metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanol-κO)(2-methyl-3,5-di­nitro­benzoato-κO)tri­phenyl­tin(IV)

aDepartment of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700 Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, and cInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: drdanish62@gmail.com

(Received 15 March 2011; accepted 25 March 2011; online 7 April 2011)

In the title complex, [Sn(C6H5)3(C8H5N2O6)(CH3OH)], the Sn(IV) ion is coordinated in a slightly distorted trigonal–bipyramidal geometry by three phenyl ligands in the equatorial plane and by a 2-methyl-3,5-dinitro­benzene­carboxyl­ato ligand and a methanol ligand at the apical sites. In the crystal, complex mol­ecules are linked via inter­molecular O—H⋯O hydrogen bonds, forming chains along [100].

Related literature

For the crystal structures of two triphenyl­tin complexes with a 2,3-dinitro­benzoate ligand, see: Azir-ur-Rehman et al. (2006[Aziz-ur-Rehman, Helliwell, M., Ali, S. & Shahzadi, S. (2006). Acta Cryst. E62, m1656-m1657.]); Win et al. (2006[Win, Y. F., Guan, T. S., Ismail, N. L. & Yamin, B. M. (2006). Acta Cryst. E62, m3146-m3148.]). For the structure of a tin complex with a 2-methyl­benzoate ligand, see: Danish et al. (2010)[Danish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Hamid, M. (2010). Acta Cryst. E66, m1268-m1269.]. For applications of organotin compounds, see: Reisi et al. (2006[Reisi, M. R., Misran, M. & Chuah, C. H. (2006). Casp. J. Environ. Sci. 4, 148-152.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C8H5N2O6)(CH4O)]

  • Mr = 607.17

  • Monoclinic, P 21 /n

  • a = 8.0597 (16) Å

  • b = 20.094 (4) Å

  • c = 16.022 (3) Å

  • β = 95.29 (3)°

  • V = 2583.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.31 × 0.23 × 0.07 mm

Data collection
  • Kuma KM4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.] Tmin = 0.842, Tmax = 0.930

  • 6387 measured reflections

  • 6141 independent reflections

  • 3440 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 7.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.133

  • S = 1.04

  • 6141 reflections

  • 340 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H51⋯O12i 0.81 (2) 1.91 (4) 2.654 (6) 153 (8)
Symmetry code: (i) x+1, y, z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triphenyltin hydroxide, chloride and acetate compounds are used against a number of fungal diseases to control the attacks of fungi on potato, sugar beat, onion and rice. They are used to protect against tropical diseases in coffee, cocoa and as antifouling agents in paint coating in ships (Reisi et al. 2006). The title compound is a continuation of our research invovling the synthesis of new organotin compounds of potential biological activity (Danish et al., 2010).

The molecular structure of the title compound is shown in Fig.1. The structure contains discrete molecules. The central Sn atom is coordinated by three phenyl ligands, a dinitrotoluene carboxylate ligand and a methanol ligand. Three phenyl ligands coordinate the Sn atom through Sn—C bonds whose lengths fall in the narrow range of 2.122((5)Å to 2.132 (5) Å, which was earlier observed in triphenyl tin complexes (Azir-ur-Rehman et al., 2006; Win et al., 2006). The coordinating C atoms form an equatorial plane of a trigonal bipyramid. The Sn atom deviates from this plane by 0.0666 (2) Å. The benzene rings as expected are essentially planar with r.m.s. deviations of 0.0026 (1), 0.0100 (1) and 0.0070 (1)Å and form dihedral angles of 49.8 (2), 57.6 (2) and 5.5 (1)° with the equatorial plane. The dinitrotoluene carboxylate ligand chelates the Sn atom using a single carboxylato O atom, which forms one apex of the coordination bipyramid. The second carboxylato O atom is not coordinated. The Sn—O bond length is 2.162 (3) Å, which is characteristic (Danish et al., 2010). The toluene group is essentially planar [r.m.s. 0.0154 (2) Å] and forms dihedral angles of 40.9 (2) and 5.8 (1)° with nitro groups, N11/O13/O14 and N12/O15/O16 respectively. The dihedral angle between the carboxylate C17/O11/O12 group and the toluene ring is 52.3 (2)°. The methanol hydroxy O51 atom is the apical site with with an Sn—O bond of 2.393 (3) Å. The methanol ligand originates from the solvent used in the course of chemical synthesis. In the crystal, molecules are linked by hydrogen bonds in which the methanol hydroxyl group act as donors and the unccordinated carboxylato O12 atoms acts as an acceptor to form chains propagating along the a axis (Fig. 2).

Related literature top

For the crystal structures of two triphenyltin complexes with a 2,3-dinitrobenzoate ligand, see: Azir-ur-Rehman et al. (2006); Win et al. (2006). For the structure of a tin complex with a 2-methylbenzoate ligand, see: Danish et al. (2010). For applications of organotin compounds, see: Reisi et al. (2006).

Experimental top

0.124 g.(0.0005 mol) of sodium 3,5-dinitro-toluate and 0.192 g.(0.0005 mol) of triphenyltin chloride were suspended in dry methanol and refluxed for six hours. Sodium chloride, which was formed, was removed by filtration. The solid obtained from the concentration of the filtrate was repeatedly crystallized from chloroform until pale yellow single-crystal plates were found. M.p = 369 K. Yield 80%.

Refinement top

The hydroxy group hydrogen atom was located in a difference map and was refined independently with an isotropic displacement parameter. H atoms boned to C atoms were placed in calculated positions with C—H = 0.93 and 0.96Å and treated as riding on the parent atoms with Uiso(H)= 1.2Ueq(C) or Uiso(H)=1.5Ueq(Cmethyl).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex shown with 50% probability displacement ellipsoids. For clarity, only bonding benzene ring C atoms are labelled.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
(Methanol-κO)(2-methyl-3,5-dinitrobenzoato-κO)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C8H5N2O6)(CH4O)]F(000) = 1224
Mr = 607.17Dx = 1.561 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.0597 (16) Åθ = 6–15°
b = 20.094 (4) ŵ = 1.04 mm1
c = 16.022 (3) ÅT = 293 K
β = 95.29 (3)°Plates, pale yellow
V = 2583.8 (9) Å30.31 × 0.23 × 0.07 mm
Z = 4
Data collection top
Kuma KM4 four-circle
diffractometer
3440 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.5°, θmin = 1.6°
profile data from ω/2θ scansh = 1010
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 026
Tmin = 0.842, Tmax = 0.930l = 200
6387 measured reflections3 standard reflections every 200 reflections
6141 independent reflections intensity decay: 7.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0654P)2 + 3.2267P]
where P = (Fo2 + 2Fc2)/3
6141 reflections(Δ/σ)max < 0.001
340 parametersΔρmax = 0.96 e Å3
1 restraintΔρmin = 0.78 e Å3
Crystal data top
[Sn(C6H5)3(C8H5N2O6)(CH4O)]V = 2583.8 (9) Å3
Mr = 607.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0597 (16) ŵ = 1.04 mm1
b = 20.094 (4) ÅT = 293 K
c = 16.022 (3) Å0.31 × 0.23 × 0.07 mm
β = 95.29 (3)°
Data collection top
Kuma KM4 four-circle
diffractometer
3440 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.024
Tmin = 0.842, Tmax = 0.9303 standard reflections every 200 reflections
6387 measured reflections intensity decay: 7.5%
6141 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.96 e Å3
6141 reflectionsΔρmin = 0.78 e Å3
340 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.47331 (3)0.246055 (14)0.773898 (18)0.03309 (10)
O110.2416 (4)0.30063 (18)0.7557 (2)0.0474 (8)
C360.6404 (6)0.2620 (3)0.6100 (3)0.0451 (11)
H360.69760.22370.62830.054*
C110.0109 (5)0.3536 (2)0.7691 (3)0.0333 (9)
C120.0853 (6)0.3849 (2)0.8344 (3)0.0373 (10)
C210.5163 (6)0.2838 (2)0.8981 (3)0.0383 (10)
C310.5350 (5)0.2938 (2)0.6620 (3)0.0350 (9)
C150.1386 (7)0.4289 (2)0.6689 (3)0.0443 (11)
O120.0567 (5)0.24487 (18)0.8209 (3)0.0659 (12)
N120.1578 (8)0.4552 (3)0.5823 (3)0.0647 (14)
C410.3905 (5)0.1462 (2)0.7589 (3)0.0372 (10)
C160.0334 (6)0.3769 (2)0.6871 (3)0.0396 (10)
H160.02280.35730.64540.047*
C420.3836 (7)0.1148 (3)0.6825 (3)0.0498 (12)
H420.41730.13760.63640.060*
C130.1887 (6)0.4382 (2)0.8096 (3)0.0425 (11)
C180.1024 (5)0.2939 (2)0.7841 (3)0.0358 (9)
C320.4572 (7)0.3511 (3)0.6343 (4)0.0520 (13)
H320.39030.37360.66930.062*
C140.2212 (6)0.4600 (2)0.7284 (4)0.0472 (12)
H140.29600.49440.71470.057*
N110.2681 (6)0.4779 (2)0.8730 (4)0.0592 (13)
C340.5750 (8)0.3438 (4)0.5043 (4)0.0663 (18)
H340.58520.36000.45060.080*
C260.4510 (7)0.3445 (3)0.9175 (4)0.0602 (15)
H260.39610.37040.87560.072*
C250.4669 (9)0.3670 (4)0.9993 (5)0.080 (2)
H250.42260.40821.01170.096*
C220.5990 (7)0.2460 (3)0.9619 (3)0.0532 (12)
H220.64480.20500.95000.064*
C330.4755 (8)0.3764 (3)0.5555 (4)0.0615 (16)
H330.42050.41520.53750.074*
C450.2907 (8)0.0463 (3)0.8180 (5)0.0641 (16)
H450.26120.02290.86450.077*
C350.6596 (7)0.2877 (3)0.5310 (4)0.0573 (15)
H350.73000.26680.49640.069*
C440.2799 (8)0.0158 (3)0.7412 (5)0.0673 (18)
H440.24070.02760.73560.081*
C460.3443 (7)0.1107 (3)0.8273 (4)0.0543 (14)
H460.34980.13070.87980.065*
O160.0735 (7)0.4294 (3)0.5316 (3)0.0816 (15)
C170.0513 (7)0.3627 (3)0.9229 (3)0.0569 (14)
H1710.01590.31700.92410.085*
H1720.15090.36680.95110.085*
H1730.03490.38980.95070.085*
C430.3267 (8)0.0492 (3)0.6729 (4)0.0649 (17)
H430.32090.02860.62070.078*
O140.4095 (6)0.4972 (3)0.8526 (4)0.0997 (18)
O130.1901 (7)0.4907 (3)0.9382 (4)0.0993 (19)
O150.2542 (8)0.5001 (3)0.5664 (3)0.0948 (18)
C230.6126 (9)0.2701 (4)1.0438 (4)0.073 (2)
H230.66770.24511.08660.088*
C240.5455 (9)0.3303 (5)1.0615 (4)0.084 (3)
H240.55400.34601.11630.101*
O510.7475 (4)0.19935 (17)0.7928 (3)0.0485 (9)
C510.7965 (8)0.1327 (3)0.7876 (5)0.079 (2)
H51A0.78850.11130.84060.118*
H51B0.90960.13070.77340.118*
H51C0.72510.11040.74520.118*
H510.825 (7)0.223 (3)0.808 (5)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03123 (15)0.03696 (16)0.03213 (15)0.00077 (14)0.00859 (10)0.00146 (15)
O110.0307 (17)0.060 (2)0.053 (2)0.0075 (15)0.0130 (15)0.0109 (17)
C360.038 (2)0.055 (3)0.043 (3)0.000 (2)0.009 (2)0.003 (2)
C110.026 (2)0.040 (2)0.035 (2)0.0011 (17)0.0071 (17)0.0017 (19)
C120.031 (2)0.040 (2)0.041 (3)0.0014 (18)0.0049 (19)0.000 (2)
C210.036 (2)0.040 (2)0.040 (3)0.0054 (19)0.0093 (19)0.002 (2)
C310.029 (2)0.041 (2)0.036 (2)0.0016 (18)0.0059 (18)0.0010 (19)
C150.053 (3)0.036 (2)0.041 (3)0.007 (2)0.008 (2)0.006 (2)
O120.046 (2)0.051 (2)0.105 (4)0.0119 (17)0.028 (2)0.029 (2)
N120.088 (4)0.049 (3)0.055 (3)0.005 (3)0.011 (3)0.012 (2)
C410.030 (2)0.040 (2)0.042 (3)0.0010 (18)0.0029 (19)0.001 (2)
C160.038 (2)0.048 (3)0.033 (2)0.002 (2)0.004 (2)0.001 (2)
C420.050 (3)0.054 (3)0.044 (3)0.002 (2)0.004 (2)0.001 (2)
C130.037 (3)0.040 (2)0.051 (3)0.0043 (19)0.007 (2)0.005 (2)
C180.031 (2)0.038 (2)0.039 (2)0.0019 (17)0.0076 (18)0.0009 (19)
C320.047 (3)0.055 (3)0.058 (3)0.004 (2)0.019 (3)0.015 (3)
C140.045 (3)0.034 (2)0.062 (4)0.006 (2)0.005 (2)0.006 (2)
N110.056 (3)0.051 (3)0.072 (4)0.012 (2)0.016 (3)0.012 (2)
C340.065 (4)0.097 (5)0.038 (3)0.014 (4)0.008 (3)0.019 (3)
C260.054 (3)0.059 (3)0.067 (4)0.006 (3)0.004 (3)0.015 (3)
C250.063 (4)0.096 (5)0.084 (5)0.007 (4)0.015 (4)0.057 (5)
C220.050 (3)0.063 (3)0.047 (3)0.002 (3)0.004 (2)0.001 (3)
C330.057 (3)0.074 (4)0.055 (4)0.001 (3)0.008 (3)0.029 (3)
C450.069 (4)0.048 (3)0.078 (4)0.010 (3)0.015 (3)0.012 (3)
C350.054 (3)0.082 (4)0.039 (3)0.012 (3)0.019 (2)0.010 (3)
C440.063 (4)0.037 (3)0.098 (5)0.005 (3)0.015 (4)0.000 (3)
C460.061 (3)0.049 (3)0.055 (3)0.004 (3)0.021 (3)0.000 (3)
O160.120 (4)0.082 (3)0.044 (2)0.004 (3)0.010 (3)0.013 (2)
C170.058 (3)0.070 (4)0.043 (3)0.008 (3)0.011 (3)0.006 (3)
C430.075 (4)0.052 (3)0.063 (4)0.004 (3)0.020 (3)0.016 (3)
O140.070 (3)0.119 (4)0.112 (4)0.052 (3)0.019 (3)0.014 (4)
O130.104 (4)0.118 (4)0.076 (4)0.029 (3)0.009 (3)0.039 (3)
O150.135 (5)0.069 (3)0.074 (3)0.019 (3)0.026 (3)0.026 (3)
C230.063 (4)0.113 (6)0.042 (3)0.027 (4)0.003 (3)0.004 (3)
C240.060 (4)0.148 (8)0.044 (4)0.026 (5)0.008 (3)0.033 (4)
O510.0348 (19)0.0401 (18)0.071 (3)0.0065 (15)0.0049 (18)0.0007 (18)
C510.060 (4)0.045 (3)0.129 (7)0.015 (3)0.006 (4)0.011 (4)
Geometric parameters (Å, º) top
Sn1—C412.121 (5)C14—H140.9300
Sn1—C212.128 (5)N11—O131.196 (7)
Sn1—C312.132 (5)N11—O141.219 (6)
Sn1—O112.162 (3)C34—C351.366 (9)
Sn1—O512.394 (3)C34—C331.366 (9)
O11—C181.257 (5)C34—H340.9300
C36—C351.389 (8)C26—C251.380 (9)
C36—C311.397 (6)C26—H260.9300
C36—H360.9300C25—C241.351 (11)
C11—C161.391 (6)C25—H250.9300
C11—C121.400 (6)C22—C231.394 (9)
C11—C181.514 (6)C22—H220.9300
C12—C131.393 (6)C33—H330.9300
C12—C171.489 (7)C45—C441.369 (9)
C21—C261.376 (7)C45—C461.367 (8)
C21—C221.393 (7)C45—H450.9300
C31—C321.365 (7)C35—H350.9300
C15—C161.360 (7)C44—C431.367 (10)
C15—C141.364 (8)C44—H440.9300
C15—N121.479 (7)C46—H460.9300
O12—C181.222 (6)C17—H1710.9600
N12—O151.203 (7)C17—H1720.9600
N12—O161.221 (7)C17—H1730.9600
C41—C421.374 (7)C43—H430.9300
C41—C461.387 (7)C23—C241.364 (11)
C16—H160.9300C23—H230.9300
C42—C431.400 (8)C24—H240.9300
C42—H420.9300O51—C511.401 (6)
C13—C141.374 (7)O51—H510.81 (2)
C13—N111.482 (7)C51—H51A0.9600
C32—C331.382 (7)C51—H51B0.9600
C32—H320.9300C51—H51C0.9600
C41—Sn1—C21117.76 (18)O13—N11—C13119.3 (5)
C41—Sn1—C31115.18 (18)O14—N11—C13116.1 (5)
C21—Sn1—C31126.54 (17)C35—C34—C33120.7 (5)
C41—Sn1—O11101.88 (15)C35—C34—H34119.7
C21—Sn1—O1190.55 (17)C33—C34—H34119.7
C31—Sn1—O1185.63 (15)C21—C26—C25120.1 (7)
C41—Sn1—O5185.44 (15)C21—C26—H26120.0
C21—Sn1—O5187.29 (17)C25—C26—H26120.0
C31—Sn1—O5189.91 (15)C24—C25—C26121.2 (7)
O11—Sn1—O51172.54 (13)C24—C25—H25119.4
C18—O11—Sn1133.3 (3)C26—C25—H25119.4
C35—C36—C31119.9 (5)C21—C22—C23119.5 (6)
C35—C36—H36120.1C21—C22—H22120.3
C31—C36—H36120.1C23—C22—H22120.3
C16—C11—C12121.7 (4)C34—C33—C32119.4 (6)
C16—C11—C18116.1 (4)C34—C33—H33120.3
C12—C11—C18122.1 (4)C32—C33—H33120.3
C13—C12—C11114.8 (4)C44—C45—C46120.9 (6)
C13—C12—C17123.7 (5)C44—C45—H45119.5
C11—C12—C17121.5 (4)C46—C45—H45119.5
C26—C21—C22119.0 (5)C34—C35—C36119.9 (6)
C26—C21—Sn1119.7 (4)C34—C35—H35120.0
C22—C21—Sn1121.2 (4)C36—C35—H35120.0
C32—C31—C36118.6 (5)C43—C44—C45120.0 (5)
C32—C31—Sn1121.1 (4)C43—C44—H44120.0
C36—C31—Sn1119.8 (3)C45—C44—H44120.0
C16—C15—C14122.4 (5)C45—C46—C41120.4 (6)
C16—C15—N12119.0 (5)C45—C46—H46119.8
C14—C15—N12118.5 (5)C41—C46—H46119.8
O15—N12—O16124.5 (6)C12—C17—H171109.5
O15—N12—C15118.4 (6)C12—C17—H172109.5
O16—N12—C15117.1 (5)H171—C17—H172109.5
C42—C41—C46118.4 (5)C12—C17—H173109.5
C42—C41—Sn1121.4 (4)H171—C17—H173109.5
C46—C41—Sn1120.1 (4)H172—C17—H173109.5
C15—C16—C11119.1 (5)C44—C43—C42119.1 (6)
C15—C16—H16120.5C44—C43—H43120.4
C11—C16—H16120.5C42—C43—H43120.4
C41—C42—C43121.1 (6)C24—C23—C22120.3 (7)
C41—C42—H42119.5C24—C23—H23119.8
C43—C42—H42119.5C22—C23—H23119.8
C14—C13—C12124.8 (5)C25—C24—C23119.9 (6)
C14—C13—N11114.9 (5)C25—C24—H24120.0
C12—C13—N11120.2 (5)C23—C24—H24120.0
O12—C18—O11125.5 (4)C51—O51—Sn1129.0 (4)
O12—C18—C11120.7 (4)C51—O51—H51112 (6)
O11—C18—C11113.8 (4)Sn1—O51—H51119 (6)
C31—C32—C33121.5 (5)O51—C51—H51A109.5
C31—C32—H32119.3O51—C51—H51B109.5
C33—C32—H32119.3H51A—C51—H51B109.5
C15—C14—C13117.0 (4)O51—C51—H51C109.5
C15—C14—H14121.5H51A—C51—H51C109.5
C13—C14—H14121.5H51B—C51—H51C109.5
O13—N11—O14124.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H51···O12i0.81 (2)1.91 (4)2.654 (6)153 (8)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C8H5N2O6)(CH4O)]
Mr607.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.0597 (16), 20.094 (4), 16.022 (3)
β (°) 95.29 (3)
V3)2583.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.31 × 0.23 × 0.07
Data collection
DiffractometerKuma KM4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.842, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
6387, 6141, 3440
Rint0.024
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.133, 1.04
No. of reflections6141
No. of parameters340
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.78

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H51···O12i0.81 (2)1.91 (4)2.654 (6)153 (8)
Symmetry code: (i) x+1, y, z.
 

References

First citationAziz-ur-Rehman, Helliwell, M., Ali, S. & Shahzadi, S. (2006). Acta Cryst. E62, m1656–m1657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Hamid, M. (2010). Acta Cryst. E66, m1268–m1269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationReisi, M. R., Misran, M. & Chuah, C. H. (2006). Casp. J. Environ. Sci. 4, 148–152.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWin, Y. F., Guan, T. S., Ismail, N. L. & Yamin, B. M. (2006). Acta Cryst. E62, m3146–m3148.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds