organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1170

Di­phenyl (o-tolyl­amido)­phospho­nate

aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, PO Box 49195-467, Zanjan, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 31 March 2011; accepted 13 April 2011; online 16 April 2011)

The asymmetric unit of the title compound, C19H18NO3P, contains two independent mol­ecules in which the P atoms are found in slightly distorted tetrahedral environments. In the crystal, pairs of inter­molecular N—H⋯O(P) hydrogen bonds form two independent centrosymmetric dimers.

Related literature

For a related structure, see: Pourayoubi et al. (2010[Pourayoubi, M., Zargaran, P., Ghammamy, S. & Eshtiagh-Hosseini, H. (2010). Acta Cryst. E66, o3357.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18NO3P

  • Mr = 339.31

  • Triclinic, [P \overline 1]

  • a = 10.2986 (13) Å

  • b = 10.3540 (12) Å

  • c = 17.993 (2) Å

  • α = 86.650 (2)°

  • β = 84.036 (2)°

  • γ = 62.429 (2)°

  • V = 1691.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 120 K

  • 0.50 × 0.40 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.956

  • 17593 measured reflections

  • 8135 independent reflections

  • 6772 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.00

  • 8135 reflections

  • 441 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.09 (2) 2.903 (1) 162 (1)
N1′—H1′N⋯O1′ii 0.86 (2) 2.02 (2) 2.867 (1) 167 (1)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In previous work, the structure of diphenyl (p-tolylamido)phosphate was reported (Pourayoubi et al., 2010). Here, we report on the synthesis and crystal structure of title compound.

The asymmetric unit (Fig. 1) consists of two independent molecules. The PO, P—O and P—N bond lengths are standard for amidophosphoric acid ester compounds (Pourayoubi et al., 2010). The P atoms of two independent molecules are in slightly distorted tetrahedral environments.

In each molecule, the phosphoryl group and the N-H unit are in a syn orientation with respect to each other and in the crystal, pairs of intermolecular N—H···O(P) hydrogen bonds (Table 1) form two independent centrosymmetric dimers (Fig. 2).

Related literature top

For a related structure, see: Pourayoubi et al. (2010).

Experimental top

To a solution of (C6H5O)2P(O)Cl in chloroform, a solution of ortho-toluidine (1:2 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water. Colorless plates were obtained by slow evaporation of a methanol solution of the title compound at room temperature.

Refinement top

The hydrogen atoms of N-H groups were found in difference Fourier maps and were refined with isotropic displacement parameters. The H(C) atom positions were calculated and refined in a riding-model approximation with Uiso(H) equal to 1.2Ueq(C), or 1.5 Ueq(C) for methyl group H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dotted lines. Only H atoms involved in hydrogen bonds are shown.
Diphenyl (o-tolylamido)phosphonate top
Crystal data top
C19H18NO3PZ = 4
Mr = 339.31F(000) = 712
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2986 (13) ÅCell parameters from 512 reflections
b = 10.3540 (12) Åθ = 4.5–56.0°
c = 17.993 (2) ŵ = 0.18 mm1
α = 86.650 (2)°T = 120 K
β = 84.036 (2)°Plate, colorless
γ = 62.429 (2)°0.50 × 0.40 × 0.25 mm
V = 1691.4 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8135 independent reflections
Radiation source: fine-focus sealed tube6772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1313
Tmin = 0.918, Tmax = 0.956k = 1313
17593 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.9439P]
where P = (Fo2 + 2Fc2)/3
8135 reflections(Δ/σ)max = 0.001
441 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H18NO3Pγ = 62.429 (2)°
Mr = 339.31V = 1691.4 (4) Å3
Triclinic, P1Z = 4
a = 10.2986 (13) ÅMo Kα radiation
b = 10.3540 (12) ŵ = 0.18 mm1
c = 17.993 (2) ÅT = 120 K
α = 86.650 (2)°0.50 × 0.40 × 0.25 mm
β = 84.036 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8135 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
6772 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.956Rint = 0.018
17593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.31 e Å3
8135 reflectionsΔρmin = 0.34 e Å3
441 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.19581 (4)0.01563 (4)0.03088 (2)0.02376 (9)
P1'0.70287 (4)0.52900 (4)0.47655 (2)0.02586 (9)
O10.04093 (11)0.08523 (11)0.05977 (6)0.0281 (2)
O1'0.55749 (12)0.60327 (12)0.44825 (6)0.0307 (2)
N10.23929 (14)0.13554 (13)0.01151 (7)0.0257 (2)
H1N0.161 (2)0.138 (2)0.0202 (12)0.044 (6)*
N1'0.72932 (14)0.37818 (13)0.52085 (7)0.0273 (3)
H1'N0.649 (2)0.371 (2)0.5267 (11)0.035 (5)*
C1'0.85909 (16)0.27308 (15)0.55182 (8)0.0250 (3)
C10.37739 (16)0.23456 (15)0.04656 (8)0.0252 (3)
O20.31273 (11)0.01688 (11)0.08885 (6)0.0275 (2)
O2'0.74025 (12)0.62773 (11)0.52562 (6)0.0295 (2)
C20.49794 (17)0.20592 (16)0.05467 (9)0.0295 (3)
H2A0.48830.11710.03680.035*
C2'0.97362 (17)0.30462 (16)0.56286 (9)0.0289 (3)
H2'A0.96570.39790.54940.035*
O30.24525 (11)0.11823 (11)0.02046 (6)0.0272 (2)
O3'0.83944 (11)0.49332 (11)0.41738 (6)0.0288 (2)
C3'1.09885 (17)0.20008 (17)0.59340 (9)0.0306 (3)
H3'A1.17650.22200.60060.037*
C30.63124 (18)0.30587 (18)0.08845 (9)0.0339 (3)
H3A0.71260.28530.09380.041*
C4'1.11138 (18)0.06399 (17)0.61338 (9)0.0316 (3)
H4'A1.19680.00730.63470.038*
C40.64678 (18)0.43601 (18)0.11448 (10)0.0356 (3)
H4A0.73830.50490.13770.043*
C5'0.99799 (18)0.03281 (17)0.60188 (9)0.0308 (3)
H5'A1.00730.06100.61530.037*
C50.52688 (18)0.46445 (17)0.10627 (9)0.0333 (3)
H5A0.53810.55410.12390.040*
C6'0.87077 (16)0.13484 (16)0.57128 (8)0.0262 (3)
C60.39121 (17)0.36614 (16)0.07314 (8)0.0277 (3)
C7'0.75118 (18)0.09580 (17)0.55958 (10)0.0328 (3)
H7'A0.78000.00470.57650.049*
H7'B0.73530.10480.50640.049*
H7'C0.66010.16180.58830.049*
C70.26449 (18)0.40159 (17)0.06492 (10)0.0341 (3)
H7A0.29550.49720.08660.051*
H7B0.18290.32730.09100.051*
H7C0.23250.40340.01180.051*
C80.34238 (16)0.11692 (15)0.14859 (8)0.0252 (3)
C8'0.64352 (16)0.71344 (16)0.58442 (8)0.0278 (3)
C90.48097 (17)0.16872 (18)0.17359 (9)0.0326 (3)
H9A0.55040.14060.14920.039*
C9'0.6185 (2)0.6498 (2)0.65008 (10)0.0398 (4)
H9'A0.65870.54690.65470.048*
C100.51614 (19)0.26239 (18)0.23491 (10)0.0373 (4)
H10A0.61060.29870.25270.045*
C10'0.5339 (2)0.7386 (3)0.70923 (11)0.0525 (5)
H10B0.51470.69660.75470.063*
C110.41501 (19)0.30358 (17)0.27055 (9)0.0340 (3)
H11A0.43950.36690.31290.041*
C11'0.4774 (2)0.8877 (3)0.70230 (11)0.0527 (5)
H11B0.42060.94790.74330.063*
C120.27790 (18)0.25192 (17)0.24404 (9)0.0313 (3)
H12A0.20870.28070.26820.038*
C12'0.5030 (2)0.9502 (2)0.63599 (12)0.0464 (5)
H12B0.46331.05310.63140.056*
C130.24039 (16)0.15821 (16)0.18236 (8)0.0277 (3)
H13A0.14670.12340.16390.033*
C13'0.58688 (17)0.86229 (17)0.57605 (10)0.0324 (3)
H13B0.60480.90400.53020.039*
C14'0.88130 (16)0.39496 (15)0.35856 (8)0.0272 (3)
C140.16958 (16)0.19573 (16)0.08173 (8)0.0281 (3)
C150.15880 (19)0.12386 (19)0.14134 (9)0.0349 (3)
H15A0.19470.02120.13980.042*
C15'1.02970 (17)0.32833 (17)0.33465 (9)0.0329 (3)
H15B1.09730.34470.35980.039*
C16'1.07788 (19)0.23765 (19)0.27364 (10)0.0392 (4)
H16A1.17930.19200.25660.047*
C160.0943 (2)0.2051 (2)0.20348 (10)0.0436 (4)
H16B0.08490.15760.24470.052*
C17'0.9801 (2)0.21280 (18)0.23727 (10)0.0394 (4)
H17A1.01380.15110.19500.047*
C170.0437 (2)0.3538 (2)0.20598 (11)0.0478 (5)
H17B0.00120.40820.24910.057*
C18'0.8327 (2)0.27838 (18)0.26281 (10)0.0383 (4)
H18A0.76560.26020.23820.046*
C180.0550 (2)0.4240 (2)0.14562 (12)0.0475 (5)
H18B0.01970.52660.14740.057*
C19'0.78125 (18)0.37031 (17)0.32386 (9)0.0330 (3)
H19A0.68000.41510.34130.040*
C190.11776 (18)0.34487 (18)0.08233 (10)0.0364 (4)
H19B0.12480.39250.04050.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02526 (18)0.02339 (17)0.02499 (18)0.01273 (15)0.00391 (14)0.00136 (13)
P1'0.02571 (19)0.02501 (18)0.0303 (2)0.01476 (15)0.00277 (14)0.00181 (14)
O10.0261 (5)0.0289 (5)0.0288 (5)0.0119 (4)0.0020 (4)0.0045 (4)
O1'0.0272 (5)0.0304 (5)0.0366 (6)0.0152 (4)0.0050 (4)0.0060 (4)
N10.0243 (6)0.0249 (6)0.0312 (6)0.0135 (5)0.0037 (5)0.0041 (5)
N1'0.0264 (6)0.0258 (6)0.0349 (7)0.0165 (5)0.0044 (5)0.0032 (5)
C1'0.0265 (7)0.0258 (7)0.0235 (7)0.0128 (6)0.0009 (5)0.0005 (5)
C10.0261 (7)0.0234 (7)0.0249 (7)0.0099 (6)0.0046 (5)0.0004 (5)
O20.0302 (5)0.0293 (5)0.0279 (5)0.0173 (4)0.0068 (4)0.0020 (4)
O2'0.0295 (5)0.0261 (5)0.0368 (6)0.0164 (4)0.0002 (4)0.0032 (4)
C20.0282 (7)0.0278 (7)0.0342 (8)0.0137 (6)0.0038 (6)0.0037 (6)
C2'0.0318 (8)0.0283 (7)0.0313 (7)0.0177 (6)0.0043 (6)0.0020 (6)
O30.0304 (5)0.0257 (5)0.0291 (5)0.0155 (4)0.0059 (4)0.0020 (4)
O3'0.0288 (5)0.0296 (5)0.0326 (5)0.0174 (4)0.0012 (4)0.0008 (4)
C3'0.0304 (8)0.0355 (8)0.0293 (7)0.0178 (7)0.0047 (6)0.0013 (6)
C30.0288 (8)0.0376 (8)0.0367 (8)0.0159 (7)0.0041 (6)0.0044 (7)
C4'0.0329 (8)0.0305 (7)0.0294 (8)0.0126 (6)0.0050 (6)0.0024 (6)
C40.0294 (8)0.0339 (8)0.0366 (8)0.0080 (7)0.0035 (6)0.0070 (7)
C5'0.0378 (8)0.0262 (7)0.0289 (7)0.0155 (6)0.0017 (6)0.0024 (6)
C50.0367 (8)0.0260 (7)0.0341 (8)0.0108 (6)0.0058 (6)0.0045 (6)
C6'0.0305 (7)0.0263 (7)0.0247 (7)0.0160 (6)0.0019 (6)0.0029 (5)
C60.0330 (8)0.0244 (7)0.0279 (7)0.0142 (6)0.0077 (6)0.0012 (5)
C7'0.0356 (8)0.0286 (7)0.0403 (9)0.0199 (7)0.0019 (7)0.0014 (6)
C70.0385 (9)0.0277 (7)0.0416 (9)0.0191 (7)0.0054 (7)0.0035 (6)
C80.0272 (7)0.0227 (6)0.0241 (7)0.0094 (6)0.0041 (5)0.0029 (5)
C8'0.0255 (7)0.0312 (7)0.0302 (7)0.0156 (6)0.0046 (6)0.0007 (6)
C90.0283 (8)0.0369 (8)0.0343 (8)0.0158 (7)0.0053 (6)0.0014 (6)
C9'0.0398 (9)0.0477 (10)0.0369 (9)0.0247 (8)0.0066 (7)0.0098 (7)
C100.0328 (8)0.0378 (9)0.0394 (9)0.0126 (7)0.0139 (7)0.0009 (7)
C10'0.0483 (11)0.0884 (16)0.0309 (9)0.0407 (11)0.0025 (8)0.0039 (9)
C110.0390 (9)0.0298 (8)0.0285 (8)0.0110 (7)0.0087 (6)0.0019 (6)
C11'0.0371 (10)0.0828 (16)0.0437 (11)0.0315 (10)0.0076 (8)0.0273 (10)
C120.0336 (8)0.0288 (7)0.0294 (8)0.0129 (6)0.0008 (6)0.0008 (6)
C12'0.0335 (9)0.0430 (10)0.0637 (12)0.0175 (8)0.0009 (8)0.0190 (9)
C130.0243 (7)0.0279 (7)0.0289 (7)0.0101 (6)0.0028 (6)0.0010 (6)
C13'0.0295 (8)0.0309 (8)0.0395 (9)0.0160 (6)0.0042 (6)0.0004 (6)
C14'0.0297 (7)0.0232 (7)0.0275 (7)0.0115 (6)0.0031 (6)0.0034 (5)
C140.0252 (7)0.0305 (7)0.0294 (7)0.0141 (6)0.0017 (6)0.0036 (6)
C150.0378 (9)0.0385 (8)0.0281 (8)0.0175 (7)0.0025 (6)0.0001 (6)
C15'0.0280 (8)0.0335 (8)0.0365 (8)0.0143 (6)0.0028 (6)0.0046 (6)
C16'0.0334 (8)0.0348 (8)0.0404 (9)0.0096 (7)0.0033 (7)0.0022 (7)
C160.0443 (10)0.0618 (12)0.0293 (8)0.0286 (9)0.0056 (7)0.0070 (8)
C17'0.0479 (10)0.0297 (8)0.0316 (8)0.0108 (7)0.0016 (7)0.0001 (6)
C170.0385 (10)0.0624 (12)0.0470 (11)0.0282 (9)0.0136 (8)0.0266 (9)
C18'0.0424 (9)0.0358 (8)0.0364 (9)0.0163 (7)0.0102 (7)0.0008 (7)
C180.0407 (10)0.0379 (9)0.0665 (13)0.0209 (8)0.0141 (9)0.0212 (9)
C19'0.0279 (8)0.0326 (8)0.0366 (8)0.0117 (6)0.0063 (6)0.0004 (6)
C190.0340 (8)0.0306 (8)0.0480 (10)0.0179 (7)0.0058 (7)0.0056 (7)
Geometric parameters (Å, º) top
P1—O11.4633 (11)C8—C131.381 (2)
P1—O21.5799 (11)C8—C91.387 (2)
P1—O31.5904 (11)C8'—C13'1.377 (2)
P1—N11.6284 (12)C8'—C9'1.378 (2)
P1'—O1'1.4626 (11)C9—C101.386 (2)
P1'—O3'1.5818 (11)C9—H9A0.9500
P1'—O2'1.5852 (11)C9'—C10'1.385 (3)
P1'—N1'1.6290 (13)C9'—H9'A0.9500
N1—C11.4181 (19)C10—C111.385 (2)
N1—H1N0.85 (2)C10—H10A0.9500
N1'—C1'1.4207 (19)C10'—C11'1.377 (3)
N1'—H1'N0.86 (2)C10'—H10B0.9500
C1'—C2'1.396 (2)C11—C121.385 (2)
C1'—C6'1.4060 (19)C11—H11A0.9500
C1—C21.396 (2)C11'—C12'1.384 (3)
C1—C61.4097 (19)C11'—H11B0.9500
O2—C81.4024 (17)C12—C131.392 (2)
O2'—C8'1.4041 (18)C12—H12A0.9500
C2—C31.382 (2)C12'—C13'1.390 (2)
C2—H2A0.9500C12'—H12B0.9500
C2'—C3'1.386 (2)C13—H13A0.9500
C2'—H2'A0.9500C13'—H13B0.9500
O3—C141.4011 (18)C14'—C19'1.383 (2)
O3'—C14'1.4028 (18)C14'—C15'1.385 (2)
C3'—C4'1.383 (2)C14—C191.381 (2)
C3'—H3'A0.9500C14—C151.382 (2)
C3—C41.385 (2)C15—C161.388 (2)
C3—H3A0.9500C15—H15A0.9500
C4'—C5'1.385 (2)C15'—C16'1.382 (2)
C4'—H4'A0.9500C15'—H15B0.9500
C4—C51.388 (2)C16'—C17'1.380 (3)
C4—H4A0.9500C16'—H16A0.9500
C5'—C6'1.392 (2)C16—C171.378 (3)
C5'—H5'A0.9500C16—H16B0.9500
C5—C61.387 (2)C17'—C18'1.384 (3)
C5—H5A0.9500C17'—H17A0.9500
C6'—C7'1.500 (2)C17—C181.385 (3)
C6—C71.502 (2)C17—H17B0.9500
C7'—H7'A0.9800C18'—C19'1.388 (2)
C7'—H7'B0.9800C18'—H18A0.9500
C7'—H7'C0.9800C18—C191.393 (3)
C7—H7A0.9800C18—H18B0.9500
C7—H7B0.9800C19'—H19A0.9500
C7—H7C0.9800C19—H19B0.9500
O1—P1—O2116.87 (6)C13—C8—O2123.06 (13)
O1—P1—O3114.56 (6)C9—C8—O2115.18 (13)
O2—P1—O393.94 (5)C13'—C8'—C9'121.93 (16)
O1—P1—N1111.23 (6)C13'—C8'—O2'117.01 (14)
O2—P1—N1108.09 (6)C9'—C8'—O2'120.77 (14)
O3—P1—N1110.93 (6)C10—C9—C8118.70 (15)
O1'—P1'—O3'116.62 (6)C10—C9—H9A120.7
O1'—P1'—O2'114.45 (6)C8—C9—H9A120.7
O3'—P1'—O2'93.95 (6)C8'—C9'—C10'118.82 (18)
O1'—P1'—N1'111.98 (7)C8'—C9'—H9'A120.6
O3'—P1'—N1'107.75 (6)C10'—C9'—H9'A120.6
O2'—P1'—N1'110.71 (6)C11—C10—C9120.72 (15)
C1—N1—P1128.61 (10)C11—C10—H10A119.6
C1—N1—H1N120.6 (14)C9—C10—H10A119.6
P1—N1—H1N109.1 (14)C11'—C10'—C9'120.18 (18)
C1'—N1'—P1'128.14 (10)C11'—C10'—H10B119.9
C1'—N1'—H1'N121.4 (13)C9'—C10'—H10B119.9
P1'—N1'—H1'N110.3 (13)C10—C11—C12119.58 (15)
C2'—C1'—C6'120.07 (13)C10—C11—H11A120.2
C2'—C1'—N1'121.39 (13)C12—C11—H11A120.2
C6'—C1'—N1'118.54 (13)C10'—C11'—C12'120.42 (18)
C2—C1—C6119.91 (14)C10'—C11'—H11B119.8
C2—C1—N1122.19 (13)C12'—C11'—H11B119.8
C6—C1—N1117.90 (13)C11—C12—C13120.69 (15)
C8—O2—P1125.79 (9)C11—C12—H12A119.7
C8'—O2'—P1'122.76 (9)C13—C12—H12A119.7
C3—C2—C1120.49 (14)C11'—C12'—C13'119.92 (18)
C3—C2—H2A119.8C11'—C12'—H12B120.0
C1—C2—H2A119.8C13'—C12'—H12B120.0
C3'—C2'—C1'120.16 (14)C8—C13—C12118.57 (14)
C3'—C2'—H2'A119.9C8—C13—H13A120.7
C1'—C2'—H2'A119.9C12—C13—H13A120.7
C14—O3—P1122.12 (9)C8'—C13'—C12'118.72 (17)
C14'—O3'—P1'124.49 (9)C8'—C13'—H13B120.6
C4'—C3'—C2'120.41 (14)C12'—C13'—H13B120.6
C4'—C3'—H3'A119.8C19'—C14'—C15'121.58 (15)
C2'—C3'—H3'A119.8C19'—C14'—O3'122.75 (14)
C2—C3—C4120.28 (15)C15'—C14'—O3'115.60 (13)
C2—C3—H3A119.9C19—C14—C15121.98 (15)
C4—C3—H3A119.9C19—C14—O3116.85 (14)
C3'—C4'—C5'119.25 (14)C15—C14—O3120.95 (14)
C3'—C4'—H4'A120.4C14—C15—C16118.51 (16)
C5'—C4'—H4'A120.4C14—C15—H15A120.7
C3—C4—C5119.17 (15)C16—C15—H15A120.7
C3—C4—H4A120.4C16'—C15'—C14'118.97 (15)
C5—C4—H4A120.4C16'—C15'—H15B120.5
C4'—C5'—C6'121.97 (14)C14'—C15'—H15B120.5
C4'—C5'—H5'A119.0C17'—C16'—C15'120.66 (16)
C6'—C5'—H5'A119.0C17'—C16'—H16A119.7
C6—C5—C4122.08 (15)C15'—C16'—H16A119.7
C6—C5—H5A119.0C17—C16—C15120.67 (18)
C4—C5—H5A119.0C17—C16—H16B119.7
C5'—C6'—C1'118.13 (13)C15—C16—H16B119.7
C5'—C6'—C7'120.03 (13)C16'—C17'—C18'119.49 (16)
C1'—C6'—C7'121.83 (14)C16'—C17'—H17A120.3
C5—C6—C1118.07 (14)C18'—C17'—H17A120.3
C5—C6—C7120.38 (14)C16—C17—C18120.00 (17)
C1—C6—C7121.54 (14)C16—C17—H17B120.0
C6'—C7'—H7'A109.5C18—C17—H17B120.0
C6'—C7'—H7'B109.5C17'—C18'—C19'121.02 (16)
H7'A—C7'—H7'B109.5C17'—C18'—H18A119.5
C6'—C7'—H7'C109.5C19'—C18'—H18A119.5
H7'A—C7'—H7'C109.5C17—C18—C19120.29 (17)
H7'B—C7'—H7'C109.5C17—C18—H18B119.9
C6—C7—H7A109.5C19—C18—H18B119.9
C6—C7—H7B109.5C14'—C19'—C18'118.25 (15)
H7A—C7—H7B109.5C14'—C19'—H19A120.9
C6—C7—H7C109.5C18'—C19'—H19A120.9
H7A—C7—H7C109.5C14—C19—C18118.53 (17)
H7B—C7—H7C109.5C14—C19—H19B120.7
C13—C8—C9121.73 (14)C18—C19—H19B120.7
O1—P1—N1—C1179.73 (12)C2—C1—C6—C7179.49 (14)
O2—P1—N1—C150.16 (14)N1—C1—C6—C70.0 (2)
O3—P1—N1—C151.51 (14)P1—O2—C8—C1325.96 (19)
O1'—P1'—N1'—C1'175.80 (12)P1—O2—C8—C9156.16 (11)
O3'—P1'—N1'—C1'46.27 (14)P1'—O2'—C8'—C13'114.99 (13)
O2'—P1'—N1'—C1'55.17 (14)P1'—O2'—C8'—C9'71.06 (17)
P1'—N1'—C1'—C2'15.3 (2)C13—C8—C9—C101.1 (2)
P1'—N1'—C1'—C6'164.52 (11)O2—C8—C9—C10176.79 (13)
P1—N1—C1—C25.7 (2)C13'—C8'—C9'—C10'0.0 (3)
P1—N1—C1—C6173.76 (11)O2'—C8'—C9'—C10'173.69 (15)
O1—P1—O2—C866.73 (13)C8—C9—C10—C110.0 (2)
O3—P1—O2—C8173.14 (11)C8'—C9'—C10'—C11'0.7 (3)
N1—P1—O2—C859.61 (12)C9—C10—C11—C120.8 (2)
O1'—P1'—O2'—C8'48.83 (13)C9'—C10'—C11'—C12'0.9 (3)
O3'—P1'—O2'—C8'170.49 (11)C10—C11—C12—C130.5 (2)
N1'—P1'—O2'—C8'78.86 (12)C10'—C11'—C12'—C13'0.4 (3)
C6—C1—C2—C30.2 (2)C9—C8—C13—C121.4 (2)
N1—C1—C2—C3179.30 (14)O2—C8—C13—C12176.37 (13)
C6'—C1'—C2'—C3'0.3 (2)C11—C12—C13—C80.5 (2)
N1'—C1'—C2'—C3'179.81 (14)C9'—C8'—C13'—C12'0.4 (2)
O1—P1—O3—C1452.23 (12)O2'—C8'—C13'—C12'173.45 (14)
O2—P1—O3—C14174.20 (11)C11'—C12'—C13'—C8'0.2 (3)
N1—P1—O3—C1474.72 (12)P1'—O3'—C14'—C19'31.11 (19)
O1'—P1'—O3'—C14'66.01 (12)P1'—O3'—C14'—C15'151.86 (11)
O2'—P1'—O3'—C14'174.08 (11)P1—O3—C14—C19123.66 (13)
N1'—P1'—O3'—C14'60.86 (12)P1—O3—C14—C1561.57 (18)
C1'—C2'—C3'—C4'0.2 (2)C19—C14—C15—C160.3 (2)
C1—C2—C3—C40.2 (2)O3—C14—C15—C16174.23 (14)
C2'—C3'—C4'—C5'0.6 (2)C19'—C14'—C15'—C16'1.4 (2)
C2—C3—C4—C50.1 (3)O3'—C14'—C15'—C16'175.64 (14)
C3'—C4'—C5'—C6'0.5 (2)C14'—C15'—C16'—C17'0.5 (2)
C3—C4—C5—C60.4 (3)C14—C15—C16—C170.8 (3)
C4'—C5'—C6'—C1'0.0 (2)C15'—C16'—C17'—C18'0.7 (3)
C4'—C5'—C6'—C7'179.74 (15)C15—C16—C17—C181.0 (3)
C2'—C1'—C6'—C5'0.4 (2)C16'—C17'—C18'—C19'0.9 (3)
N1'—C1'—C6'—C5'179.72 (13)C16—C17—C18—C190.3 (3)
C2'—C1'—C6'—C7'179.31 (14)C15'—C14'—C19'—C18'1.2 (2)
N1'—C1'—C6'—C7'0.5 (2)O3'—C14'—C19'—C18'175.61 (14)
C4—C5—C6—C10.7 (2)C17'—C18'—C19'—C14'0.1 (2)
C4—C5—C6—C7179.63 (15)C15—C14—C19—C181.0 (2)
C2—C1—C6—C50.6 (2)O3—C14—C19—C18173.70 (15)
N1—C1—C6—C5178.87 (13)C17—C18—C19—C140.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.09 (2)2.903 (1)162 (1)
N1—H1N···O1ii0.86 (2)2.02 (2)2.867 (1)167 (1)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H18NO3P
Mr339.31
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.2986 (13), 10.3540 (12), 17.993 (2)
α, β, γ (°)86.650 (2), 84.036 (2), 62.429 (2)
V3)1691.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.50 × 0.40 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.918, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
17593, 8135, 6772
Rint0.018
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.00
No. of reflections8135
No. of parameters441
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.09 (2)2.903 (1)162 (1)
N1'—H1'N···O1'ii0.86 (2)2.02 (2)2.867 (1)167 (1)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

Support of this investigation by Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Zargaran, P., Ghammamy, S. & Eshtiagh-Hosseini, H. (2010). Acta Cryst. E66, o3357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1170
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds