organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1224

3-(2,6-Di­methyl­anilino)imidazo[1,2-a]pyridin-1-ium perchlorate

aDepartment of Chemistry and Biochemistry, 1306 East University Boulevard, University of Arizona, Tucson, AZ 85721, USA, and bSouthwest Center for Drug Discovery and Development, College of Pharmacy, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu

(Received 12 April 2011; accepted 20 April 2011; online 29 April 2011)

The structure of the organic cation in the title compound, C15H16N3+·ClO4, contains two essentially planar rings. Mean planes fitted through all non-H atoms of each ring system have an r.m.s. deviation of 0.019 Å for the imidazole-based ring and 0.016 Å for the 2,6-dimethyl­phenyl ring. The angle between the two planes is 86.76 (2)°. In the crystal structure, N—H⋯O inter­actions form a one-dimensional chain, which propagates in the b-axis direction. C—H⋯O inter­actions are also found in the crystal packing.

Related literature

For background information on the Groebke–Blackburn synthesis, see: Bienaymé & Bouzid (1998[Bienaymé, H. & Bouzid, K. (1998). Angew. Chem. Int. Ed. 37, 2234-2237.]); Blackburn et al. (1998[Blackburn, C., Guan, B., Fleming, P., Shiosaki, K. & Tsai, S. (1998). Tetrahedron Lett. 39, 3635-3638.]); Groebke et al. (1998[Groebke, K., Weber, L. & Mehlin, F. (1998). Synlett, pp. 661-663.]). For details of the chemical synthesis, see: Nichol et al. (2011[Nichol, G. S., Sharma, A. & Li, H.-Y. (2011). Acta Cryst. E67, o833.]); Sharma & Li (2011[Sharma, A. & Li, H.-Y. (2011). Synlett. In the press.]). For information on graph-set notation to describe hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N3+·ClO4

  • Mr = 337.76

  • Triclinic, [P \overline 1]

  • a = 8.6347 (3) Å

  • b = 8.7663 (3) Å

  • c = 11.5155 (4) Å

  • α = 70.668 (2)°

  • β = 73.131 (2)°

  • γ = 72.679 (2)°

  • V = 767.24 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.26 × 0.16 × 0.16 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.957

  • 27864 measured reflections

  • 8640 independent reflections

  • 6871 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.05

  • 8640 reflections

  • 272 parameters

  • All H-atom parameters refined

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.869 (16) 1.955 (17) 2.8169 (10) 170.8 (15)
N3—H3N⋯O3 0.832 (16) 2.216 (15) 2.8899 (10) 138.3 (14)
C2—H2⋯O2ii 0.911 (14) 2.547 (14) 3.3826 (11) 152.8 (12)
C3—H3⋯O4ii 0.971 (15) 2.559 (15) 3.2893 (12) 132.0 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The Groebke–Blackburn reaction is the most popular way to prepare imidazo-azines from 2-aminoazines in a single-step (Groebke et al., 1998; Bienaymé & Bouzid, 1998; Blackburn et al., 1998). We have recently reported developments on this synthetic method (Nichol et al., 2011; Sharma & Li, 2011) and present here the crystal structure of the title compound, determined as part of a larger study.

The asymmetric unit of the title compound is shown in Fig. 1. Molecular dimensions are unexceptional. Both ring systems are essentially planar (a mean plane fitted through atoms N1, N2, N3 C1 > C7 has an r.m.s. deviation of 0.019 Å; a mean plane fitted through atoms N3, C8 > C15 has an r.m.s. deviation of 0.016 Å) and the angle between both planes is 86.76 (2)°.

In the crystal, N—H···O interactions form a one-dimensional C22(9) chain (Bernstein et al. 1995), which propagates in the b-axis direction (Fig. 2). C—H···O interactions are also found in the crystal packing.

Related literature top

For background information on the Groebke–Blackburn synthesis, see: Bienaymé & Bouzid (1998); Blackburn et al. (1998); Groebke et al. (1998). For details of the chemical synthesis, see: Nichol et al., 2011; Sharma & Li (2011). For information on graph-set notation to describe hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

The synthesis is described in Sharma & Li (2011).

Refinement top

All H atoms were located from a difference Fourier map and are freely refined. N—H distances are 0.869 (16) and 0.832 (16) Å; C—H distances lie in the range 0.911 (4)–1.033 (17) Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. N—H···O interactions (dotted blue lines; dotted red lines indicate continuation) in the title compound.
3-(2,6-Dimethylanilino)imidazo[1,2-a]pyridin-1-ium perchlorate top
Crystal data top
C15H16N3+·ClO4Z = 2
Mr = 337.76F(000) = 352
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6347 (3) ÅCell parameters from 8544 reflections
b = 8.7663 (3) Åθ = 2.5–39.0°
c = 11.5155 (4) ŵ = 0.27 mm1
α = 70.668 (2)°T = 100 K
β = 73.131 (2)°Block, colourless
γ = 72.679 (2)°0.26 × 0.16 × 0.16 mm
V = 767.24 (5) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
8640 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics6871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 38.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1315
Tmin = 0.932, Tmax = 0.957k = 1515
27864 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1118P]
where P = (Fo2 + 2Fc2)/3
8640 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C15H16N3+·ClO4γ = 72.679 (2)°
Mr = 337.76V = 767.24 (5) Å3
Triclinic, P1Z = 2
a = 8.6347 (3) ÅMo Kα radiation
b = 8.7663 (3) ŵ = 0.27 mm1
c = 11.5155 (4) ÅT = 100 K
α = 70.668 (2)°0.26 × 0.16 × 0.16 mm
β = 73.131 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
8640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6871 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.957Rint = 0.031
27864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.05Δρmax = 0.61 e Å3
8640 reflectionsΔρmin = 0.51 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.98956 (8)0.60185 (8)0.27803 (6)0.01285 (10)
N20.85450 (9)0.82744 (9)0.33586 (7)0.01631 (12)
H2N0.825 (2)0.904 (2)0.3751 (15)0.032 (4)*
N30.82987 (9)0.59792 (9)0.13756 (7)0.01541 (11)
H3N0.782 (2)0.5193 (19)0.1717 (14)0.030 (4)*
C11.10989 (10)0.45913 (10)0.27281 (8)0.01559 (13)
H11.1040 (18)0.3970 (17)0.2222 (13)0.021 (3)*
C21.22970 (11)0.41819 (11)0.33968 (8)0.01768 (14)
H21.3107 (17)0.3243 (17)0.3371 (13)0.021 (3)*
C31.23050 (11)0.52108 (11)0.41221 (8)0.01805 (14)
H31.3177 (18)0.4918 (18)0.4584 (14)0.026 (3)*
C41.11017 (11)0.66267 (11)0.41743 (8)0.01665 (13)
H41.1091 (17)0.7333 (17)0.4609 (13)0.022 (3)*
C50.98717 (10)0.70098 (9)0.34900 (7)0.01399 (12)
C60.77067 (10)0.80959 (10)0.25805 (8)0.01618 (13)
H60.6720 (18)0.8831 (18)0.2376 (14)0.025 (3)*
C70.85317 (10)0.66985 (9)0.22032 (7)0.01359 (12)
C80.77759 (10)0.70835 (9)0.02641 (7)0.01420 (12)
C90.62087 (11)0.72027 (11)0.00791 (8)0.01716 (13)
C100.57589 (12)0.82519 (12)0.10399 (9)0.02081 (15)
H100.4688 (18)0.8271 (17)0.1195 (13)0.023 (3)*
C110.68217 (13)0.91810 (12)0.19433 (9)0.02220 (16)
H110.657 (2)0.9887 (19)0.2776 (15)0.033 (4)*
C120.83699 (12)0.90525 (11)0.17397 (8)0.02083 (15)
H120.915 (2)0.9649 (19)0.2370 (15)0.032 (4)*
C130.88820 (11)0.79974 (10)0.06457 (8)0.01662 (13)
C140.50193 (13)0.62394 (14)0.10725 (10)0.02599 (19)
H14A0.549 (2)0.498 (2)0.1225 (15)0.035 (4)*
H14B0.483 (2)0.655 (2)0.1867 (16)0.037 (4)*
H14C0.394 (2)0.652 (2)0.0884 (16)0.037 (4)*
C151.05888 (12)0.78164 (13)0.04629 (9)0.02178 (16)
H15A1.0548 (18)0.8453 (18)0.0085 (14)0.027 (4)*
H15B1.135 (2)0.819 (2)0.1279 (16)0.036 (4)*
H15C1.1063 (19)0.6657 (19)0.0109 (14)0.028 (4)*
Cl0.65990 (2)0.20252 (2)0.419315 (17)0.01454 (5)
O10.79691 (9)0.07166 (9)0.46174 (7)0.02290 (13)
O20.60990 (9)0.15985 (9)0.32753 (7)0.02488 (14)
O30.71409 (13)0.35550 (10)0.36274 (8)0.03427 (19)
O40.52640 (10)0.21967 (12)0.52460 (7)0.03483 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0136 (3)0.0125 (2)0.0123 (2)0.0019 (2)0.0038 (2)0.0031 (2)
N20.0182 (3)0.0136 (3)0.0171 (3)0.0008 (2)0.0050 (2)0.0054 (2)
N30.0204 (3)0.0135 (3)0.0136 (3)0.0049 (2)0.0072 (2)0.0011 (2)
C10.0161 (3)0.0143 (3)0.0155 (3)0.0001 (2)0.0046 (2)0.0047 (2)
C20.0157 (3)0.0180 (3)0.0183 (3)0.0004 (3)0.0061 (3)0.0049 (3)
C30.0164 (3)0.0210 (3)0.0175 (3)0.0037 (3)0.0065 (3)0.0042 (3)
C40.0184 (3)0.0180 (3)0.0156 (3)0.0050 (3)0.0055 (3)0.0047 (3)
C50.0153 (3)0.0135 (3)0.0133 (3)0.0030 (2)0.0035 (2)0.0037 (2)
C60.0163 (3)0.0144 (3)0.0167 (3)0.0006 (2)0.0054 (2)0.0037 (2)
C70.0141 (3)0.0132 (3)0.0131 (3)0.0020 (2)0.0047 (2)0.0024 (2)
C80.0166 (3)0.0133 (3)0.0125 (3)0.0031 (2)0.0051 (2)0.0018 (2)
C90.0175 (3)0.0185 (3)0.0154 (3)0.0046 (3)0.0059 (3)0.0018 (3)
C100.0213 (4)0.0218 (4)0.0188 (3)0.0018 (3)0.0104 (3)0.0020 (3)
C110.0290 (4)0.0189 (3)0.0161 (3)0.0023 (3)0.0094 (3)0.0000 (3)
C120.0270 (4)0.0178 (3)0.0149 (3)0.0072 (3)0.0039 (3)0.0006 (3)
C130.0187 (3)0.0157 (3)0.0148 (3)0.0048 (3)0.0028 (2)0.0030 (2)
C140.0204 (4)0.0336 (5)0.0227 (4)0.0128 (4)0.0065 (3)0.0016 (4)
C150.0186 (4)0.0249 (4)0.0222 (4)0.0087 (3)0.0026 (3)0.0048 (3)
Cl0.01653 (8)0.01267 (7)0.01320 (7)0.00157 (5)0.00390 (6)0.00279 (5)
O10.0223 (3)0.0221 (3)0.0274 (3)0.0056 (2)0.0147 (3)0.0118 (3)
O20.0258 (3)0.0247 (3)0.0311 (4)0.0006 (3)0.0171 (3)0.0124 (3)
O30.0591 (6)0.0231 (3)0.0265 (4)0.0231 (4)0.0188 (4)0.0067 (3)
O40.0263 (4)0.0410 (5)0.0207 (3)0.0058 (3)0.0040 (3)0.0066 (3)
Geometric parameters (Å, º) top
N1—C11.3741 (10)C8—C131.4039 (11)
N1—C51.3687 (10)C9—C101.3966 (12)
N1—C71.3992 (10)C9—C141.5071 (13)
N2—H2N0.869 (16)C10—H100.985 (14)
N2—C51.3408 (11)C10—C111.3849 (14)
N2—C61.3740 (11)C11—H110.999 (16)
N3—H3N0.832 (16)C11—C121.3891 (14)
N3—C71.3896 (10)C12—H120.966 (16)
N3—C81.4262 (10)C12—C131.3951 (12)
C1—H10.939 (14)C13—C151.5034 (13)
C1—C21.3602 (12)C14—H14A1.033 (17)
C2—H20.911 (14)C14—H14B0.994 (17)
C2—C31.4203 (12)C14—H14C0.958 (17)
C3—H30.971 (15)C15—H15A0.958 (15)
C3—C41.3671 (12)C15—H15B0.994 (16)
C4—H40.912 (14)C15—H15C0.971 (15)
C4—C51.3999 (11)Cl—O11.4528 (7)
C6—H60.941 (15)Cl—O21.4375 (7)
C6—C71.3601 (11)Cl—O31.4353 (8)
C8—C91.3985 (11)Cl—O41.4239 (8)
C1—N1—C5121.77 (7)C8—C9—C10118.57 (8)
C1—N1—C7129.50 (7)C8—C9—C14120.81 (7)
C5—N1—C7108.71 (6)C10—C9—C14120.61 (8)
H2N—N2—C5123.8 (11)C9—C10—H10118.3 (8)
H2N—N2—C6126.6 (11)C9—C10—C11121.14 (8)
C5—N2—C6109.48 (7)H10—C10—C11120.4 (8)
H3N—N3—C7114.8 (11)C10—C11—H11123.1 (9)
H3N—N3—C8114.5 (11)C10—C11—C12119.44 (8)
C7—N3—C8116.63 (7)H11—C11—C12117.3 (9)
N1—C1—H1117.3 (9)C11—C12—H12121.1 (9)
N1—C1—C2118.21 (7)C11—C12—C13121.33 (8)
H1—C1—C2124.5 (9)H12—C12—C13117.5 (9)
C1—C2—H2119.5 (9)C8—C13—C12118.23 (8)
C1—C2—C3120.71 (8)C8—C13—C15121.02 (7)
H2—C2—C3119.8 (9)C12—C13—C15120.74 (8)
C2—C3—H3120.1 (9)C9—C14—H14A111.5 (9)
C2—C3—C4120.84 (7)C9—C14—H14B108.0 (10)
H3—C3—C4119.1 (9)C9—C14—H14C113.1 (10)
C3—C4—H4123.1 (9)H14A—C14—H14B109.3 (13)
C3—C4—C5117.33 (8)H14A—C14—H14C109.5 (14)
H4—C4—C5119.6 (9)H14B—C14—H14C105.1 (14)
N1—C5—N2107.30 (7)C13—C15—H15A110.8 (9)
N1—C5—C4121.11 (7)C13—C15—H15B111.2 (10)
N2—C5—C4131.58 (8)C13—C15—H15C109.7 (9)
N2—C6—H6123.8 (9)H15A—C15—H15B108.4 (13)
N2—C6—C7108.34 (7)H15A—C15—H15C109.6 (12)
H6—C6—C7127.8 (9)H15B—C15—H15C107.1 (13)
N1—C7—N3120.77 (7)O1—Cl—O2108.58 (4)
N1—C7—C6106.16 (7)O1—Cl—O3109.13 (5)
N3—C7—C6132.97 (7)O1—Cl—O4109.21 (5)
N3—C8—C9120.05 (7)O2—Cl—O3109.54 (5)
N3—C8—C13118.66 (7)O2—Cl—O4110.96 (6)
C9—C8—C13121.27 (7)O3—Cl—O4109.39 (6)
C5—N1—C1—C20.63 (12)C1—N1—C7—C6178.53 (8)
C7—N1—C1—C2179.04 (8)C5—N1—C7—N3176.88 (7)
N1—C1—C2—C30.38 (13)C5—N1—C7—C60.04 (9)
C1—C2—C3—C40.61 (13)C7—N3—C8—C9114.31 (9)
C2—C3—C4—C50.16 (13)C7—N3—C8—C1367.62 (10)
C6—N2—C5—N10.59 (9)N3—C8—C9—C10177.75 (8)
C6—N2—C5—C4179.96 (9)N3—C8—C9—C143.10 (13)
C1—N1—C5—N2179.04 (7)C13—C8—C9—C100.27 (13)
C1—N1—C5—C41.44 (12)C13—C8—C9—C14178.88 (9)
C7—N1—C5—N20.34 (9)C8—C9—C10—C111.10 (14)
C7—N1—C5—C4179.86 (7)C14—C9—C10—C11178.05 (10)
C3—C4—C5—N11.16 (12)C9—C10—C11—C120.78 (15)
C3—C4—C5—N2179.45 (9)C10—C11—C12—C130.40 (15)
C5—N2—C6—C70.62 (10)C11—C12—C13—C81.19 (14)
N2—C6—C7—N10.39 (9)C11—C12—C13—C15177.38 (9)
N2—C6—C7—N3175.99 (8)N3—C8—C13—C12178.90 (8)
C8—N3—C7—N1138.11 (8)N3—C8—C13—C150.33 (12)
C8—N3—C7—C637.84 (13)C9—C8—C13—C120.85 (13)
C1—N1—C7—N34.55 (12)C9—C8—C13—C15177.71 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.869 (16)1.955 (17)2.8169 (10)170.8 (15)
N3—H3N···O30.832 (16)2.216 (15)2.8899 (10)138.3 (14)
C2—H2···O2ii0.911 (14)2.547 (14)3.3826 (11)152.8 (12)
C3—H3···O4ii0.971 (15)2.559 (15)3.2893 (12)132.0 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H16N3+·ClO4
Mr337.76
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6347 (3), 8.7663 (3), 11.5155 (4)
α, β, γ (°)70.668 (2), 73.131 (2), 72.679 (2)
V3)767.24 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.26 × 0.16 × 0.16
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
27864, 8640, 6871
Rint0.031
(sin θ/λ)max1)0.877
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.05
No. of reflections8640
No. of parameters272
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.61, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.869 (16)1.955 (17)2.8169 (10)170.8 (15)
N3—H3N···O30.832 (16)2.216 (15)2.8899 (10)138.3 (14)
C2—H2···O2ii0.911 (14)2.547 (14)3.3826 (11)152.8 (12)
C3—H3···O4ii0.971 (15)2.559 (15)3.2893 (12)132.0 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The diffractometer was purchased with funding from NSF grant No. CHE-0741837.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBienaymé, H. & Bouzid, K. (1998). Angew. Chem. Int. Ed. 37, 2234–2237.  Google Scholar
First citationBlackburn, C., Guan, B., Fleming, P., Shiosaki, K. & Tsai, S. (1998). Tetrahedron Lett. 39, 3635–3638.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGroebke, K., Weber, L. & Mehlin, F. (1998). Synlett, pp. 661–663.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNichol, G. S., Sharma, A. & Li, H.-Y. (2011). Acta Cryst. E67, o833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, A. & Li, H.-Y. (2011). Synlett. In the press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1224
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds