organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1199

2-Chloro-1,2-di­phenyl­ethanone (desyl chloride)

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 5 April 2011; accepted 18 April 2011; online 22 April 2011)

The title compound, C14H11ClO, is a racemic derivative of benzoin. Its carbonyl group adopts a nearly eclipsed conformation with the Cl substituent characterized by a dihedral angle of 17.5 (2)°. The closest intermolecular ππ contact is 4.258 (1) Å.

Related literature

For the crystal structure of benzoin, see: Haisa et al. (1980[Haisa, M., Kashino, S. & Morimoto, M. (1980). Acta Cryst. B36, 2832-2834.]); Sole et al. (1998[Sole, S., Gornitzka, H., Guerret, O. & Bertrand, G. (1998). J. Am. Chem. Soc. 120, 9100-9101.]). For the crystal structure of 2-phenyl­acetophenone, see: Rieker et al. (1993[Rieker, T. P., Haltiwanger, C., Eidman, K., Walba, D. W., Clark, N. A. & Larson, A. C. (1993). Acta Cryst. C49, 406-408.]). For the crystal structure of 2-chloro­acetophenone, see: Grossert et al. (1984[Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798-807.]). Structures containing similar angles were retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClO

  • Mr = 230.68

  • Monoclinic, P 21 /c

  • a = 12.6233 (11) Å

  • b = 5.8227 (5) Å

  • c = 15.6745 (14) Å

  • β = 97.317 (3)°

  • V = 1142.72 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 200 K

  • 0.53 × 0.29 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9777 measured reflections

  • 2816 independent reflections

  • 2366 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.07

  • 2816 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was studied as a reference structure for a series of transition-metal complexes employing it as a ligand.

Bond lengths and angles are usual. The torsion angle O=C—C—Cl is 17.5 (2) °. A statistics of values for the similar angles reported in the CSD (Allen, 2002) shows that this eclipsed conformation is the most preferable for α-cloroketones (Fig. 1 and Fig. 2). However, possibly due to steric hindrances from the bulky phenyl group next to the Cl substituent, the dihedral value is somewhat distorted in comparison to the molecular structure of 2-chloroacetophenone (Grossert et al. (1984)), where the respective angle was found at 2.4 °.

Unlike the crystal structure of 2-chloroacetophenone, which is dominated by strong C–H···O and C–H···Cl contacts, the crystal structure of the title compound does not show any intermolecular contacts whose range falls short of the sum of van-der-Waals radii. The closest π···π-contact was measured at 4.258 (1) Å.

Related literature top

For the crystal structure of benzoin, see: Haisa et al. (1980); Sole et al. (1998). For the crystal structure of 2-phenylacetophenone, see: Rieker et al. (1993). For the crystal structure of 2-chloroacetophenone, see: Grossert et al. (1984). Structures containing similar angles were retrieved from the Cambridge Structural Database (Allen, 2002).

Experimental top

The compound was synthesized by reacting benzoin with thionyl chloride. Crystals suitable for X-ray diffraction were obtained upon recrystallization from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 Å for the methylene group and C—H 0.95 Å for aromatic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Statistical distribution of O=C—C—Cl dihedral angles (data based on CSD search including all deposited crystal structures up to November 2010).
2-Chloro-1,2-diphenylethanone top
Crystal data top
C14H11ClOF(000) = 480
Mr = 230.68Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5815 reflections
a = 12.6233 (11) Åθ = 2.6–28.3°
b = 5.8227 (5) ŵ = 0.31 mm1
c = 15.6745 (14) ÅT = 200 K
β = 97.317 (3)°Rod, colourless
V = 1142.72 (17) Å30.53 × 0.29 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2366 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.3°, θmin = 2.6°
ϕ and ω scansh = 1616
9777 measured reflectionsk = 76
2816 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3595P]
where P = (Fo2 + 2Fc2)/3
2816 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C14H11ClOV = 1142.72 (17) Å3
Mr = 230.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6233 (11) ŵ = 0.31 mm1
b = 5.8227 (5) ÅT = 200 K
c = 15.6745 (14) Å0.53 × 0.29 × 0.16 mm
β = 97.317 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2366 reflections with I > 2σ(I)
9777 measured reflectionsRint = 0.024
2816 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
2816 reflectionsΔρmin = 0.42 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36760 (3)0.54577 (9)0.02422 (2)0.05873 (16)
O10.19610 (9)0.8528 (2)0.05035 (8)0.0585 (3)
C10.17721 (11)0.6644 (2)0.07711 (8)0.0369 (3)
C20.26188 (10)0.4753 (2)0.08663 (8)0.0361 (3)
H20.22770.32910.06370.043*
C110.07080 (10)0.6085 (2)0.10402 (7)0.0318 (3)
C120.04806 (11)0.4010 (2)0.14191 (9)0.0369 (3)
H120.10140.28530.15110.044*
C130.05239 (11)0.3628 (3)0.16633 (10)0.0436 (3)
H130.06730.22210.19310.052*
C140.13073 (11)0.5290 (3)0.15188 (10)0.0454 (3)
H140.19960.50170.16820.054*
C150.10909 (12)0.7350 (3)0.11366 (10)0.0456 (3)
H150.16320.84860.10320.055*
C160.00869 (11)0.7752 (2)0.09067 (8)0.0395 (3)
H160.00630.91810.06550.047*
C210.30932 (9)0.4355 (2)0.17883 (8)0.0313 (3)
C220.36130 (11)0.2294 (2)0.20111 (10)0.0411 (3)
H220.36390.11280.15900.049*
C230.40932 (12)0.1938 (3)0.28445 (11)0.0485 (4)
H230.44610.05420.29910.058*
C240.40391 (12)0.3604 (3)0.34634 (10)0.0483 (4)
H240.43640.33480.40360.058*
C250.35139 (12)0.5639 (3)0.32497 (9)0.0451 (3)
H250.34700.67800.36770.054*
C260.30485 (11)0.6021 (2)0.24116 (8)0.0372 (3)
H260.26970.74360.22650.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0447 (2)0.0974 (4)0.0365 (2)0.0071 (2)0.01475 (15)0.00083 (19)
O10.0538 (6)0.0513 (7)0.0703 (8)0.0085 (5)0.0077 (6)0.0241 (6)
C10.0385 (6)0.0400 (7)0.0312 (6)0.0051 (5)0.0003 (5)0.0047 (5)
C20.0319 (6)0.0449 (7)0.0321 (6)0.0058 (5)0.0068 (5)0.0049 (5)
C110.0332 (6)0.0338 (6)0.0271 (5)0.0019 (5)0.0011 (4)0.0001 (5)
C120.0344 (6)0.0325 (6)0.0429 (7)0.0001 (5)0.0020 (5)0.0033 (5)
C130.0412 (7)0.0392 (7)0.0508 (8)0.0069 (6)0.0075 (6)0.0037 (6)
C140.0335 (7)0.0558 (9)0.0472 (8)0.0025 (6)0.0066 (6)0.0046 (7)
C150.0403 (7)0.0479 (8)0.0474 (8)0.0116 (6)0.0010 (6)0.0026 (6)
C160.0459 (7)0.0355 (7)0.0358 (7)0.0032 (6)0.0003 (5)0.0031 (5)
C210.0268 (5)0.0337 (6)0.0339 (6)0.0021 (5)0.0063 (4)0.0003 (5)
C220.0364 (7)0.0336 (7)0.0539 (8)0.0008 (5)0.0081 (6)0.0030 (6)
C230.0386 (7)0.0413 (8)0.0646 (10)0.0038 (6)0.0026 (6)0.0153 (7)
C240.0422 (7)0.0584 (9)0.0423 (7)0.0050 (7)0.0018 (6)0.0155 (7)
C250.0503 (8)0.0510 (9)0.0335 (7)0.0008 (7)0.0029 (6)0.0026 (6)
C260.0413 (7)0.0348 (7)0.0351 (6)0.0041 (5)0.0031 (5)0.0002 (5)
Geometric parameters (Å, º) top
Cl1—C21.7997 (13)C15—C161.381 (2)
O1—C11.2092 (18)C15—H150.9500
C1—C111.4941 (18)C16—H160.9500
C1—C21.529 (2)C21—C261.3829 (18)
C2—C211.5100 (18)C21—C221.3910 (18)
C2—H21.0000C22—C231.384 (2)
C11—C121.3921 (18)C22—H220.9500
C11—C161.3929 (18)C23—C241.379 (2)
C12—C131.3883 (19)C23—H230.9500
C12—H120.9500C24—C251.378 (2)
C13—C141.381 (2)C24—H240.9500
C13—H130.9500C25—C261.3871 (19)
C14—C151.384 (2)C25—H250.9500
C14—H140.9500C26—H260.9500
O1—C1—C11121.31 (13)C14—C15—H15120.1
O1—C1—C2121.41 (13)C15—C16—C11120.67 (13)
C11—C1—C2117.27 (11)C15—C16—H16119.7
C21—C2—C1113.02 (10)C11—C16—H16119.7
C21—C2—Cl1108.91 (9)C26—C21—C22119.22 (12)
C1—C2—Cl1109.90 (10)C26—C21—C2121.45 (12)
C21—C2—H2108.3C22—C21—C2119.30 (12)
C1—C2—H2108.3C23—C22—C21120.13 (13)
Cl1—C2—H2108.3C23—C22—H22119.9
C12—C11—C16119.03 (12)C21—C22—H22119.9
C12—C11—C1123.44 (12)C24—C23—C22120.25 (14)
C16—C11—C1117.52 (12)C24—C23—H23119.9
C13—C12—C11120.11 (13)C22—C23—H23119.9
C13—C12—H12119.9C25—C24—C23119.92 (14)
C11—C12—H12119.9C25—C24—H24120.0
C14—C13—C12120.18 (14)C23—C24—H24120.0
C14—C13—H13119.9C24—C25—C26120.06 (14)
C12—C13—H13119.9C24—C25—H25120.0
C13—C14—C15120.10 (13)C26—C25—H25120.0
C13—C14—H14120.0C21—C26—C25120.40 (13)
C15—C14—H14120.0C21—C26—H26119.8
C16—C15—C14119.89 (13)C25—C26—H26119.8
C16—C15—H15120.1
O1—C1—C2—C21104.41 (15)C12—C11—C16—C150.8 (2)
C11—C1—C2—C2174.29 (14)C1—C11—C16—C15179.73 (12)
O1—C1—C2—Cl117.47 (17)C1—C2—C21—C2621.38 (17)
C11—C1—C2—Cl1163.83 (9)Cl1—C2—C21—C26101.06 (13)
O1—C1—C11—C12174.40 (14)C1—C2—C21—C22160.45 (11)
C2—C1—C11—C124.30 (18)Cl1—C2—C21—C2277.11 (13)
O1—C1—C11—C165.09 (19)C26—C21—C22—C231.02 (19)
C2—C1—C11—C16176.21 (11)C2—C21—C22—C23177.18 (12)
C16—C11—C12—C130.4 (2)C21—C22—C23—C241.4 (2)
C1—C11—C12—C13179.07 (12)C22—C23—C24—C250.6 (2)
C11—C12—C13—C141.1 (2)C23—C24—C25—C260.6 (2)
C12—C13—C14—C150.6 (2)C22—C21—C26—C250.2 (2)
C13—C14—C15—C160.6 (2)C2—C21—C26—C25178.35 (13)
C14—C15—C16—C111.3 (2)C24—C25—C26—C211.0 (2)

Experimental details

Crystal data
Chemical formulaC14H11ClO
Mr230.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.6233 (11), 5.8227 (5), 15.6745 (14)
β (°) 97.317 (3)
V3)1142.72 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.53 × 0.29 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9777, 2816, 2366
Rint0.024
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.07
No. of reflections2816
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Mr Neil van der Vyver for helpful discussions.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798–807.  CrossRef CAS Web of Science Google Scholar
First citationHaisa, M., Kashino, S. & Morimoto, M. (1980). Acta Cryst. B36, 2832–2834.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRieker, T. P., Haltiwanger, C., Eidman, K., Walba, D. W., Clark, N. A. & Larson, A. C. (1993). Acta Cryst. C49, 406–408.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSole, S., Gornitzka, H., Guerret, O. & Bertrand, G. (1998). J. Am. Chem. Soc. 120, 9100–9101.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1199
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds