2(CHO2)2]
Mr785.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)14.556 (3), 6.7607 (14), 17.085 (3)
β (°) 101.63 (3)
V3)1646.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.863, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
13433, 3213, 2679
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.07
No. of reflections3213
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H8···O3i0.882.002.838 (2)158.0
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Fujian Province (grant Nos. 2009S0063 and 2010J01048).

References

First citationCametti, M., Cort, A. D., Mandolini, L., Nissinen, M. & Rissanen, K. (2008). New J. Chem. 32, 1113–1116.  Web of Science CSD CrossRef CAS Google Scholar
First citationConsiglio, G., Failla, S., Finocchiaro, P., Oliveri, I. P., Purrello, R. & Bella, S. D. (2010). Inorg. Chem. 49, 5134–5142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationDrewry, J. A. & Gunning, P. T. (2011). Coord. Chem. Rev. 255, 459–472.  CrossRef CAS Google Scholar
First citationErxleben, A. (2001). Inorg. Chem. 40, 208–213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJiang, J.-C., Chu, Z.-L., Huang, W., Wang, G. & You, X.-Z. (2010). Inorg. Chem. 49, 5897–5911.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKwok, C.-C., Yu, S.-C., Sham, I. H. T. & Che, C.-M. (2004). Chem. Commun. pp. 2758–2759.  CrossRef Google Scholar
First citationLi, G.-B., Fang, H.-C., Cai, Y.-P., Zhou, Z.-Y., Thallapally, P. K. & Tian, J. (2010). Inorg. Chem. 49, 7241–7243.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationRai, V. K., Srivastava, R. & Kamalasanan, M. N. (2009). Synth. Met. 159, 234–237.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShamsipur, M., Yousefi, M., Hosseini, M., Reza Ganjali, M., Sharghi, H. & Naeimi, H. (2001). Anal. Chem. 73, 2869–2874.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Mao, W.-J., Yang, Y. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 3471–3477.  Web of Science CSD CrossRef CAS Google Scholar
First citationSunatsuki, Y., Motoda, Y. & Matsumoto, N. (2002). Coord. Chem. Rev. 226, 199–209.  Web of Science CrossRef CAS Google Scholar
First citationWinter, A., Friebe, C., Chiper, M., Hager, M. D. & Schubert, U. S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 4083–4098.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m624-m625
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds