organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1062

4-(4-Methylbenzenesulfonamido)benzoic acid N,N-di­methyl­formamide mono­solvate

aCollege of Chemistry and Science of Life, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 18 March 2011; accepted 31 March 2011; online 7 April 2011)

In the title compound, C14H13NO4S·C3H7NO, the C—S—N—C torsion angle of −64.55 (17)° defines the folded conformation of the mol­ecule. The dihedral angle between the benzene rings is 83.367 (6)°. In a crystal, mol­ecules are linked into a chain along a axis through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. There is also an intra­molecular C—H⋯π inter­action.

Related literature

N-protected amino acids possess an R-CONH-R′ group analogous to the structure of O-terminal peptides and proteins, see: Antolini et al. (1984[Antolini, L., Menabue, L., Saladini, M., Pellacani, G. C., Battaglia, L. P., Sola, M. & Bonamartini Corradi, A. (1984). J. Chem. Soc. Dalton Trans. pp. 2319-2323.]); Menabue & Saladini (1988[Menabue, L. & Saladini, M. (1988). Acta Cryst. C44, 2087-2089.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S·C3H7NO

  • Mr = 364.41

  • Monoclinic, P 21 /n

  • a = 8.0953 (10) Å

  • b = 25.151 (3) Å

  • c = 8.8840 (11) Å

  • β = 98.010 (1)°

  • V = 1791.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.39 × 0.29 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.949

  • 9993 measured reflections

  • 3336 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.04

  • 3336 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.27 2.903 (2) 131
O2—H2A⋯O5ii 0.82 1.79 2.598 (2) 168
C16—H16CCg1 0.96 2.98 3.576 (3) 121
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison,Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Protected amino acids possess R-CONH-R' group analogous to the structure of O-terminal peptides and proteins (Menabue, et al., 1988, Antolini, et al., 1984). The substitution of an Ar—SO2-group on amine addes to 4-aminobenzeoic acid the coordination donors of three types-O, N donors from carboxyl, sulfoxyl and amine respectively, which may result in different coordination modes. In this paper, we synthesized the desired ligand in N,N-dimethylformamide solvent.

The title compound contains one N-p-tolysulfonyl-4-aminobenzoic acid molecule and a solvent N, N-dimethylformamide in the asymmetric unit (Fig. 1). The molecule has a C1—N1—S1—C8 of 64.552 (2) °, and the dihedral angle between the benzene rings is 83.367 (6) °. There are intermolecular hydrogen bonds between carboxylate group oxygen atoms, nitrogen atoms and solvent oxygen atoms of the types N—H···O and O—H···O generating a chain along a axis (Figs. 2 and 3, Table 1). There are intramolecular CH···π interactions between H(16 C) and H(17B) of solvent and the centre of two aromatic rings of the title molecule(C16—H16C···C1—C2—C3—C4—C5—C6 and C17—H17B···C8—C9—C10—C11—C12—C13; the distances of H to the centre of the aromatic rings are 2.982 (3) and 3.84 (3) Å, respectively).

Related literature top

N-protected amino acids possess an R-CONH-R' group analogous to the structure of O-terminal peptides and proteins, see: Antolini et al. (1984); Menabue & Saladini (1988).

Experimental top

A mixture of N-p-tolysulfonylchloride (1 mmol) and 4-aminobenzoic acid (1 mmol) in water(20 ml) was stirred at room temperature for 10 h. Then HCl (12 mol/L) was slowly added to the resulting solution. The mixture was stirred for 5 min and filtrated. The block colourless single crystals suitable for X-ray analysis were obtained by recrystallization from N,N-dimethylformamide. IR(KBr): 3423(s), 3198(versus), 3059(w), 2928(s), 2510(m), 1693(versus), 1635(versus), 1607(s), 1512(m), 1433(m), 1405(s), 1383(s), 1334(s), 1291(s), 1231(m), 1159(versus), 1092(s), 1021(w), 923(s), 862(m), 827(m), 765(m), 674(s), 5757(s), 547(s), 525(m), 503(w)cm-1.

Refinement top

H atoms were placed in calculated positions and treated as riding on their parent atoms (C—H = 0.93–0.96 Å, N—H = 0.86 Å,O—H = 0.82 Å) and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. All hydrogen atams have been omitted for clarity.
[Figure 2] Fig. 2. A view of the hydrogen bonds (dotted lines) in the crystal structure of the title compound (I).
[Figure 3] Fig. 3. The crystal packing of the title compound (I), viewed along the c axis.
4-(4-Methylbenzenesulfonamido)benzoic acid N,N-dimethylformamide monosolvate top
Crystal data top
C14H13NO4S·C3H7NOF(000) = 768
Mr = 364.41Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3230 reflections
a = 8.0953 (10) Åθ = 2.5–25.0°
b = 25.151 (3) ŵ = 0.21 mm1
c = 8.8840 (11) ÅT = 296 K
β = 98.010 (1)°Block, colourless
V = 1791.1 (4) Å30.39 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3336 independent reflections
Radiation source: fine-focus sealed tube2570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.923, Tmax = 0.949k = 2330
9993 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.5453P]
where P = (Fo2 + 2Fc2)/3
3336 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H13NO4S·C3H7NOV = 1791.1 (4) Å3
Mr = 364.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0953 (10) ŵ = 0.21 mm1
b = 25.151 (3) ÅT = 296 K
c = 8.8840 (11) Å0.39 × 0.29 × 0.25 mm
β = 98.010 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3336 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2570 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.949Rint = 0.024
9993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
3336 reflectionsΔρmin = 0.37 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3556 (2)0.05871 (7)0.1256 (2)0.0380 (4)
C20.4907 (2)0.07414 (9)0.0562 (2)0.0498 (5)
H20.47530.09710.02660.060*
C30.6483 (2)0.05551 (9)0.1098 (2)0.0488 (5)
H30.73880.06650.06370.059*
C40.6733 (2)0.02077 (8)0.2312 (2)0.0400 (4)
C50.5375 (2)0.00633 (8)0.3018 (2)0.0449 (5)
H50.55290.01670.38460.054*
C60.3800 (2)0.02563 (8)0.2509 (2)0.0451 (5)
H60.29050.01640.30080.054*
C70.8422 (2)0.00147 (8)0.2797 (2)0.0452 (5)
C80.1600 (2)0.17188 (8)0.1824 (2)0.0459 (5)
C90.2493 (3)0.21904 (9)0.1886 (3)0.0560 (6)
H90.29800.23020.10520.067*
C100.2656 (3)0.24944 (9)0.3195 (3)0.0632 (6)
H100.32530.28110.32300.076*
C110.1950 (3)0.23365 (9)0.4452 (3)0.0602 (6)
C120.1080 (3)0.18598 (10)0.4370 (3)0.0625 (6)
H120.06100.17450.52110.075*
C130.0896 (3)0.15518 (9)0.3078 (3)0.0555 (6)
H130.03030.12340.30470.067*
C140.2119 (4)0.26663 (12)0.5889 (4)0.0878 (9)
H14A0.14920.29890.57000.132*
H14B0.32730.27500.61990.132*
H14C0.16990.24690.66790.132*
C150.7728 (3)0.09910 (9)0.6138 (2)0.0540 (6)
H150.78820.08530.71190.065*
C160.6101 (3)0.15217 (11)0.4239 (3)0.0717 (7)
H16A0.70170.14420.36980.108*
H16B0.59860.19000.43190.108*
H16C0.50920.13750.37020.108*
C170.5200 (4)0.13996 (13)0.6762 (4)0.0936 (10)
H17A0.56200.12730.77610.140*
H17B0.41730.12210.64000.140*
H17C0.50050.17760.68020.140*
N10.18945 (19)0.07351 (7)0.06580 (18)0.0446 (4)
H10.11490.04890.05580.054*
N20.6410 (2)0.12933 (7)0.5741 (2)0.0518 (4)
O10.96596 (17)0.01262 (6)0.22823 (18)0.0589 (4)
O20.84373 (17)0.03862 (7)0.38401 (19)0.0628 (4)
H2A0.93850.05050.40470.094*
O30.2361 (2)0.15441 (7)0.08607 (17)0.0661 (5)
O40.04468 (18)0.12891 (6)0.03477 (18)0.0621 (4)
O50.87652 (19)0.08779 (7)0.53101 (19)0.0625 (4)
S10.13037 (6)0.13338 (2)0.01515 (6)0.04889 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (10)0.0379 (10)0.0400 (10)0.0011 (8)0.0036 (8)0.0049 (8)
C20.0447 (12)0.0610 (14)0.0444 (11)0.0025 (10)0.0084 (9)0.0134 (10)
C30.0369 (11)0.0612 (14)0.0501 (12)0.0020 (9)0.0124 (9)0.0063 (10)
C40.0336 (10)0.0438 (11)0.0424 (10)0.0017 (8)0.0044 (8)0.0040 (9)
C50.0387 (11)0.0504 (12)0.0459 (11)0.0025 (9)0.0073 (8)0.0092 (9)
C60.0348 (11)0.0506 (12)0.0517 (12)0.0004 (9)0.0122 (9)0.0067 (9)
C70.0353 (10)0.0476 (12)0.0522 (12)0.0024 (9)0.0046 (8)0.0041 (9)
C80.0364 (11)0.0419 (12)0.0582 (12)0.0028 (8)0.0025 (9)0.0042 (9)
C90.0480 (13)0.0471 (13)0.0736 (15)0.0006 (10)0.0112 (11)0.0114 (11)
C100.0536 (14)0.0423 (13)0.0934 (18)0.0078 (10)0.0091 (13)0.0037 (12)
C110.0488 (13)0.0527 (14)0.0794 (16)0.0030 (11)0.0103 (11)0.0146 (12)
C120.0592 (14)0.0635 (15)0.0682 (15)0.0128 (12)0.0207 (11)0.0104 (12)
C130.0540 (13)0.0482 (13)0.0659 (14)0.0130 (10)0.0142 (11)0.0056 (11)
C140.083 (2)0.0776 (19)0.106 (2)0.0165 (16)0.0240 (17)0.0388 (17)
C150.0571 (14)0.0541 (14)0.0479 (12)0.0114 (11)0.0028 (10)0.0104 (10)
C160.0728 (17)0.0799 (18)0.0596 (14)0.0280 (14)0.0006 (12)0.0042 (13)
C170.091 (2)0.102 (2)0.100 (2)0.0006 (17)0.0533 (18)0.0015 (18)
N10.0352 (9)0.0432 (10)0.0532 (10)0.0005 (7)0.0017 (7)0.0013 (7)
N20.0465 (10)0.0578 (11)0.0517 (10)0.0023 (8)0.0088 (8)0.0015 (8)
O10.0336 (8)0.0704 (11)0.0740 (10)0.0024 (7)0.0121 (7)0.0075 (8)
O20.0371 (8)0.0679 (11)0.0827 (11)0.0070 (7)0.0059 (8)0.0237 (9)
O30.0747 (11)0.0672 (11)0.0587 (9)0.0091 (8)0.0173 (8)0.0190 (8)
O40.0481 (9)0.0665 (11)0.0659 (10)0.0111 (7)0.0123 (7)0.0033 (8)
O50.0456 (9)0.0688 (11)0.0723 (10)0.0096 (7)0.0055 (8)0.0127 (8)
S10.0447 (3)0.0511 (3)0.0492 (3)0.0066 (2)0.0007 (2)0.0071 (2)
Geometric parameters (Å, º) top
C1—C61.381 (3)C12—C131.375 (3)
C1—C21.384 (3)C12—H120.9300
C1—N11.425 (2)C13—H130.9300
C2—C31.380 (3)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.380 (3)C14—H14C0.9600
C3—H30.9300C15—O51.224 (3)
C4—C51.388 (2)C15—N21.317 (3)
C4—C71.485 (3)C15—H150.9300
C5—C61.380 (3)C16—N21.442 (3)
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—O11.211 (2)C16—H16C0.9600
C7—O21.315 (2)C17—N21.450 (3)
C8—C131.386 (3)C17—H17A0.9600
C8—C91.386 (3)C17—H17B0.9600
C8—S11.762 (2)C17—H17C0.9600
C9—C101.382 (3)N1—S11.6243 (17)
C9—H90.9300N1—H10.8600
C10—C111.382 (3)O2—H2A0.8200
C10—H100.9300O3—S11.4266 (16)
C11—C121.387 (3)O4—S11.4291 (15)
C11—C141.512 (3)
C6—C1—C2119.62 (17)C12—C13—H13120.3
C6—C1—N1118.66 (16)C8—C13—H13120.3
C2—C1—N1121.62 (17)C11—C14—H14A109.5
C3—C2—C1120.08 (18)C11—C14—H14B109.5
C3—C2—H2120.0H14A—C14—H14B109.5
C1—C2—H2120.0C11—C14—H14C109.5
C2—C3—C4120.81 (18)H14A—C14—H14C109.5
C2—C3—H3119.6H14B—C14—H14C109.5
C4—C3—H3119.6O5—C15—N2124.8 (2)
C3—C4—C5118.68 (17)O5—C15—H15117.6
C3—C4—C7119.61 (17)N2—C15—H15117.6
C5—C4—C7121.68 (18)N2—C16—H16A109.5
C6—C5—C4120.87 (18)N2—C16—H16B109.5
C6—C5—H5119.6H16A—C16—H16B109.5
C4—C5—H5119.6N2—C16—H16C109.5
C5—C6—C1119.87 (17)H16A—C16—H16C109.5
C5—C6—H6120.1H16B—C16—H16C109.5
C1—C6—H6120.1N2—C17—H17A109.5
O1—C7—O2123.18 (18)N2—C17—H17B109.5
O1—C7—C4123.84 (19)H17A—C17—H17B109.5
O2—C7—C4112.97 (16)N2—C17—H17C109.5
C13—C8—C9119.9 (2)H17A—C17—H17C109.5
C13—C8—S1119.26 (16)H17B—C17—H17C109.5
C9—C8—S1120.86 (17)C1—N1—S1124.87 (13)
C10—C9—C8119.7 (2)C1—N1—H1117.6
C10—C9—H9120.2S1—N1—H1117.6
C8—C9—H9120.2C15—N2—C16120.48 (18)
C11—C10—C9121.2 (2)C15—N2—C17122.1 (2)
C11—C10—H10119.4C16—N2—C17117.4 (2)
C9—C10—H10119.4C7—O2—H2A109.5
C10—C11—C12118.0 (2)O3—S1—O4119.31 (10)
C10—C11—C14121.7 (2)O3—S1—N1109.82 (9)
C12—C11—C14120.3 (2)O4—S1—N1104.71 (9)
C13—C12—C11121.7 (2)O3—S1—C8107.75 (10)
C13—C12—H12119.1O4—S1—C8108.51 (9)
C11—C12—H12119.1N1—S1—C8106.00 (9)
C12—C13—C8119.4 (2)
C6—C1—C2—C31.5 (3)C10—C11—C12—C130.8 (4)
N1—C1—C2—C3174.66 (19)C14—C11—C12—C13179.6 (2)
C1—C2—C3—C41.0 (3)C11—C12—C13—C80.3 (4)
C2—C3—C4—C52.2 (3)C9—C8—C13—C120.6 (3)
C2—C3—C4—C7175.86 (19)S1—C8—C13—C12177.99 (18)
C3—C4—C5—C60.9 (3)C6—C1—N1—S1135.20 (17)
C7—C4—C5—C6177.16 (19)C2—C1—N1—S148.6 (2)
C4—C5—C6—C11.7 (3)O5—C15—N2—C160.3 (4)
C2—C1—C6—C52.9 (3)O5—C15—N2—C17178.1 (2)
N1—C1—C6—C5173.46 (18)C1—N1—S1—O351.58 (18)
C3—C4—C7—O17.1 (3)C1—N1—S1—O4179.18 (15)
C5—C4—C7—O1174.9 (2)C1—N1—S1—C864.55 (17)
C3—C4—C7—O2172.33 (19)C13—C8—S1—O3170.90 (16)
C5—C4—C7—O25.7 (3)C9—C8—S1—O310.6 (2)
C13—C8—C9—C100.8 (3)C13—C8—S1—O458.62 (19)
S1—C8—C9—C10177.71 (17)C9—C8—S1—O4119.92 (17)
C8—C9—C10—C110.2 (3)C13—C8—S1—N153.38 (19)
C9—C10—C11—C120.6 (4)C9—C8—S1—N1128.09 (17)
C9—C10—C11—C14179.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.272.903 (2)131
O2—H2A···O5ii0.821.792.598 (2)168
C16—H16C···Cg10.962.983.576 (3)121
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO4S·C3H7NO
Mr364.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.0953 (10), 25.151 (3), 8.8840 (11)
β (°) 98.010 (1)
V3)1791.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.39 × 0.29 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.923, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
9993, 3336, 2570
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.04
No. of reflections3336
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.272.903 (2)131
O2—H2A···O5ii0.821.792.598 (2)168
C16—H16C···Cg10.962.983.576 (3)121
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

This work was supported by the Education Department Foundation of Fujian Province of China (grant No. 2008 F5053) and the Master Construction Project of Quanzhou Normal University.

References

First citationAntolini, L., Menabue, L., Saladini, M., Pellacani, G. C., Battaglia, L. P., Sola, M. & Bonamartini Corradi, A. (1984). J. Chem. Soc. Dalton Trans. pp. 2319–2323.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison,Wisconsin,USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationMenabue, L. & Saladini, M. (1988). Acta Cryst. C44, 2087–2089.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1062
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds