organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1140

(Z)-N-{3-[(6-Chloro­pyridin-3-yl)meth­yl]-1,3-thia­zolidin-2-yl­­idene}cyanamide

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bEngineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 2 April 2011; accepted 8 April 2011; online 16 April 2011)

The asymmetric unit of the title compound, C10H9ClN4S, common name thia­cloprid, comprises two mol­ecules. In both mol­ecules, the thia­zolidine rings are almost planar (with r.m.s. deviations of 0.016 and 0.065 Å) and form dihedral angles of 73.36 (6) and 70.25 (8)° with the 2-chloro­pyridine rings. In the crystal, inter­molecular C—H⋯N hydrogen bonds links the mol­ecules into chains propagating in [[\overline1]01].

Related literature

For background to the title compound, a member of the neonicotinoide class of insecticides, see Maienfisch et al. (2003[Maienfisch, P., Haettenschwiler, J., Rindlisbacher, A., Decock, A., Wellmann, H. & Kayser, H. (2003). Chimia, 57, 710-714.]). For the synthesis, see Ishimitsu et al., (1991[Ishimitsu, K., Suzuki, J., Ohishi, H., Yamada, T., Hatano, R., Takakusa, N. & Mitsui, J. (1991). WO Patent 91/04965.])

[Scheme 1]

Experimental

Crystal data
  • C10H9ClN4S

  • Mr = 252.73

  • Monoclinic, P 21 /c

  • a = 7.1294 (14) Å

  • b = 35.469 (7) Å

  • c = 9.0211 (18) Å

  • β = 97.80 (3)°

  • V = 2260.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 K

  • 0.31 × 0.29 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.863, Tmax = 0.909

  • 21869 measured reflections

  • 5151 independent reflections

  • 3505 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.08

  • 5151 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N5i 0.93 2.55 3.459 (4) 167
C13—H13⋯N1ii 0.93 2.49 3.408 (4) 169
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiacloprid is the common name of the title compound, which is neonicotinoide class of insecticide. High efficacy and flexible application methods make it well suited for modern integrated pest management programs in many cropping systems (Ishimitsu et al., 1991; Maienfisch et al., 2003). We report here the synthesis and crystal structure of thiacloprid.

The asymmetric unit comprises two molecules; the thiazolidine rings are almost planar, and form the dihedral angles with 2-chloropyridine rings of 73.36 (6) and 70.25 (8)°, respectively (Fig. 1).

In the crystal, the intermolecular C—H···N hydrogen bonds link the molecules to form a chain (Fig. 2, Table 1).

Related literature top

For background of the title compound, a member of the neonicotinoide class of insecticides, see Maienfisch et al. (2003). For the synthesis, see Ishimitsu et al., (1991)

Experimental top

The title compound was synthesised according the reference (Ishimitsu et al., 1991). A mixture of 2-cyanoiminothiazolidine (12.7 g, 0.1 mol), 2-chloro-5-pyridylmethyl-chloride (17.4 g, 0.1 mol), and K2CO3 (41.4 g, 0.3 mol) in 150 mL of DMF was heated to 323 K and kept stirring for 7 h. After filtered under reduced pressure, the DMF solution was distilled off. A total of 20.2 g (80.2%) title compound was obtained after the recrystallisation from ethyl acetate (15 mL). The suitable colourless block crystal was picked out for the single crystal X-ray diffaction measurement.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing the hydrogen bonding chain. Dashed lines indicate the hydrogen bonds, no involving H atoms have been omitted for clarity.
(Z)-N-{3-[(6-Chloropyridin-3-yl)methyl]- 1,3-thiazolidin-2-ylidene}cyanamide top
Crystal data top
C10H9ClN4SF(000) = 1040
Mr = 252.73Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12991 reflections
a = 7.1294 (14) Åθ = 3.1–27.5°
b = 35.469 (7) ŵ = 0.50 mm1
c = 9.0211 (18) ÅT = 293 K
β = 97.80 (3)°Block, colourless
V = 2260.1 (8) Å30.31 × 0.29 × 0.20 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5151 independent reflections
Radiation source: fine-focus sealed tube3505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.863, Tmax = 0.909k = 4545
21869 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.4995P]
where P = (Fo2 + 2Fc2)/3
5151 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H9ClN4SV = 2260.1 (8) Å3
Mr = 252.73Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.1294 (14) ŵ = 0.50 mm1
b = 35.469 (7) ÅT = 293 K
c = 9.0211 (18) Å0.31 × 0.29 × 0.20 mm
β = 97.80 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5151 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3505 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.909Rint = 0.046
21869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
5151 reflectionsΔρmin = 0.29 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8652 (3)0.04805 (6)0.2994 (3)0.0528 (6)
C20.7778 (4)0.05431 (7)0.4241 (3)0.0564 (6)
H20.83150.04610.51830.068*
C30.6087 (4)0.07309 (7)0.4038 (3)0.0541 (6)
H30.54430.07770.48500.065*
C40.5334 (3)0.08520 (5)0.2624 (3)0.0417 (5)
C50.6313 (4)0.07628 (6)0.1459 (3)0.0525 (6)
H50.57950.08350.05000.063*
C60.3545 (3)0.10860 (6)0.2362 (3)0.0486 (5)
H6A0.28560.10250.13900.058*
H6B0.27440.10240.31150.058*
C70.4452 (4)0.16785 (7)0.3852 (3)0.0586 (6)
H7A0.56770.15920.43310.070*
H7B0.35160.16220.45070.070*
C80.4506 (6)0.20899 (8)0.3572 (4)0.0831 (10)
H8A0.55730.22020.42000.100*
H8B0.33540.22070.38110.100*
C90.4189 (3)0.16902 (6)0.1222 (3)0.0422 (5)
C100.4177 (3)0.17589 (7)0.1287 (3)0.0545 (6)
C111.3337 (3)0.05498 (7)0.7709 (3)0.0558 (6)
C121.2138 (4)0.04665 (8)0.8736 (3)0.0618 (6)
H121.23870.02680.94060.074*
C131.0549 (4)0.06898 (8)0.8737 (3)0.0609 (7)
H130.97120.06460.94230.073*
C141.0214 (3)0.09783 (7)0.7712 (3)0.0523 (6)
C151.1509 (4)0.10300 (8)0.6735 (3)0.0665 (7)
H151.12800.12220.60330.080*
C160.8483 (3)0.12283 (9)0.7672 (4)0.0678 (8)
H16A0.78180.12340.66600.081*
H16B0.76360.11210.83150.081*
C170.8939 (5)0.19245 (10)0.7102 (4)0.0840 (10)
H17A0.76640.19630.65950.101*
H17B0.97530.18660.63530.101*
C180.9605 (6)0.22673 (9)0.7904 (4)0.0853 (10)
H18A0.87990.24780.75560.102*
H18B1.08870.23250.77280.102*
C190.9155 (3)0.17075 (7)0.9595 (3)0.0464 (5)
C200.9267 (3)0.15741 (8)1.2059 (3)0.0593 (6)
Cl11.08715 (10)0.02601 (2)0.31970 (11)0.0811 (3)
Cl21.53924 (11)0.02813 (2)0.76846 (10)0.0809 (2)
N10.7967 (3)0.05776 (6)0.1620 (3)0.0592 (5)
N20.3963 (2)0.14899 (5)0.2425 (2)0.0432 (4)
N30.4000 (3)0.15412 (5)0.0121 (2)0.0504 (5)
N40.4288 (4)0.19221 (7)0.2375 (3)0.0777 (7)
N51.3080 (3)0.08234 (7)0.6720 (3)0.0658 (6)
N60.8957 (3)0.16118 (6)0.8155 (2)0.0540 (5)
N70.9051 (3)0.14604 (6)1.0652 (2)0.0551 (5)
N80.9439 (4)0.16423 (9)1.3319 (3)0.0864 (8)
S10.47264 (10)0.216369 (16)0.16494 (8)0.05802 (19)
S20.95422 (12)0.21907 (2)0.98475 (9)0.0698 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0496 (12)0.0361 (10)0.0750 (18)0.0031 (10)0.0159 (12)0.0066 (11)
C20.0653 (14)0.0536 (13)0.0499 (15)0.0087 (12)0.0069 (12)0.0066 (11)
C30.0656 (14)0.0505 (12)0.0483 (14)0.0063 (11)0.0159 (11)0.0021 (11)
C40.0476 (11)0.0336 (9)0.0458 (13)0.0015 (9)0.0138 (9)0.0020 (8)
C50.0664 (14)0.0486 (12)0.0450 (14)0.0081 (11)0.0160 (11)0.0053 (10)
C60.0465 (11)0.0424 (11)0.0580 (15)0.0045 (9)0.0113 (10)0.0002 (10)
C70.0753 (16)0.0539 (13)0.0462 (14)0.0019 (12)0.0061 (12)0.0049 (11)
C80.133 (3)0.0574 (16)0.060 (2)0.0008 (18)0.0185 (19)0.0117 (14)
C90.0367 (10)0.0416 (10)0.0476 (13)0.0033 (8)0.0029 (9)0.0007 (9)
C100.0555 (13)0.0566 (13)0.0501 (15)0.0046 (11)0.0032 (11)0.0001 (12)
C110.0568 (13)0.0556 (13)0.0579 (16)0.0027 (11)0.0177 (12)0.0152 (12)
C120.0708 (16)0.0605 (15)0.0575 (17)0.0074 (13)0.0214 (13)0.0025 (12)
C130.0601 (14)0.0736 (16)0.0541 (16)0.0178 (13)0.0257 (12)0.0177 (13)
C140.0495 (12)0.0619 (14)0.0465 (14)0.0090 (11)0.0106 (10)0.0205 (11)
C150.0728 (17)0.0727 (17)0.0591 (18)0.0088 (14)0.0279 (14)0.0006 (13)
C160.0482 (13)0.0861 (19)0.0685 (19)0.0033 (13)0.0062 (12)0.0297 (15)
C170.096 (2)0.112 (3)0.0459 (17)0.009 (2)0.0141 (15)0.0145 (17)
C180.106 (2)0.0733 (19)0.080 (2)0.0222 (18)0.0239 (19)0.0220 (17)
C190.0389 (10)0.0567 (13)0.0438 (13)0.0051 (10)0.0068 (9)0.0056 (10)
C200.0484 (12)0.0786 (17)0.0525 (16)0.0114 (12)0.0125 (11)0.0098 (13)
Cl10.0568 (4)0.0582 (4)0.1311 (8)0.0141 (3)0.0232 (4)0.0113 (4)
Cl20.0785 (5)0.0756 (5)0.0938 (6)0.0180 (4)0.0307 (4)0.0044 (4)
N10.0684 (13)0.0531 (11)0.0623 (15)0.0100 (10)0.0310 (11)0.0084 (10)
N20.0454 (9)0.0407 (9)0.0437 (11)0.0020 (8)0.0068 (8)0.0008 (8)
N30.0559 (11)0.0496 (10)0.0450 (12)0.0029 (9)0.0045 (9)0.0002 (9)
N40.0968 (18)0.0831 (17)0.0537 (15)0.0063 (14)0.0119 (13)0.0126 (13)
N50.0701 (14)0.0680 (13)0.0662 (15)0.0064 (11)0.0349 (12)0.0018 (11)
N60.0504 (10)0.0702 (13)0.0413 (11)0.0095 (10)0.0058 (8)0.0082 (9)
N70.0581 (11)0.0601 (12)0.0485 (13)0.0040 (10)0.0129 (9)0.0025 (9)
N80.0813 (17)0.133 (2)0.0470 (15)0.0174 (16)0.0147 (12)0.0044 (15)
S10.0681 (4)0.0420 (3)0.0615 (4)0.0052 (3)0.0003 (3)0.0019 (3)
S20.0892 (5)0.0566 (4)0.0649 (5)0.0004 (3)0.0145 (4)0.0053 (3)
Geometric parameters (Å, º) top
C1—N11.314 (3)C11—N51.314 (4)
C1—C21.376 (4)C11—C121.375 (4)
C1—Cl11.752 (2)C11—Cl21.750 (3)
C2—C31.368 (3)C12—C131.383 (4)
C2—H20.9300C12—H120.9300
C3—C41.383 (3)C13—C141.378 (4)
C3—H30.9300C13—H130.9300
C4—C51.375 (3)C14—C151.373 (4)
C4—C61.513 (3)C14—C161.516 (4)
C5—N11.340 (3)C15—N51.340 (4)
C5—H50.9300C15—H150.9300
C6—N21.463 (3)C16—N61.454 (3)
C6—H6A0.9700C16—H16A0.9700
C6—H6B0.9700C16—H16B0.9700
C7—N21.451 (3)C17—N61.459 (4)
C7—C81.482 (4)C17—C181.461 (5)
C7—H7A0.9700C17—H17A0.9700
C7—H7B0.9700C17—H17B0.9700
C8—S11.782 (3)C18—S21.781 (4)
C8—H8A0.9700C18—H18A0.9700
C8—H8B0.9700C18—H18B0.9700
C9—N31.312 (3)C19—N71.305 (3)
C9—N21.325 (3)C19—N61.331 (3)
C9—S11.754 (2)C19—S21.746 (2)
C10—N41.152 (3)C20—N81.152 (4)
C10—N31.324 (3)C20—N71.321 (3)
N1—C1—C2125.2 (2)C14—C13—C12119.5 (2)
N1—C1—Cl1115.5 (2)C14—C13—H13120.2
C2—C1—Cl1119.3 (2)C12—C13—H13120.2
C3—C2—C1117.2 (2)C15—C14—C13117.3 (2)
C3—C2—H2121.4C15—C14—C16121.5 (3)
C1—C2—H2121.4C13—C14—C16121.1 (3)
C2—C3—C4120.0 (2)N5—C15—C14124.7 (3)
C2—C3—H3120.0N5—C15—H15117.6
C4—C3—H3120.0C14—C15—H15117.6
C5—C4—C3117.4 (2)N6—C16—C14112.62 (19)
C5—C4—C6120.7 (2)N6—C16—H16A109.1
C3—C4—C6121.9 (2)C14—C16—H16A109.1
N1—C5—C4124.1 (2)N6—C16—H16B109.1
N1—C5—H5118.0C14—C16—H16B109.1
C4—C5—H5118.0H16A—C16—H16B107.8
N2—C6—C4111.60 (17)N6—C17—C18109.7 (3)
N2—C6—H6A109.3N6—C17—H17A109.7
C4—C6—H6A109.3C18—C17—H17A109.7
N2—C6—H6B109.3N6—C17—H17B109.7
C4—C6—H6B109.3C18—C17—H17B109.7
H6A—C6—H6B108.0H17A—C17—H17B108.2
N2—C7—C8108.2 (2)C17—C18—S2108.1 (2)
N2—C7—H7A110.1C17—C18—H18A110.1
C8—C7—H7A110.1S2—C18—H18A110.1
N2—C7—H7B110.1C17—C18—H18B110.1
C8—C7—H7B110.1S2—C18—H18B110.1
H7A—C7—H7B108.4H18A—C18—H18B108.4
C7—C8—S1108.5 (2)N7—C19—N6122.2 (2)
C7—C8—H8A110.0N7—C19—S2125.99 (19)
S1—C8—H8A110.0N6—C19—S2111.81 (18)
C7—C8—H8B110.0N8—C20—N7174.3 (3)
S1—C8—H8B110.0C1—N1—C5116.1 (2)
H8A—C8—H8B108.4C9—N2—C7116.01 (19)
N3—C9—N2122.1 (2)C9—N2—C6122.68 (19)
N3—C9—S1125.52 (18)C7—N2—C6120.61 (19)
N2—C9—S1112.34 (17)C9—N3—C10119.3 (2)
N4—C10—N3174.2 (3)C11—N5—C15115.9 (2)
N5—C11—C12125.0 (2)C19—N6—C16121.3 (2)
N5—C11—Cl2115.7 (2)C19—N6—C17115.6 (2)
C12—C11—Cl2119.3 (2)C16—N6—C17122.3 (2)
C11—C12—C13117.5 (3)C19—N7—C20119.1 (2)
C11—C12—H12121.3C9—S1—C891.61 (12)
C13—C12—H12121.3C19—S2—C1892.62 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N5i0.932.553.459 (4)167
C13—H13···N1ii0.932.493.408 (4)169
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H9ClN4S
Mr252.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1294 (14), 35.469 (7), 9.0211 (18)
β (°) 97.80 (3)
V3)2260.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.31 × 0.29 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.863, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
21869, 5151, 3505
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.08
No. of reflections5151
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N5i0.932.553.459 (4)167
C13—H13···N1ii0.932.493.408 (4)169
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the Special Funds for the Research of Scientific and Technological Innovative Talents of Harbin Municipal Science and Technology Bureau (2009RFXXG027), the Science and Technology Planning Project of Heilongjiang Province (GZ08A401) and Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshimitsu, K., Suzuki, J., Ohishi, H., Yamada, T., Hatano, R., Takakusa, N. & Mitsui, J. (1991). WO Patent 91/04965.  Google Scholar
First citationMaienfisch, P., Haettenschwiler, J., Rindlisbacher, A., Decock, A., Wellmann, H. & Kayser, H. (2003). Chimia, 57, 710–714.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds