organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1251

rac-(1R,2S,6R,7R)-4-{[(1E)-(2-Chloro­phen­yl)methyl­­idene]amino}-1-iso­propyl-7-methyl-4-aza­tri­cyclo­[5.2.2.02,6]undec-8-ene-3,5-dione

aCollege of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China, and bCollege of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
*Correspondence e-mail: wgduan@gxu.edu.cn

(Received 19 March 2011; accepted 11 April 2011; online 29 April 2011)

The title compound, C21H23ClN2O2, was synthesized from N-amino-α-terpinene maleimide and 2-chloro­benzaldehyde. There are two independent mol­ecules in the asymmetric unit which are linked via an inter­molecular C—H⋯O hydrogen bond. The crystal studied was found to be a partial merohedral twin, with a 0.74 (7):0.26 (7) domain ratio.

Related literature

For the synthesis of the starting α-terpinene-maleic anhydride adduct, see: Luo et al. (2006[Luo, C.-Q., Duan, W.-G., Cen, B. & Ban, L.-N. (2006). Biomass Chem. Eng. 40, 25-28.]). For the synthesis of N-amino-α-terpinene maleimide, see: Maurya & Verma (1986[Maurya, H. & Verma, S. M. (1986). Indian J. Chem. Sect B, 25, 542-544.]). For related structures, see: Struga et al. (2007[Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796-799.], 2009[Struga, M., Kossakowski, J., Kozioł, A. E., Lis, T., Kędzierska, E. & Fidecka, S. (2009). Lett. Drug Des. Discov. 6, 445-450.]); Devarajegowda et al. (2010[Devarajegowda, H. C., Vepuri, S. B., VinduVahini, M., Kavitha, H. D. & Arunkashi, H. K. (2010). Acta Cryst. E66, o2237-o2238.]); Duan et al. (2007[Duan, W.-G., Luo, C.-Q., Cen, B. & Geng, Z. (2007). Chemistry, 70, 695-698.]). For standard bond lengths, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23ClN2O2

  • Mr = 370.86

  • Orthorhombic, P b a 2

  • a = 18.505 (9) Å

  • b = 27.012 (13) Å

  • c = 7.630 (4) Å

  • V = 3814 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.35 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.947

  • 26001 measured reflections

  • 8499 independent reflections

  • 4632 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.129

  • S = 0.99

  • 8499 reflections

  • 470 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3824 Friedel pairs

  • Flack parameter: 0.26 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2BB⋯O1Ai 0.98 2.40 3.213 (4) 139
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Turpentine is an abundant and green resource in China. α-Pinene, the main component of turpentine, can be isomerized to α-terpinene which reacts with maleic anhydride to yield the α-terpinene-maleic anhydride adduct (Luo et al., 2006). In order to search for novel bioactive compounds (Duan et al., 2007), a series of α-pinene derivatives was synthesized and their respective crystal structures were detected.

Herein, we report the crystal structure of the title compound. The structure presents racemate crystallizing in a polar space group with Flack parameter 0.26 (7). The asymmetric unit of the title compound is shown in Fig. 1. There are two independent molecules [A and B] with all bond lengths and angles within normal ranges (Orpen et al., 1989). The C = N double bond in both molecules adopts E configuration. The dihedral angles between benzene rings [C16—C21 and C37—C42] and hydrazone moieties [N1A—N2A—C15A—C16A and N1B—N2B—C15B—C16B] are 4.1 (3)° and 1.7 (3)°, respectively. In the crystal, molecules A and B are linked together via weak intermolecular C—H···O hydrogen bond between tertiary carbon atom and carbonyl group.

Related literature top

For the synthesis of the starting α-terpinene-maleic anhydride adduct, see: Luo et al. (2006). For the synthesis of N-amino-α-terpinene maleimide, see: Maurya & Verma (1986). For related structures, see: Struga et al. (2007, 2009); Devarajegowda et al. (2010); Duan et al. (2007). For standard bond lengths, see: Orpen et al. (1989).

Experimental top

A mixture of 3.042 g (0.015 mol) of N-amino-α-terpinene maleimide, 1.41 g (0.01 mol) of 2-chlorobenzaldehyde and 35 ml of ethanol was placed in a 50 ml two-necked flask. When the reaction temperature reached 84 °C, 3 ml of acetic acid was successively added to the solution as a catalyst in 15 minutes. The reaction was monitored by TLC. After complete disappearance of 2-chlorobenzaldehyde, the solvent was evaporated under reduced pressure. The residue was washed with distilled water. The crude product was purified by column chromatography and recrystallized from ethanol. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all other H atoms. The conformation of the Me groups was optimized rotationally.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omited.
rac-(1R,2S</i?,6R,7R)-4-{[(1E)- (2-Chlorophenyl)methylidene]amino}-1-isopropyl-7-methyl-4- azatricyclo[5.2.2.02,6]undec-8-ene-3,5-dione top
Crystal data top
C21H23ClN2O2Dx = 1.292 Mg m3
Mr = 370.86Melting point: 409 K
Orthorhombic, Pba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 -2abCell parameters from 5447 reflections
a = 18.505 (9) Åθ = 2.3–24.8°
b = 27.012 (13) ŵ = 0.22 mm1
c = 7.630 (4) ÅT = 296 K
V = 3814 (3) Å3Block, colourless
Z = 80.35 × 0.28 × 0.25 mm
F(000) = 1568
Data collection top
Bruker SMART CCD area-detector
diffractometer
8499 independent reflections
Radiation source: fine-focus sealed tube4632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 27.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2322
Tmin = 0.929, Tmax = 0.947k = 3434
26001 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
8499 reflectionsΔρmax = 0.14 e Å3
470 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 3824 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.26 (7)
Crystal data top
C21H23ClN2O2V = 3814 (3) Å3
Mr = 370.86Z = 8
Orthorhombic, Pba2Mo Kα radiation
a = 18.505 (9) ŵ = 0.22 mm1
b = 27.012 (13) ÅT = 296 K
c = 7.630 (4) Å0.35 × 0.28 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8499 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4632 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.947Rint = 0.092
26001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.14 e Å3
S = 0.99Δρmin = 0.24 e Å3
8499 reflectionsAbsolute structure: Flack (1983), 3824 Friedel pairs
470 parametersAbsolute structure parameter: 0.26 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.84297 (7)0.09373 (3)0.36480 (15)0.0834 (3)
Cl1B0.59584 (8)0.44416 (3)0.80798 (15)0.0956 (4)
O1A0.91729 (14)0.33806 (8)0.1121 (3)0.0617 (7)
O2A0.86707 (19)0.24002 (8)0.5824 (4)0.0871 (10)
O1B0.53699 (13)0.19579 (7)0.5811 (3)0.0564 (6)
O2B0.59021 (16)0.29986 (8)1.0328 (3)0.0752 (8)
N1A0.88856 (15)0.27992 (8)0.3209 (3)0.0434 (7)
N2A0.89422 (16)0.24227 (8)0.1979 (4)0.0495 (7)
N1B0.56592 (15)0.25645 (8)0.7799 (3)0.0423 (7)
N2B0.56132 (15)0.29247 (8)0.6508 (3)0.0473 (7)
C1A0.82636 (18)0.40115 (9)0.3761 (5)0.0409 (7)
C2A0.88924 (17)0.36367 (10)0.4107 (4)0.0409 (8)
H2AB0.93410.38180.43390.049*
C3A0.90062 (18)0.32852 (10)0.2604 (4)0.0432 (8)
C4A0.8747 (2)0.27826 (11)0.5006 (4)0.0523 (9)
C5A0.87074 (19)0.33034 (10)0.5702 (4)0.0449 (8)
H5AA0.90760.33480.66100.054*
C6A0.7954 (2)0.34372 (11)0.6468 (4)0.0523 (9)
C7A0.75934 (18)0.37079 (10)0.3591 (5)0.0480 (8)
H7A0.73020.37200.25980.058*
C8A0.7441 (2)0.34205 (11)0.4946 (5)0.0525 (9)
H8A0.70340.32180.49550.063*
C9A0.8194 (2)0.43166 (11)0.5466 (5)0.0567 (10)
H9AA0.86410.44950.56760.068*
H9AB0.78100.45580.53340.068*
C10A0.8030 (2)0.39829 (11)0.7037 (5)0.0633 (10)
H10A0.75860.40910.75910.076*
H10B0.84170.40120.78900.076*
C11A0.8400 (2)0.43375 (11)0.2117 (5)0.0577 (10)
H11A0.84080.41150.11030.069*
C12A0.9112 (2)0.46143 (14)0.2123 (6)0.0878 (14)
H12A0.95000.43850.23140.132*
H12B0.91090.48560.30440.132*
H12C0.91780.47770.10160.132*
C13A0.7777 (3)0.47078 (13)0.1818 (6)0.0898 (14)
H13A0.73250.45330.18080.135*
H13B0.78440.48730.07150.135*
H13C0.77740.49480.27450.135*
C14A0.7731 (3)0.31109 (13)0.7997 (5)0.0815 (13)
H14A0.76930.27740.76090.122*
H14B0.72720.32200.84400.122*
H14C0.80870.31330.89090.122*
C15A0.88097 (19)0.19845 (10)0.2429 (5)0.0531 (9)
H15A0.87050.19090.35910.064*
C16A0.88219 (17)0.15936 (10)0.1101 (4)0.0442 (8)
C17A0.86575 (19)0.11071 (11)0.1516 (5)0.0547 (9)
C18A0.8649 (2)0.07424 (12)0.0247 (6)0.0676 (11)
H18A0.85310.04190.05490.081*
C19A0.8815 (2)0.08581 (13)0.1468 (6)0.0726 (12)
H19A0.88190.06110.23170.087*
C20A0.8977 (2)0.13413 (12)0.1928 (5)0.0618 (10)
H20A0.90810.14220.30860.074*
C21A0.89824 (18)0.17020 (12)0.0641 (4)0.0497 (9)
H21A0.90960.20260.09470.060*
C1B0.62464 (19)0.13513 (10)0.8637 (4)0.0468 (8)
C2B0.56289 (17)0.17445 (9)0.8870 (4)0.0410 (8)
H2BB0.51740.15730.91180.049*
C3B0.55280 (17)0.20729 (10)0.7289 (4)0.0411 (8)
C4B0.58056 (19)0.26101 (11)0.9590 (4)0.0487 (9)
C5B0.58019 (19)0.20992 (10)1.0396 (4)0.0426 (8)
H5BA0.54150.20801.12710.051*
C6B0.65302 (19)0.19637 (11)1.1273 (4)0.0484 (9)
C7B0.70786 (19)0.19481 (12)0.9834 (5)0.0536 (9)
H7B0.74960.21400.98620.064*
C8B0.69336 (18)0.16448 (10)0.8521 (5)0.0489 (9)
H8B0.72430.16150.75670.059*
C9B0.6263 (2)0.10767 (11)1.0426 (5)0.0593 (10)
H9BA0.58010.09161.06190.071*
H9BB0.66320.08221.03910.071*
C10B0.6420 (2)0.14294 (11)1.1955 (5)0.0584 (10)
H10C0.68510.13211.25680.070*
H10D0.60200.14231.27760.070*
C11B0.6128 (2)0.10039 (11)0.7077 (5)0.0674 (11)
H11B0.61180.12110.60230.081*
C12B0.6761 (3)0.06402 (14)0.6857 (7)0.0962 (16)
H12D0.72070.08210.68220.144*
H12E0.67030.04590.57840.144*
H12F0.67680.04140.78260.144*
C13B0.5421 (3)0.07234 (13)0.7127 (6)0.0925 (15)
H13D0.50280.09530.72390.139*
H13E0.54200.05020.81100.139*
H13F0.53650.05370.60640.139*
C14B0.6738 (2)0.23070 (13)1.2780 (5)0.0724 (11)
H14D0.68030.26371.23420.109*
H14E0.71800.21941.33020.109*
H14F0.63610.23061.36450.109*
C15B0.56802 (18)0.33766 (10)0.6934 (5)0.0512 (9)
H15B0.57470.34670.81000.061*
C16B0.56511 (18)0.37540 (10)0.5557 (4)0.0436 (8)
C17B0.5779 (2)0.42523 (11)0.5944 (5)0.0559 (10)
C18B0.5762 (2)0.46066 (12)0.4637 (5)0.0678 (12)
H18B0.58430.49380.49100.081*
C19B0.5628 (2)0.44701 (13)0.2937 (6)0.0689 (11)
H19B0.56180.47090.20590.083*
C20B0.5508 (2)0.39830 (12)0.2528 (5)0.0626 (10)
H20B0.54210.38910.13730.075*
C21B0.55172 (19)0.36324 (10)0.3818 (5)0.0536 (9)
H21B0.54310.33030.35240.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.1296 (10)0.0559 (5)0.0648 (6)0.0107 (5)0.0002 (7)0.0126 (5)
Cl1B0.1695 (13)0.0502 (5)0.0670 (7)0.0153 (6)0.0046 (8)0.0105 (5)
O1A0.0818 (19)0.0451 (12)0.0583 (16)0.0061 (11)0.0360 (15)0.0021 (11)
O2A0.162 (3)0.0432 (13)0.0559 (16)0.0018 (15)0.0060 (18)0.0129 (13)
O1B0.0789 (19)0.0427 (11)0.0476 (14)0.0058 (11)0.0128 (14)0.0002 (11)
O2B0.129 (3)0.0408 (12)0.0555 (15)0.0054 (13)0.0069 (16)0.0111 (12)
N1A0.0562 (19)0.0316 (12)0.0425 (16)0.0054 (11)0.0005 (14)0.0027 (11)
N2A0.068 (2)0.0327 (13)0.0480 (16)0.0056 (12)0.0024 (15)0.0030 (12)
N1B0.0549 (19)0.0315 (12)0.0405 (15)0.0001 (11)0.0014 (14)0.0003 (12)
N2B0.061 (2)0.0350 (13)0.0462 (16)0.0038 (12)0.0009 (15)0.0033 (12)
C1A0.050 (2)0.0336 (13)0.0393 (16)0.0017 (13)0.0069 (17)0.0045 (14)
C2A0.040 (2)0.0358 (15)0.0465 (19)0.0050 (13)0.0001 (16)0.0020 (14)
C3A0.042 (2)0.0384 (15)0.049 (2)0.0016 (14)0.0073 (18)0.0030 (15)
C4A0.072 (3)0.0415 (18)0.044 (2)0.0013 (16)0.0072 (19)0.0032 (16)
C5A0.054 (2)0.0422 (16)0.0387 (18)0.0005 (14)0.0072 (17)0.0029 (15)
C6A0.070 (3)0.0517 (18)0.0355 (19)0.0083 (16)0.0093 (19)0.0014 (15)
C7A0.047 (2)0.0475 (16)0.049 (2)0.0065 (15)0.0037 (19)0.0114 (17)
C8A0.052 (3)0.0486 (18)0.057 (2)0.0080 (16)0.0038 (19)0.0088 (17)
C9A0.070 (3)0.0426 (17)0.057 (2)0.0029 (16)0.001 (2)0.0142 (17)
C10A0.081 (3)0.059 (2)0.049 (2)0.0013 (19)0.009 (2)0.0191 (19)
C11A0.078 (3)0.0412 (17)0.054 (2)0.0074 (17)0.010 (2)0.0014 (16)
C12A0.102 (4)0.062 (2)0.100 (3)0.011 (2)0.030 (3)0.022 (2)
C13A0.122 (4)0.055 (2)0.093 (3)0.029 (2)0.009 (3)0.019 (2)
C14A0.107 (4)0.080 (2)0.058 (2)0.019 (2)0.024 (3)0.007 (2)
C15A0.066 (3)0.0406 (17)0.053 (2)0.0062 (16)0.0008 (19)0.0020 (16)
C16A0.043 (2)0.0335 (16)0.056 (2)0.0059 (13)0.0043 (18)0.0038 (15)
C17A0.065 (3)0.0424 (18)0.057 (2)0.0004 (16)0.005 (2)0.0041 (17)
C18A0.088 (3)0.0380 (17)0.077 (3)0.0016 (18)0.009 (3)0.007 (2)
C19A0.096 (3)0.054 (2)0.068 (3)0.007 (2)0.000 (3)0.024 (2)
C20A0.068 (3)0.061 (2)0.057 (2)0.0008 (18)0.002 (2)0.007 (2)
C21A0.054 (3)0.0448 (17)0.051 (2)0.0027 (16)0.0012 (18)0.0011 (16)
C1B0.065 (2)0.0341 (14)0.0419 (18)0.0041 (15)0.0024 (19)0.0068 (14)
C2B0.050 (2)0.0329 (13)0.0402 (18)0.0082 (13)0.0024 (17)0.0014 (14)
C3B0.037 (2)0.0365 (15)0.049 (2)0.0015 (13)0.0015 (17)0.0000 (15)
C4B0.061 (3)0.0371 (17)0.049 (2)0.0054 (15)0.0076 (19)0.0071 (15)
C5B0.049 (2)0.0419 (15)0.0373 (17)0.0034 (14)0.0114 (17)0.0009 (14)
C6B0.055 (2)0.0458 (17)0.044 (2)0.0056 (15)0.0006 (19)0.0026 (15)
C7B0.049 (2)0.0490 (18)0.063 (2)0.0007 (16)0.001 (2)0.0039 (17)
C8B0.049 (2)0.0455 (16)0.052 (2)0.0128 (15)0.0141 (19)0.0092 (16)
C9B0.079 (3)0.0420 (17)0.057 (2)0.0041 (17)0.000 (2)0.0095 (17)
C10B0.076 (3)0.0540 (19)0.045 (2)0.0007 (17)0.003 (2)0.0128 (17)
C11B0.111 (3)0.0342 (16)0.056 (2)0.010 (2)0.004 (2)0.0030 (16)
C12B0.135 (4)0.060 (2)0.094 (3)0.033 (2)0.000 (3)0.024 (2)
C13B0.120 (4)0.056 (2)0.102 (4)0.005 (2)0.045 (3)0.018 (2)
C14B0.090 (3)0.073 (2)0.054 (2)0.009 (2)0.015 (2)0.011 (2)
C15B0.061 (2)0.0382 (16)0.054 (2)0.0017 (15)0.000 (2)0.0045 (16)
C16B0.046 (2)0.0350 (15)0.050 (2)0.0053 (13)0.0028 (18)0.0049 (15)
C17B0.072 (3)0.0391 (17)0.057 (2)0.0002 (16)0.002 (2)0.0033 (16)
C18B0.100 (3)0.0320 (17)0.072 (3)0.0002 (18)0.007 (3)0.0018 (18)
C19B0.090 (3)0.0492 (19)0.068 (3)0.0096 (19)0.013 (3)0.0180 (19)
C20B0.079 (3)0.054 (2)0.055 (2)0.0103 (19)0.001 (2)0.0018 (17)
C21B0.065 (3)0.0364 (15)0.059 (2)0.0035 (15)0.000 (2)0.0042 (17)
Geometric parameters (Å, º) top
Cl1A—C17A1.742 (4)C18A—C19A1.381 (6)
Cl1B—C17B1.740 (4)C18A—H18A0.9300
O1A—C3A1.201 (4)C19A—C20A1.384 (5)
O2A—C4A1.215 (4)C19A—H19A0.9300
O1B—C3B1.205 (4)C20A—C21A1.384 (4)
O2B—C4B1.204 (4)C20A—H20A0.9300
N1A—N2A1.388 (3)C21A—H21A0.9300
N1A—C4A1.396 (4)C1B—C8B1.501 (4)
N1A—C3A1.409 (4)C1B—C11B1.532 (5)
N2A—C15A1.257 (4)C1B—C9B1.554 (5)
N1B—N2B1.388 (3)C1B—C2B1.570 (4)
N1B—C4B1.398 (4)C2B—C3B1.509 (4)
N1B—C3B1.405 (4)C2B—C5B1.542 (4)
N2B—C15B1.269 (3)C2B—H2BB0.9800
C1A—C7A1.492 (4)C4B—C5B1.511 (4)
C1A—C9A1.546 (4)C5B—C6B1.548 (5)
C1A—C11A1.553 (5)C5B—H5BA0.9800
C1A—C2A1.565 (4)C6B—C7B1.495 (5)
C2A—C3A1.504 (4)C6B—C14B1.527 (4)
C2A—C5A1.552 (4)C6B—C10B1.548 (4)
C2A—H2AB0.9800C7B—C8B1.322 (4)
C4A—C5A1.506 (4)C7B—H7B0.9300
C5A—C6A1.554 (5)C8B—H8B0.9300
C5A—H5AA0.9800C9B—C10B1.534 (5)
C6A—C8A1.502 (5)C9B—H9BA0.9700
C6A—C14A1.519 (5)C9B—H9BB0.9700
C6A—C10A1.543 (4)C10B—H10C0.9700
C7A—C8A1.324 (4)C10B—H10D0.9700
C7A—H7A0.9300C11B—C13B1.513 (6)
C8A—H8A0.9300C11B—C12B1.538 (5)
C9A—C10A1.530 (5)C11B—H11B0.9800
C9A—H9AA0.9700C12B—H12D0.9600
C9A—H9AB0.9700C12B—H12E0.9600
C10A—H10A0.9700C12B—H12F0.9600
C10A—H10B0.9700C13B—H13D0.9600
C11A—C12A1.515 (5)C13B—H13E0.9600
C11A—C13A1.543 (5)C13B—H13F0.9600
C11A—H11A0.9800C14B—H14D0.9600
C12A—H12A0.9600C14B—H14E0.9600
C12A—H12B0.9600C14B—H14F0.9600
C12A—H12C0.9600C15B—C16B1.465 (4)
C13A—H13A0.9600C15B—H15B0.9300
C13A—H13B0.9600C16B—C21B1.389 (5)
C13A—H13C0.9600C16B—C17B1.398 (4)
C14A—H14A0.9600C17B—C18B1.383 (5)
C14A—H14B0.9600C18B—C19B1.371 (5)
C14A—H14C0.9600C18B—H18B0.9300
C15A—C16A1.463 (4)C19B—C20B1.370 (5)
C15A—H15A0.9300C19B—H19B0.9300
C16A—C17A1.385 (4)C20B—C21B1.366 (5)
C16A—C21A1.393 (5)C20B—H20B0.9300
C17A—C18A1.382 (5)C21B—H21B0.9300
N2A—N1A—C4A130.9 (2)C19A—C20A—H20A120.5
N2A—N1A—C3A116.7 (3)C20A—C21A—C16A121.9 (3)
C4A—N1A—C3A112.4 (3)C20A—C21A—H21A119.1
C15A—N2A—N1A119.4 (3)C16A—C21A—H21A119.1
N2B—N1B—C4B130.1 (2)C8B—C1B—C11B113.5 (3)
N2B—N1B—C3B117.1 (2)C8B—C1B—C9B106.7 (3)
C4B—N1B—C3B112.8 (3)C11B—C1B—C9B113.2 (2)
C15B—N2B—N1B119.1 (3)C8B—C1B—C2B105.4 (2)
C7A—C1A—C9A107.3 (3)C11B—C1B—C2B113.5 (3)
C7A—C1A—C11A112.1 (3)C9B—C1B—C2B103.8 (3)
C9A—C1A—C11A113.0 (2)C3B—C2B—C5B105.3 (2)
C7A—C1A—C2A106.1 (2)C3B—C2B—C1B113.4 (3)
C9A—C1A—C2A105.4 (3)C5B—C2B—C1B110.8 (3)
C11A—C1A—C2A112.5 (3)C3B—C2B—H2BB109.1
C3A—C2A—C5A105.2 (2)C5B—C2B—H2BB109.1
C3A—C2A—C1A112.6 (3)C1B—C2B—H2BB109.1
C5A—C2A—C1A110.1 (3)O1B—C3B—N1B123.0 (3)
C3A—C2A—H2AB109.6O1B—C3B—C2B128.8 (3)
C5A—C2A—H2AB109.6N1B—C3B—C2B108.2 (3)
C1A—C2A—H2AB109.6O2B—C4B—N1B124.2 (3)
O1A—C3A—N1A123.3 (3)O2B—C4B—C5B127.3 (3)
O1A—C3A—C2A128.2 (3)N1B—C4B—C5B108.5 (3)
N1A—C3A—C2A108.4 (3)C4B—C5B—C2B105.1 (3)
O2A—C4A—N1A123.6 (3)C4B—C5B—C6B112.8 (3)
O2A—C4A—C5A127.4 (3)C2B—C5B—C6B111.1 (2)
N1A—C4A—C5A109.0 (3)C4B—C5B—H5BA109.2
C4A—C5A—C2A104.8 (3)C2B—C5B—H5BA109.2
C4A—C5A—C6A113.2 (3)C6B—C5B—H5BA109.2
C2A—C5A—C6A111.0 (2)C7B—C6B—C14B113.5 (3)
C4A—C5A—H5AA109.3C7B—C6B—C10B108.1 (3)
C2A—C5A—H5AA109.3C14B—C6B—C10B110.2 (3)
C6A—C5A—H5AA109.3C7B—C6B—C5B106.3 (3)
C8A—C6A—C14A113.9 (3)C14B—C6B—C5B113.6 (3)
C8A—C6A—C10A107.7 (3)C10B—C6B—C5B104.5 (3)
C14A—C6A—C10A111.3 (3)C8B—C7B—C6B115.9 (3)
C8A—C6A—C5A105.6 (3)C8B—C7B—H7B122.1
C14A—C6A—C5A113.5 (3)C6B—C7B—H7B122.1
C10A—C6A—C5A104.3 (3)C7B—C8B—C1B117.0 (3)
C8A—C7A—C1A115.6 (3)C7B—C8B—H8B121.5
C8A—C7A—H7A122.2C1B—C8B—H8B121.5
C1A—C7A—H7A122.2C10B—C9B—C1B112.1 (2)
C7A—C8A—C6A116.8 (3)C10B—C9B—H9BA109.2
C7A—C8A—H8A121.6C1B—C9B—H9BA109.2
C6A—C8A—H8A121.6C10B—C9B—H9BB109.2
C10A—C9A—C1A111.2 (2)C1B—C9B—H9BB109.2
C10A—C9A—H9AA109.4H9BA—C9B—H9BB107.9
C1A—C9A—H9AA109.4C9B—C10B—C6B110.4 (3)
C10A—C9A—H9AB109.4C9B—C10B—H10C109.6
C1A—C9A—H9AB109.4C6B—C10B—H10C109.6
H9AA—C9A—H9AB108.0C9B—C10B—H10D109.6
C9A—C10A—C6A111.1 (3)C6B—C10B—H10D109.6
C9A—C10A—H10A109.4H10C—C10B—H10D108.1
C6A—C10A—H10A109.4C13B—C11B—C1B114.3 (4)
C9A—C10A—H10B109.4C13B—C11B—C12B110.0 (3)
C6A—C10A—H10B109.4C1B—C11B—C12B111.6 (3)
H10A—C10A—H10B108.0C13B—C11B—H11B106.9
C12A—C11A—C13A109.3 (3)C1B—C11B—H11B106.9
C12A—C11A—C1A114.7 (3)C12B—C11B—H11B106.9
C13A—C11A—C1A111.4 (3)C11B—C12B—H12D109.5
C12A—C11A—H11A107.0C11B—C12B—H12E109.5
C13A—C11A—H11A107.0H12D—C12B—H12E109.5
C1A—C11A—H11A107.0C11B—C12B—H12F109.5
C11A—C12A—H12A109.5H12D—C12B—H12F109.5
C11A—C12A—H12B109.5H12E—C12B—H12F109.5
H12A—C12A—H12B109.5C11B—C13B—H13D109.5
C11A—C12A—H12C109.5C11B—C13B—H13E109.5
H12A—C12A—H12C109.5H13D—C13B—H13E109.5
H12B—C12A—H12C109.5C11B—C13B—H13F109.5
C11A—C13A—H13A109.5H13D—C13B—H13F109.5
C11A—C13A—H13B109.5H13E—C13B—H13F109.5
H13A—C13A—H13B109.5C6B—C14B—H14D109.5
C11A—C13A—H13C109.5C6B—C14B—H14E109.5
H13A—C13A—H13C109.5H14D—C14B—H14E109.5
H13B—C13A—H13C109.5C6B—C14B—H14F109.5
C6A—C14A—H14A109.5H14D—C14B—H14F109.5
C6A—C14A—H14B109.5H14E—C14B—H14F109.5
H14A—C14A—H14B109.5N2B—C15B—C16B118.8 (3)
C6A—C14A—H14C109.5N2B—C15B—H15B120.6
H14A—C14A—H14C109.5C16B—C15B—H15B120.6
H14B—C14A—H14C109.5C21B—C16B—C17B117.4 (3)
N2A—C15A—C16A119.2 (3)C21B—C16B—C15B121.8 (3)
N2A—C15A—H15A120.4C17B—C16B—C15B120.8 (3)
C16A—C15A—H15A120.4C18B—C17B—C16B120.7 (3)
C17A—C16A—C21A117.7 (3)C18B—C17B—Cl1B118.5 (3)
C17A—C16A—C15A121.5 (3)C16B—C17B—Cl1B120.9 (3)
C21A—C16A—C15A120.8 (3)C19B—C18B—C17B120.0 (3)
C18A—C17A—C16A121.2 (3)C19B—C18B—H18B120.0
C18A—C17A—Cl1A117.6 (3)C17B—C18B—H18B120.0
C16A—C17A—Cl1A121.1 (3)C20B—C19B—C18B120.2 (3)
C19A—C18A—C17A120.0 (3)C20B—C19B—H19B119.9
C19A—C18A—H18A120.0C18B—C19B—H19B119.9
C17A—C18A—H18A120.0C21B—C20B—C19B120.0 (4)
C18A—C19A—C20A120.1 (3)C21B—C20B—H20B120.0
C18A—C19A—H19A119.9C19B—C20B—H20B120.0
C20A—C19A—H19A119.9C20B—C21B—C16B121.8 (3)
C21A—C20A—C19A119.0 (4)C20B—C21B—H21B119.1
C21A—C20A—H20A120.5C16B—C21B—H21B119.1
C4A—N1A—N2A—C15A5.3 (5)C17A—C16A—C21A—C20A0.2 (5)
C3A—N1A—N2A—C15A177.0 (3)C15A—C16A—C21A—C20A178.2 (3)
C4B—N1B—N2B—C15B3.2 (5)C8B—C1B—C2B—C3B66.1 (3)
C3B—N1B—N2B—C15B175.4 (3)C11B—C1B—C2B—C3B58.7 (3)
C7A—C1A—C2A—C3A63.0 (3)C9B—C1B—C2B—C3B178.1 (3)
C9A—C1A—C2A—C3A176.5 (2)C8B—C1B—C2B—C5B52.1 (3)
C11A—C1A—C2A—C3A59.9 (3)C11B—C1B—C2B—C5B176.9 (3)
C7A—C1A—C2A—C5A54.1 (3)C9B—C1B—C2B—C5B59.9 (3)
C9A—C1A—C2A—C5A59.5 (3)N2B—N1B—C3B—O1B1.2 (5)
C11A—C1A—C2A—C5A177.0 (3)C4B—N1B—C3B—O1B177.7 (3)
N2A—N1A—C3A—O1A2.3 (5)N2B—N1B—C3B—C2B178.2 (2)
C4A—N1A—C3A—O1A175.9 (3)C4B—N1B—C3B—C2B2.9 (4)
N2A—N1A—C3A—C2A177.9 (2)C5B—C2B—C3B—O1B178.2 (3)
C4A—N1A—C3A—C2A4.0 (4)C1B—C2B—C3B—O1B60.5 (4)
C5A—C2A—C3A—O1A178.5 (4)C5B—C2B—C3B—N1B2.4 (3)
C1A—C2A—C3A—O1A61.6 (5)C1B—C2B—C3B—N1B118.9 (3)
C5A—C2A—C3A—N1A1.4 (3)N2B—N1B—C4B—O2B2.1 (6)
C1A—C2A—C3A—N1A118.6 (3)C3B—N1B—C4B—O2B176.6 (3)
N2A—N1A—C4A—O2A2.4 (6)N2B—N1B—C4B—C5B179.2 (3)
C3A—N1A—C4A—O2A175.5 (3)C3B—N1B—C4B—C5B2.1 (4)
N2A—N1A—C4A—C5A177.2 (3)O2B—C4B—C5B—C2B178.2 (3)
C3A—N1A—C4A—C5A5.0 (4)N1B—C4B—C5B—C2B0.5 (3)
O2A—C4A—C5A—C2A176.7 (4)O2B—C4B—C5B—C6B60.6 (4)
N1A—C4A—C5A—C2A3.8 (4)N1B—C4B—C5B—C6B120.7 (3)
O2A—C4A—C5A—C6A62.3 (5)C3B—C2B—C5B—C4B1.2 (3)
N1A—C4A—C5A—C6A117.3 (3)C1B—C2B—C5B—C4B121.8 (3)
C3A—C2A—C5A—C4A1.4 (3)C3B—C2B—C5B—C6B123.5 (3)
C1A—C2A—C5A—C4A123.0 (3)C1B—C2B—C5B—C6B0.5 (3)
C3A—C2A—C5A—C6A121.1 (3)C4B—C5B—C6B—C7B64.2 (3)
C1A—C2A—C5A—C6A0.5 (3)C2B—C5B—C6B—C7B53.5 (3)
C4A—C5A—C6A—C8A64.9 (3)C4B—C5B—C6B—C14B61.4 (4)
C2A—C5A—C6A—C8A52.6 (3)C2B—C5B—C6B—C14B179.1 (3)
C4A—C5A—C6A—C14A60.5 (4)C4B—C5B—C6B—C10B178.4 (3)
C2A—C5A—C6A—C14A178.0 (3)C2B—C5B—C6B—C10B60.6 (3)
C4A—C5A—C6A—C10A178.3 (3)C14B—C6B—C7B—C8B178.1 (3)
C2A—C5A—C6A—C10A60.8 (3)C10B—C6B—C7B—C8B55.5 (4)
C9A—C1A—C7A—C8A55.3 (3)C5B—C6B—C7B—C8B56.2 (3)
C11A—C1A—C7A—C8A179.9 (3)C6B—C7B—C8B—C1B0.6 (4)
C2A—C1A—C7A—C8A57.0 (4)C11B—C1B—C8B—C7B179.0 (3)
C1A—C7A—C8A—C6A0.2 (4)C9B—C1B—C8B—C7B53.7 (3)
C14A—C6A—C8A—C7A178.1 (3)C2B—C1B—C8B—C7B56.2 (3)
C10A—C6A—C8A—C7A54.2 (4)C8B—C1B—C9B—C10B51.6 (4)
C5A—C6A—C8A—C7A56.8 (4)C11B—C1B—C9B—C10B177.1 (3)
C7A—C1A—C9A—C10A53.7 (4)C2B—C1B—C9B—C10B59.4 (3)
C11A—C1A—C9A—C10A177.7 (3)C1B—C9B—C10B—C6B0.9 (4)
C2A—C1A—C9A—C10A59.1 (3)C7B—C6B—C10B—C9B51.5 (4)
C1A—C9A—C10A—C6A2.0 (4)C14B—C6B—C10B—C9B176.1 (3)
C8A—C6A—C10A—C9A49.9 (4)C5B—C6B—C10B—C9B61.4 (4)
C14A—C6A—C10A—C9A175.3 (3)C8B—C1B—C11B—C13B177.2 (3)
C5A—C6A—C10A—C9A62.0 (4)C9B—C1B—C11B—C13B61.1 (4)
C7A—C1A—C11A—C12A173.9 (3)C2B—C1B—C11B—C13B56.8 (4)
C9A—C1A—C11A—C12A64.7 (4)C8B—C1B—C11B—C12B57.3 (4)
C2A—C1A—C11A—C12A54.5 (4)C9B—C1B—C11B—C12B64.5 (4)
C7A—C1A—C11A—C13A61.2 (4)C2B—C1B—C11B—C12B177.6 (3)
C9A—C1A—C11A—C13A60.1 (4)N1B—N2B—C15B—C16B178.3 (3)
C2A—C1A—C11A—C13A179.3 (3)N2B—C15B—C16B—C21B3.2 (5)
N1A—N2A—C15A—C16A175.9 (3)N2B—C15B—C16B—C17B174.9 (3)
N2A—C15A—C16A—C17A177.9 (3)C21B—C16B—C17B—C18B0.8 (5)
N2A—C15A—C16A—C21A0.4 (5)C15B—C16B—C17B—C18B179.0 (3)
C21A—C16A—C17A—C18A0.3 (5)C21B—C16B—C17B—Cl1B179.5 (3)
C15A—C16A—C17A—C18A178.1 (3)C15B—C16B—C17B—Cl1B1.3 (5)
C21A—C16A—C17A—Cl1A178.5 (3)C16B—C17B—C18B—C19B0.8 (6)
C15A—C16A—C17A—Cl1A0.2 (5)Cl1B—C17B—C18B—C19B179.5 (4)
C16A—C17A—C18A—C19A0.9 (6)C17B—C18B—C19B—C20B0.1 (6)
Cl1A—C17A—C18A—C19A179.1 (3)C18B—C19B—C20B—C21B0.5 (6)
C17A—C18A—C19A—C20A1.3 (6)C19B—C20B—C21B—C16B0.5 (6)
C18A—C19A—C20A—C21A1.2 (6)C17B—C16B—C21B—C20B0.1 (5)
C19A—C20A—C21A—C16A0.7 (6)C15B—C16B—C21B—C20B178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2BB···O1Ai0.982.403.213 (4)139
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H23ClN2O2
Mr370.86
Crystal system, space groupOrthorhombic, Pba2
Temperature (K)296
a, b, c (Å)18.505 (9), 27.012 (13), 7.630 (4)
V3)3814 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.35 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.929, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
26001, 8499, 4632
Rint0.092
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.129, 0.99
No. of reflections8499
No. of parameters470
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.24
Absolute structureFlack (1983), 3824 Friedel pairs
Absolute structure parameter0.26 (7)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2BB···O1Ai0.982.403.213 (4)139
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province of China (No. 2010GXNSFB013016) and The National Innovation Plan for Undergraduates in Guangxi University (No. 200924).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevarajegowda, H. C., Vepuri, S. B., VinduVahini, M., Kavitha, H. D. & Arunkashi, H. K. (2010). Acta Cryst. E66, o2237–o2238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, W.-G., Luo, C.-Q., Cen, B. & Geng, Z. (2007). Chemistry, 70, 695–698.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLuo, C.-Q., Duan, W.-G., Cen, B. & Ban, L.-N. (2006). Biomass Chem. Eng. 40, 25-28.  CAS Google Scholar
First citationMaurya, H. & Verma, S. M. (1986). Indian J. Chem. Sect B, 25, 542–544.  Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStruga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStruga, M., Kossakowski, J., Kozioł, A. E., Lis, T., Kędzierska, E. & Fidecka, S. (2009). Lett. Drug Des. Discov. 6, 445–450.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1251
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds