organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1079-o1080

6-Bromo-3-{2-[2-(di­phenyl­methyl­ene)hydrazin­yl]-1,3-thia­zol-5-yl}-2H-chromen-2-one chloro­form monosolvate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 March 2011; accepted 2 April 2011; online 13 April 2011)

In the title compound, C25H16BrN3O2S·CHCl3, the thia­zole ring is approximately planar [maximum deviation = 0.002 (3) Å] and makes dihedral angles of 10.75 (14) and 87.75 (15)/2.80 (14)° with the pyran ring system and the two terminal phenyl rings, respectively. The solvent mol­ecule is disordered over two sets of sites, with refined occupancies of 0.639 (7) and 0.361 (7). In the crystal, mol­ecules are connected via pairs of weak C—H⋯O inter­actions, forming centrosymmetric dimers. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif.

Related literature

For details and applications of coumarin derivatives, see: Siddiqui et al. (2009[Siddiqui, N., Arshad, M. & Khan, S. (2009). Acta. Pol. Pharm. Drug Res. 66, 161-167.]); Kamal et al. (2009[Kamal, A., Adil, S., Tamboli, J., Siddardha, B. & Murthy, U. (2009). Lett. Drug Des. Discov. 6, 201-209.]); Kalkhambkar et al. (2007[Kalkhambkar, R., Kulkarni, G., Shivkumar, H. & Rao, R. (2007). Eur. J. Med. Chem. 42, 1272-1276.]); Gursoy & Karali (2003[Gursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545-552.]). For the synthesis of benzophenone thio­semicarbazone and 6-bromo-3-(2-bromo­acet­yl)-2H-chromen-2-one, see: Yaragatti et al. (2010[Yaragatti, N. B., Kulkarni, M. V., Ghate, M. D., Hebbar, S. S. & Hegde, G. R. (2010). J. Sulfur Chem. 31, 123-133.]); Lobana et al. (2006[Lobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. & Zeller, M. (2006). Polyhedron, 25, 2755-2763.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16BrN3O2S·CHCl3

  • Mr = 621.75

  • Triclinic, [P \overline 1]

  • a = 8.0774 (3) Å

  • b = 12.6782 (5) Å

  • c = 14.4396 (5) Å

  • α = 114.157 (2)°

  • β = 92.879 (2)°

  • γ = 100.384 (2)°

  • V = 1314.40 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 296 K

  • 0.56 × 0.14 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.401, Tmax = 0.891

  • 21464 measured reflections

  • 7663 independent reflections

  • 3262 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.00

  • 7663 reflections

  • 357 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2 0.93 2.32 2.868 (4) 117
C19—H19A⋯O2i 0.93 2.54 3.448 (4) 165
C26—H26B⋯O2ii 0.96 2.55 3.350 (5) 141
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pharmacological properties of coumarin and thiazole rings impart special importance to them in synthetic chemistry. The thiazole incorporated coumarin derivatives exhibit anticonvulsant (Siddiqui et al., 2009), anticancer, antimicrobial (Kamal et al., 2009), analgesic and anti-inflammatory activities (Kalkhambkar et al., 2007). Some of these compounds are also reported to have activity against Mycobacterium tuberculosis (Gursoy et al., 2003). The title compound (I) is a new derivative of coumarin having thiazole moiety. We report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) consists of one 6-bromo-3-(2-(2-(diphenylmethylene)hydrazinyl)thiazol-5-yl)-2H- chromen-2-one molecule and one chloroform solvent molecule. The thiazole (S1/N1/C10–C12) ring is approximately planar, with maximum deviation of 0.002 (3) Å for atom C10. The solvent molecule is disordered over two sets of sites, with an occupancy ratio of 0.639 (7): 0.361 (7). The central thiazole (S1/N1/C10–C12) ring makes dihedral angles of 10.75 (12) ° and 87.75 (15) and 2.80 (14)° with the pyran (O1/C3–C7) ring system and the two terminal phenyl (C14–C19/C20–C25) rings, respectively.

In the crystal structure, (Fig. 2), the molecules are connected via weak C19—H19A···O2i and C26—H26B···O2ii (Table 1) interactions. An intramolecular C11—H11A···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

Related literature top

For details and applications of coumarin derivatives, see: Siddiqui et al. (2009); Kamal et al. (2009); Kalkhambkar et al. (2007); Gursoy & Karali (2003). For the synthetic procedure of benzophenone thiosemicarbazone and 6-bromo-3-(2-bromoacetyl)-2H-chromen-2-one, see: Yaragatti et al. (2010); Lobana et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Benzophenone thiosemicarbazone (Lobana et al., 2006) and 6-bromo-3-(2-bromoacetyl)-2H-chromen-2-one (Yaragatti et al., 2010) were synthesized as reported in the literature. A solution of 6-bromo-3-(2-bromoacetyl)-2H-chromen-2-one (2.5 mmol) and benzophenone thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 1.5 hours. Precipitates formed were filtered and boiled with water containing sodium acetate. The title compound (I) was purified by recrystallization with ethanol-chloroform (1:3) as large brownish, yellow needle-like crystals.

Refinement top

Atom H1N2 was located from a difference Fourier map and refined freely [N–H = 0.87 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The solvent molecule is disordered over two sites with a refined occupany ratio of 0.639 (7):0.361 (7).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line. The open bonds represents disordered components.
[Figure 2] Fig. 2. The crystal packing of the title compound with hydrogen bonds shown as dashed lines.
6-Bromo-3-{2-[2-(diphenylmethylene)hydrazinyl]-1,3-thiazol-5-yl}- 2H-chromen-2-one chloroform monosolvate top
Crystal data top
C25H16BrN3O2S·CHCl3Z = 2
Mr = 621.75F(000) = 624
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0774 (3) ÅCell parameters from 4500 reflections
b = 12.6782 (5) Åθ = 2.9–29.6°
c = 14.4396 (5) ŵ = 1.98 mm1
α = 114.157 (2)°T = 296 K
β = 92.879 (2)°Plate, yellow
γ = 100.384 (2)°0.56 × 0.14 × 0.06 mm
V = 1314.40 (8) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7663 independent reflections
Radiation source: fine-focus sealed tube3262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.401, Tmax = 0.891k = 1717
21464 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.0043P]
where P = (Fo2 + 2Fc2)/3
7663 reflections(Δ/σ)max = 0.001
357 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C25H16BrN3O2S·CHCl3γ = 100.384 (2)°
Mr = 621.75V = 1314.40 (8) Å3
Triclinic, P1Z = 2
a = 8.0774 (3) ÅMo Kα radiation
b = 12.6782 (5) ŵ = 1.98 mm1
c = 14.4396 (5) ÅT = 296 K
α = 114.157 (2)°0.56 × 0.14 × 0.06 mm
β = 92.879 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7663 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3262 reflections with I > 2σ(I)
Tmin = 0.401, Tmax = 0.891Rint = 0.041
21464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.35 e Å3
7663 reflectionsΔρmin = 0.40 e Å3
357 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.38420 (5)0.63922 (3)0.45724 (3)0.09363 (18)
S10.38790 (9)0.12055 (6)0.50298 (6)0.0610 (2)
O10.1491 (2)0.32668 (16)0.24872 (13)0.0643 (5)
O20.0058 (3)0.17090 (17)0.24065 (14)0.0764 (6)
N10.2137 (3)0.03044 (18)0.55842 (16)0.0540 (5)
N20.3995 (3)0.1301 (2)0.69187 (19)0.0651 (7)
N30.5130 (3)0.23407 (18)0.71595 (17)0.0591 (6)
C10.3766 (4)0.5695 (3)0.2940 (2)0.0740 (8)
H1A0.45960.63860.25940.089*
C20.3234 (4)0.4974 (2)0.2462 (2)0.0726 (8)
H2A0.37010.51720.17950.087*
C30.2001 (3)0.3959 (2)0.2988 (2)0.0568 (7)
C40.0283 (3)0.2219 (2)0.2938 (2)0.0582 (7)
C50.0446 (3)0.1845 (2)0.39995 (19)0.0509 (6)
C60.0045 (3)0.2545 (2)0.44803 (19)0.0540 (6)
H6A0.04380.23110.51520.065*
C70.1285 (3)0.3632 (2)0.39842 (19)0.0529 (6)
C80.1827 (4)0.4375 (2)0.4461 (2)0.0627 (7)
H8A0.13580.41860.51260.075*
C90.3070 (4)0.5392 (2)0.3928 (2)0.0651 (8)
C100.1692 (3)0.0710 (2)0.45345 (19)0.0505 (6)
C110.2498 (3)0.0017 (2)0.4115 (2)0.0580 (7)
H11A0.23260.01810.34230.070*
C120.3265 (3)0.0681 (2)0.5923 (2)0.0540 (7)
C130.5912 (3)0.2922 (2)0.8078 (2)0.0549 (6)
C140.5663 (4)0.2503 (2)0.8896 (2)0.0569 (7)
C150.4327 (4)0.2721 (3)0.9451 (3)0.0856 (10)
H15A0.35850.31400.93180.103*
C160.4080 (5)0.2325 (3)1.0202 (3)0.0930 (10)
H16A0.31890.24941.05830.112*
C170.5125 (5)0.1691 (3)1.0390 (2)0.0788 (9)
H17A0.49410.14141.08890.095*
C180.6456 (4)0.1458 (3)0.9841 (2)0.0775 (9)
H18A0.71800.10260.99700.093*
C190.6724 (4)0.1868 (2)0.9093 (2)0.0690 (8)
H19A0.76300.17090.87230.083*
C200.7132 (3)0.4042 (2)0.8283 (2)0.0567 (7)
C210.7536 (4)0.4354 (2)0.7496 (2)0.0673 (8)
H21A0.70370.38530.68280.081*
C220.8674 (4)0.5400 (3)0.7692 (3)0.0784 (9)
H22A0.89360.55990.71550.094*
C230.9421 (4)0.6150 (3)0.8679 (3)0.0815 (9)
H23A1.01890.68530.88110.098*
C240.9026 (4)0.5853 (3)0.9461 (3)0.0789 (9)
H24A0.95210.63611.01300.095*
C250.7901 (4)0.4809 (2)0.9271 (2)0.0683 (8)
H25A0.76540.46150.98120.082*
C260.9833 (5)0.0897 (3)0.2392 (3)0.0975 (11)
H26A0.97960.06220.29350.117*0.372 (7)
H26B0.96960.03570.27070.117*0.628 (7)
Cl1A0.8630 (12)0.0189 (3)0.1341 (3)0.136 (3)0.372 (7)
Cl2A1.1856 (9)0.1392 (9)0.2352 (8)0.157 (3)0.372 (7)
Cl3A0.8588 (9)0.2080 (4)0.2724 (5)0.0986 (14)0.372 (7)
Cl1B0.9957 (6)0.0084 (4)0.1053 (2)0.1538 (16)0.628 (7)
Cl2B1.1788 (7)0.1888 (3)0.2910 (3)0.1360 (14)0.628 (7)
Cl3B0.8225 (10)0.1494 (8)0.2524 (5)0.213 (3)0.628 (7)
H1N20.384 (4)0.102 (3)0.737 (2)0.091 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1128 (3)0.0744 (2)0.0971 (3)0.0036 (2)0.0211 (2)0.0490 (2)
S10.0596 (5)0.0589 (4)0.0710 (5)0.0057 (3)0.0107 (4)0.0367 (4)
O10.0655 (12)0.0705 (12)0.0572 (11)0.0013 (10)0.0032 (9)0.0344 (9)
O20.0841 (15)0.0871 (13)0.0646 (12)0.0019 (11)0.0008 (10)0.0483 (11)
N10.0526 (13)0.0562 (12)0.0549 (14)0.0093 (11)0.0099 (11)0.0263 (11)
N20.0742 (17)0.0621 (14)0.0549 (16)0.0001 (13)0.0053 (13)0.0272 (13)
N30.0565 (14)0.0509 (12)0.0676 (16)0.0045 (11)0.0083 (12)0.0261 (11)
C10.073 (2)0.0605 (17)0.079 (2)0.0024 (15)0.0021 (17)0.0286 (16)
C20.071 (2)0.0718 (18)0.0674 (19)0.0002 (17)0.0081 (16)0.0311 (16)
C30.0519 (16)0.0585 (15)0.0644 (18)0.0090 (14)0.0076 (14)0.0320 (14)
C40.0489 (17)0.0678 (17)0.0636 (18)0.0086 (14)0.0065 (14)0.0356 (15)
C50.0444 (15)0.0606 (15)0.0518 (15)0.0123 (13)0.0079 (12)0.0275 (13)
C60.0555 (16)0.0586 (15)0.0479 (15)0.0086 (13)0.0062 (12)0.0244 (13)
C70.0537 (16)0.0541 (14)0.0518 (16)0.0113 (13)0.0104 (13)0.0235 (12)
C80.0709 (19)0.0566 (16)0.0599 (17)0.0080 (15)0.0134 (15)0.0262 (14)
C90.071 (2)0.0552 (16)0.072 (2)0.0083 (15)0.0191 (16)0.0304 (15)
C100.0460 (15)0.0539 (14)0.0576 (17)0.0125 (12)0.0084 (12)0.0289 (13)
C110.0575 (17)0.0646 (16)0.0598 (16)0.0117 (13)0.0091 (13)0.0348 (14)
C120.0498 (16)0.0543 (15)0.0647 (18)0.0134 (13)0.0140 (14)0.0304 (14)
C130.0546 (16)0.0530 (14)0.0573 (17)0.0130 (13)0.0086 (14)0.0230 (13)
C140.0532 (17)0.0545 (15)0.0578 (17)0.0042 (14)0.0013 (14)0.0225 (13)
C150.083 (2)0.113 (3)0.090 (2)0.043 (2)0.030 (2)0.062 (2)
C160.090 (3)0.124 (3)0.089 (2)0.040 (2)0.037 (2)0.060 (2)
C170.092 (3)0.078 (2)0.068 (2)0.0045 (19)0.0092 (19)0.0389 (17)
C180.088 (3)0.0714 (19)0.083 (2)0.0185 (18)0.005 (2)0.0433 (17)
C190.0654 (19)0.0707 (18)0.080 (2)0.0171 (16)0.0148 (16)0.0398 (17)
C200.0539 (17)0.0526 (15)0.0653 (18)0.0127 (13)0.0068 (14)0.0266 (14)
C210.069 (2)0.0631 (17)0.0687 (19)0.0103 (15)0.0092 (15)0.0289 (15)
C220.079 (2)0.0716 (19)0.093 (2)0.0081 (17)0.0210 (19)0.0460 (19)
C230.074 (2)0.0603 (18)0.107 (3)0.0039 (16)0.006 (2)0.038 (2)
C240.071 (2)0.0663 (19)0.086 (2)0.0033 (17)0.0089 (17)0.0267 (18)
C250.073 (2)0.0603 (17)0.071 (2)0.0127 (16)0.0038 (16)0.0290 (16)
C260.118 (3)0.095 (2)0.098 (3)0.022 (2)0.002 (2)0.063 (2)
Cl1A0.211 (7)0.0912 (19)0.097 (3)0.014 (3)0.030 (3)0.0435 (17)
Cl2A0.108 (4)0.223 (8)0.229 (8)0.052 (5)0.074 (5)0.171 (7)
Cl3A0.117 (3)0.107 (2)0.098 (2)0.055 (2)0.0259 (19)0.055 (2)
Cl1B0.160 (3)0.148 (2)0.1210 (18)0.065 (2)0.0162 (18)0.0132 (15)
Cl2B0.174 (3)0.1110 (18)0.128 (2)0.0059 (17)0.007 (2)0.0741 (17)
Cl3B0.280 (6)0.332 (7)0.185 (4)0.231 (6)0.132 (4)0.190 (5)
Geometric parameters (Å, º) top
Br1—C91.898 (3)C14—C191.370 (4)
S1—C111.716 (3)C14—C151.377 (4)
S1—C121.732 (2)C15—C161.379 (4)
O1—C31.372 (3)C15—H15A0.9300
O1—C41.379 (3)C16—C171.353 (4)
O2—C41.202 (3)C16—H16A0.9300
N1—C121.295 (3)C17—C181.371 (4)
N1—C101.390 (3)C17—H17A0.9300
N2—C121.362 (3)C18—C191.387 (4)
N2—N31.363 (3)C18—H18A0.9300
N2—H1N20.87 (3)C19—H19A0.9300
N3—C131.284 (3)C20—C211.382 (4)
C1—C91.375 (4)C20—C251.387 (4)
C1—C21.378 (4)C21—C221.383 (4)
C1—H1A0.9300C21—H21A0.9300
C2—C31.373 (3)C22—C231.378 (4)
C2—H2A0.9300C22—H22A0.9300
C3—C71.384 (4)C23—C241.364 (4)
C4—C51.461 (3)C23—H23A0.9300
C5—C61.353 (3)C24—C251.378 (4)
C5—C101.473 (3)C24—H24A0.9300
C6—C71.428 (3)C25—H25A0.9300
C6—H6A0.9300C26—Cl3B1.599 (7)
C7—C81.402 (3)C26—Cl2A1.655 (8)
C8—C91.381 (4)C26—Cl1A1.674 (5)
C8—H8A0.9300C26—Cl2B1.740 (6)
C10—C111.354 (3)C26—Cl1B1.798 (5)
C11—H11A0.9300C26—Cl3A1.869 (7)
C13—C201.483 (3)C26—H26A0.9800
C13—C141.488 (3)C26—H26B0.9601
C11—S1—C1287.98 (13)C16—C17—C18119.8 (3)
C3—O1—C4122.8 (2)C16—C17—H17A120.1
C12—N1—C10109.2 (2)C18—C17—H17A120.1
C12—N2—N3117.0 (2)C17—C18—C19120.0 (3)
C12—N2—H1N2122 (2)C17—C18—H18A120.0
N3—N2—H1N2120 (2)C19—C18—H18A120.0
C13—N3—N2118.9 (2)C14—C19—C18120.4 (3)
C9—C1—C2120.1 (3)C14—C19—H19A119.8
C9—C1—H1A119.9C18—C19—H19A119.8
C2—C1—H1A119.9C21—C20—C25118.1 (2)
C3—C2—C1118.8 (3)C21—C20—C13121.0 (2)
C3—C2—H2A120.6C25—C20—C13120.9 (2)
C1—C2—H2A120.6C20—C21—C22120.8 (3)
O1—C3—C2117.3 (2)C20—C21—H21A119.6
O1—C3—C7120.5 (2)C22—C21—H21A119.6
C2—C3—C7122.2 (2)C23—C22—C21120.2 (3)
O2—C4—O1115.8 (2)C23—C22—H22A119.9
O2—C4—C5126.9 (2)C21—C22—H22A119.9
O1—C4—C5117.3 (2)C24—C23—C22119.5 (3)
C6—C5—C4119.4 (2)C24—C23—H23A120.3
C6—C5—C10120.9 (2)C22—C23—H23A120.3
C4—C5—C10119.7 (2)C23—C24—C25120.6 (3)
C5—C6—C7121.7 (2)C23—C24—H24A119.7
C5—C6—H6A119.1C25—C24—H24A119.7
C7—C6—H6A119.1C24—C25—C20120.8 (3)
C3—C7—C8118.5 (2)C24—C25—H25A119.6
C3—C7—C6118.3 (2)C20—C25—H25A119.6
C8—C7—C6123.2 (2)Cl3B—C26—Cl2A132.4 (4)
C9—C8—C7118.9 (3)Cl3B—C26—Cl1A85.1 (3)
C9—C8—H8A120.5Cl2A—C26—Cl1A119.6 (4)
C7—C8—H8A120.5Cl3B—C26—Cl2B115.0 (4)
C1—C9—C8121.4 (2)Cl2A—C26—Cl2B27.3 (3)
C1—C9—Br1119.3 (2)Cl1A—C26—Cl2B146.5 (4)
C8—C9—Br1119.3 (2)Cl3B—C26—Cl1B110.0 (3)
C11—C10—N1115.4 (2)Cl2A—C26—Cl1B79.3 (4)
C11—C10—C5127.3 (2)Cl1A—C26—Cl1B40.7 (2)
N1—C10—C5117.4 (2)Cl2B—C26—Cl1B105.8 (3)
C10—C11—S1110.9 (2)Cl3B—C26—Cl3A20.7 (4)
C10—C11—H11A124.6Cl2A—C26—Cl3A112.6 (4)
S1—C11—H11A124.6Cl1A—C26—Cl3A102.1 (4)
N1—C12—N2124.1 (2)Cl2B—C26—Cl3A94.4 (3)
N1—C12—S1116.6 (2)Cl1B—C26—Cl3A116.5 (3)
N2—C12—S1119.33 (19)Cl3B—C26—H26A101.7
N3—C13—C20116.0 (2)Cl2A—C26—H26A107.3
N3—C13—C14123.1 (2)Cl1A—C26—H26A107.3
C20—C13—C14120.9 (2)Cl2B—C26—H26A95.1
C19—C14—C15118.7 (3)Cl1B—C26—H26A129.1
C19—C14—C13120.9 (3)Cl3A—C26—H26A107.3
C15—C14—C13120.4 (3)Cl3B—C26—H26B108.6
C14—C15—C16120.6 (3)Cl2A—C26—H26B112.0
C14—C15—H15A119.7Cl1A—C26—H26B88.0
C16—C15—H15A119.7Cl2B—C26—H26B108.5
C17—C16—C15120.5 (3)Cl1B—C26—H26B108.8
C17—C16—H16A119.8Cl3A—C26—H26B120.5
C15—C16—H16A119.8H26A—C26—H26B20.9
C12—N2—N3—C13176.4 (2)C12—S1—C11—C100.2 (2)
C9—C1—C2—C30.2 (5)C10—N1—C12—N2178.7 (2)
C4—O1—C3—C2179.0 (3)C10—N1—C12—S10.3 (3)
C4—O1—C3—C71.1 (4)N3—N2—C12—N1178.3 (2)
C1—C2—C3—O1179.5 (3)N3—N2—C12—S12.8 (3)
C1—C2—C3—C70.4 (5)C11—S1—C12—N10.3 (2)
C3—O1—C4—O2179.1 (2)C11—S1—C12—N2178.7 (2)
C3—O1—C4—C50.8 (4)N2—N3—C13—C20179.8 (2)
O2—C4—C5—C6178.0 (3)N2—N3—C13—C141.1 (4)
O1—C4—C5—C61.9 (4)N3—C13—C14—C1994.4 (3)
O2—C4—C5—C102.5 (4)C20—C13—C14—C1984.2 (3)
O1—C4—C5—C10177.6 (2)N3—C13—C14—C1583.9 (4)
C4—C5—C6—C71.2 (4)C20—C13—C14—C1597.5 (3)
C10—C5—C6—C7178.3 (2)C19—C14—C15—C161.1 (5)
O1—C3—C7—C8179.1 (2)C13—C14—C15—C16179.3 (3)
C2—C3—C7—C80.8 (4)C14—C15—C16—C171.5 (5)
O1—C3—C7—C61.8 (4)C15—C16—C17—C181.1 (5)
C2—C3—C7—C6178.3 (3)C16—C17—C18—C190.3 (5)
C5—C6—C7—C30.6 (4)C15—C14—C19—C180.3 (4)
C5—C6—C7—C8179.7 (3)C13—C14—C19—C18178.5 (3)
C3—C7—C8—C91.0 (4)C17—C18—C19—C140.1 (4)
C6—C7—C8—C9178.1 (3)N3—C13—C20—C217.5 (4)
C2—C1—C9—C80.4 (5)C14—C13—C20—C21171.2 (3)
C2—C1—C9—Br1179.4 (2)N3—C13—C20—C25172.5 (3)
C7—C8—C9—C10.8 (4)C14—C13—C20—C258.8 (4)
C7—C8—C9—Br1179.0 (2)C25—C20—C21—C220.0 (4)
C12—N1—C10—C110.1 (3)C13—C20—C21—C22179.9 (3)
C12—N1—C10—C5178.5 (2)C20—C21—C22—C230.1 (5)
C6—C5—C10—C11168.7 (3)C21—C22—C23—C240.2 (5)
C4—C5—C10—C1111.8 (4)C22—C23—C24—C250.5 (5)
C6—C5—C10—N19.7 (4)C23—C24—C25—C200.7 (5)
C4—C5—C10—N1169.8 (2)C21—C20—C25—C240.4 (4)
N1—C10—C11—S10.1 (3)C13—C20—C25—C24179.6 (3)
C5—C10—C11—S1178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.322.868 (4)117
C19—H19A···O2i0.932.543.448 (4)165
C26—H26B···O2ii0.962.553.350 (5)141
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H16BrN3O2S·CHCl3
Mr621.75
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0774 (3), 12.6782 (5), 14.4396 (5)
α, β, γ (°)114.157 (2), 92.879 (2), 100.384 (2)
V3)1314.40 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.56 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.401, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
21464, 7663, 3262
Rint0.041
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.00
No. of reflections7663
No. of parameters357
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.322.868 (4)117
C19—H19A···O2i0.932.543.448 (4)165
C26—H26B···O2ii0.962.553.350 (5)141
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AA, HO and CKL thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant [1001/PKimia/811133] to conduct this work. AA also thanks USM for a fellowship. HKF and MH thank the Malaysian Government and USM for the Research University grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545–552.  Google Scholar
First citationKalkhambkar, R., Kulkarni, G., Shivkumar, H. & Rao, R. (2007). Eur. J. Med. Chem. 42, 1272–1276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamal, A., Adil, S., Tamboli, J., Siddardha, B. & Murthy, U. (2009). Lett. Drug Des. Discov. 6, 201–209.  CrossRef CAS Google Scholar
First citationLobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. & Zeller, M. (2006). Polyhedron, 25, 2755–2763.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. & Khan, S. (2009). Acta. Pol. Pharm. Drug Res. 66, 161–167.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaragatti, N. B., Kulkarni, M. V., Ghate, M. D., Hebbar, S. S. & Hegde, G. R. (2010). J. Sulfur Chem. 31, 123–133.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1079-o1080
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds