organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1271-o1272

(1S*,4′S*,5R*)-1-Iso­propyl-5-meth­­oxy-2′,3-di­methyl-4,6-dioxa-2-aza­spiro­[bi­cyclo­[3.2.0]hept-2-ene-7,4′-iso­quinoline]-1′,3′(2′H,4′H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 15 April 2011; accepted 22 April 2011; online 29 April 2011)

In the isoquinoline ring system of the title mol­ecule, C18H20N2O5, the N-heterocyclic ring is in a half-boat conformation. The dioxa-2-aza­spiro ring is essentially planar, with a maximum deviation of 0.029 (1) Å, and makes a dihedral angle of 30.63 (5)° with the benzene ring. The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O hydrogen bond, which generates a S(6) ring motif. In the crystal, mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds into a three-dimensional supra­molecular network. Additional stabilization is provided by ππ stacking inter­actions between symmetry-related benzene rings with a centroid–centroid distance of 3.6507 (5) Å.

Related literature

For general background to and the potential biological activity of the title compound, see: Pollers-Wieers et al. (1981[Pollers-Wieers, C., Vekemans, J., Toppet, S. & Hoornaert, G. (1981). Tetrahedron, 37, 4321-4326.]); Malamas et al. (1994[Malamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043-2058.]); Yu et al. (2010[Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Du et al. (2008[Du, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205-30215.]); Chen et al. (2006[Chen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613-1623.]); Zhang et al. (2006[Zhang, Y.-H., Zhang, H.-J., Wu, F., Chen, Y.-H., Ma, X.-Q., Du, J.-Q., Zhou, Z.-L., Li, J.-Y., Nan, F.-J. & Li, J. (2006). FEBS J. 273, 4842-4852.]); Mitchell et al. (1995[Mitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49-58.], 2000[Mitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120-126.]); Harris et al. (2005[Harris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610-1619.]); Wang et al. (2010[Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757-7768.]); Huang et al. (2011[Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629-3631.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O5

  • Mr = 344.36

  • Monoclinic, P 21 /c

  • a = 10.5721 (2) Å

  • b = 10.4260 (2) Å

  • c = 15.7633 (3) Å

  • β = 101.641 (1)°

  • V = 1701.77 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.51 × 0.37 × 0.35 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.966

  • 23124 measured reflections

  • 6242 independent reflections

  • 5286 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.02

  • 6242 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.93 2.59 3.3754 (12) 143
C15—H15A⋯O5 0.96 2.56 3.2151 (12) 126
C18—H18A⋯O1ii 0.96 2.58 3.4298 (13) 148
C18—H18C⋯O2iii 0.96 2.58 3.3641 (12) 139
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoquinolines are often found in bioactive natural products. They have been used to build blocks of benzo[c]phenanthridine alkaloids (Pollers-Wieers et al., 1981; Malamas et al., 1994; Yu et al., 2010). Isoquinoline-1,3,4-trione derivatives were reported to be a type of small molecular inhibitor against caspase-3 which can promote apoptosis of the cells (Du et al., 2008; Chen et al., 2006). They can also attenuate apoptosis of neuronal cells induced by β-amyloid.(Zhang et al., 2006). Isoquinoline-1,3,4-trione and its derivatives have been reported to be redox mediators of photosystems and have been used as herbicides (Mitchell et al., 2000; 1995). Oxazole rings are also found in some bioactive natural products such as Annuloline and Ostreogrycin A. Oxazoles can be used to inhibit the activity of malignant tumors (Harris et al., 2005). Since a lot of natural products especially the alkaloids containing the isoquinoline or oxazole ring are bioactive, there has been intense development of methodology to construct such moieties (Wang et al., 2010). The title compound which was derived from isoquinoline-1,3,4-trione and oxazoles (Huang et al., 2011) may have potential use in biochemical and pharmaceutical fields. Due to the importance of the isoquinoline-1,3,4-trione derivatives, we report herein the crystal structure of the title compound with a relative configuration of (1S*, 4'S*, 5R*).

In the title racemic compound, Fig. 1, atoms C9, C10 and C12 are the chiral centers. The isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C1 deviating by 0.243 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.2843 (9) Å, Θ = 64.10 (18)° and ϕ =100.97 (19)°. The dioxa-2-azaspiro ring (N2/O4/C10-C12) is essentially planar [maximum deviation of 0.029 (1) Å at atoms O4 and C10] and it inclines at a dihedral angle of 30.63 (5)° with the benzene ring (C3-C8). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by a weak intramolecular C15–H15A···O5 hydrogen bond (Table 1) which generates a S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked via intermolecular C6–H6A···O2i, C18–H18A···O1ii and C18–H18C···O2iii hydrogen bonds (Table 1) into a three-dimensional supramolecular network. The crystal packing is further consolidated by ππ stacking interactions between the centroids of the C3-C8 (Cg1) rings, with a Cg1···Cg1iv distance of 3.6507 (5) Å [symmetry code: (iv) 1-x, 1-y, -z].

Related literature top

For general background to and the potential biological activity of the title compound, see: Pollers-Wieers et al. (1981); Malamas et al. (1994); Yu et al. (2010); Du et al. (2008); Chen et al. (2006); Zhang et al. (2006); Mitchell et al. (1995, 2000); Harris et al. (2005); Wang et al. (2010); Huang et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was the main product from the photoreaction between isoquinoline-1,3,4-trione and 4-isopropyl-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality crystals of the title compound was obtained from slow evaporation of an acetone and petroleum ether solution (1:5) (m.p. 451-453 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular interaction is shown as dash line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
(1S*,4'S*,5R*)-1-Isopropyl-5-methoxy-2',3-dimethyl- 4,6-dioxa-2-azaspiro[bicyclo[3.2.0]hept-2-ene-7,4'-isoquinoline]- 1',3'(2'H,4'H)-dione top
Crystal data top
C18H20N2O5F(000) = 728
Mr = 344.36Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9966 reflections
a = 10.5721 (2) Åθ = 2.6–32.7°
b = 10.4260 (2) ŵ = 0.10 mm1
c = 15.7633 (3) ÅT = 100 K
β = 101.641 (1)°Block, colourless
V = 1701.77 (6) Å30.51 × 0.37 × 0.35 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6242 independent reflections
Radiation source: fine-focus sealed tube5286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 32.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1615
Tmin = 0.951, Tmax = 0.966k = 1015
23124 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.4865P]
where P = (Fo2 + 2Fc2)/3
6242 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H20N2O5V = 1701.77 (6) Å3
Mr = 344.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5721 (2) ŵ = 0.10 mm1
b = 10.4260 (2) ÅT = 100 K
c = 15.7633 (3) Å0.51 × 0.37 × 0.35 mm
β = 101.641 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6242 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5286 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.966Rint = 0.026
23124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
6242 reflectionsΔρmin = 0.21 e Å3
231 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83725 (6)0.47548 (7)0.19496 (4)0.01927 (13)
O20.43236 (7)0.35091 (9)0.21065 (5)0.03015 (18)
O30.80900 (6)0.41336 (6)0.02423 (4)0.01457 (12)
O41.01024 (6)0.31366 (6)0.07000 (4)0.01661 (12)
O50.88314 (6)0.26083 (6)0.06194 (4)0.01730 (13)
N10.64083 (7)0.39850 (8)0.20730 (4)0.01585 (14)
N20.90028 (7)0.20947 (7)0.15999 (5)0.01627 (14)
C10.74047 (8)0.41697 (8)0.16262 (5)0.01427 (14)
C20.51566 (8)0.36231 (9)0.16792 (5)0.01791 (16)
C30.48885 (8)0.34408 (8)0.07267 (5)0.01483 (15)
C40.36037 (8)0.32910 (9)0.02963 (6)0.01775 (16)
H4A0.29440.32880.06080.021*
C50.33188 (9)0.31473 (9)0.05953 (6)0.01878 (16)
H5A0.24670.30380.08830.023*
C60.43059 (9)0.31659 (9)0.10635 (5)0.01847 (16)
H6A0.41100.30700.16620.022*
C70.55824 (8)0.33279 (8)0.06381 (5)0.01616 (15)
H7A0.62370.33530.09530.019*
C80.58806 (8)0.34536 (8)0.02622 (5)0.01330 (14)
C90.72502 (8)0.35261 (8)0.07458 (5)0.01283 (14)
C100.88181 (8)0.29935 (8)0.01999 (5)0.01360 (14)
C111.00499 (8)0.26235 (9)0.14963 (5)0.01693 (15)
C120.80770 (8)0.22272 (8)0.07841 (5)0.01327 (14)
C130.73890 (8)0.09734 (8)0.04853 (6)0.01698 (15)
H13A0.67840.11330.00630.020*
C140.66170 (10)0.04867 (9)0.11444 (7)0.02400 (19)
H14A0.59770.11110.12110.036*
H14B0.71900.03500.16920.036*
H14C0.62000.03060.09440.036*
C150.83697 (10)0.00346 (9)0.03243 (7)0.02421 (19)
H15A0.88400.02890.00910.036*
H15B0.79230.08050.01050.036*
H15C0.89600.02180.08580.036*
C160.66478 (10)0.43923 (10)0.29833 (5)0.02245 (18)
H16A0.74810.40910.32750.034*
H16B0.59940.40410.32590.034*
H16C0.66250.53120.30120.034*
C170.92704 (10)0.35916 (10)0.11451 (6)0.02420 (19)
H17A0.92480.32630.17170.036*
H17B1.01380.38360.08870.036*
H17C0.87150.43260.11800.036*
C181.12452 (9)0.27703 (11)0.21661 (6)0.0258 (2)
H18A1.12670.21260.26040.039*
H18B1.12580.36050.24250.039*
H18C1.19840.26750.19040.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (3)0.0212 (3)0.0188 (3)0.0030 (2)0.0004 (2)0.0021 (2)
O20.0189 (3)0.0524 (5)0.0207 (3)0.0037 (3)0.0078 (3)0.0031 (3)
O30.0144 (3)0.0141 (3)0.0161 (2)0.0000 (2)0.0054 (2)0.0029 (2)
O40.0117 (3)0.0213 (3)0.0163 (3)0.0018 (2)0.0016 (2)0.0039 (2)
O50.0197 (3)0.0188 (3)0.0144 (2)0.0020 (2)0.0057 (2)0.0007 (2)
N10.0148 (3)0.0204 (3)0.0121 (3)0.0003 (3)0.0024 (2)0.0008 (2)
N20.0133 (3)0.0188 (3)0.0162 (3)0.0017 (3)0.0017 (2)0.0049 (2)
C10.0139 (3)0.0147 (3)0.0137 (3)0.0012 (3)0.0016 (3)0.0012 (3)
C20.0150 (4)0.0221 (4)0.0165 (3)0.0003 (3)0.0028 (3)0.0025 (3)
C30.0131 (3)0.0149 (3)0.0158 (3)0.0002 (3)0.0013 (3)0.0012 (3)
C40.0130 (4)0.0179 (4)0.0215 (4)0.0006 (3)0.0015 (3)0.0021 (3)
C50.0152 (4)0.0159 (4)0.0224 (4)0.0013 (3)0.0030 (3)0.0006 (3)
C60.0200 (4)0.0164 (4)0.0165 (3)0.0010 (3)0.0023 (3)0.0010 (3)
C70.0171 (4)0.0162 (4)0.0144 (3)0.0016 (3)0.0014 (3)0.0004 (3)
C80.0131 (3)0.0117 (3)0.0143 (3)0.0003 (3)0.0008 (3)0.0010 (2)
C90.0119 (3)0.0137 (3)0.0128 (3)0.0008 (3)0.0025 (2)0.0015 (2)
C100.0120 (3)0.0148 (3)0.0138 (3)0.0005 (3)0.0022 (2)0.0009 (3)
C110.0150 (4)0.0190 (4)0.0164 (3)0.0011 (3)0.0020 (3)0.0038 (3)
C120.0112 (3)0.0140 (3)0.0145 (3)0.0002 (3)0.0025 (2)0.0023 (3)
C130.0147 (4)0.0132 (3)0.0233 (4)0.0006 (3)0.0045 (3)0.0011 (3)
C140.0217 (4)0.0165 (4)0.0366 (5)0.0006 (3)0.0126 (4)0.0057 (4)
C150.0219 (4)0.0153 (4)0.0372 (5)0.0019 (3)0.0104 (4)0.0001 (3)
C160.0236 (4)0.0310 (5)0.0125 (3)0.0002 (4)0.0033 (3)0.0012 (3)
C170.0298 (5)0.0280 (5)0.0174 (4)0.0049 (4)0.0107 (3)0.0023 (3)
C180.0161 (4)0.0359 (5)0.0224 (4)0.0038 (4)0.0032 (3)0.0084 (4)
Geometric parameters (Å, º) top
O1—C11.2118 (10)C7—H7A0.9300
O2—C21.2176 (11)C8—C91.4960 (11)
O3—C101.4250 (10)C9—C121.6063 (12)
O3—C91.4504 (10)C10—C121.5464 (11)
O4—C111.3759 (10)C11—C181.4822 (12)
O4—C101.4336 (10)C12—C131.5237 (12)
O5—C101.3553 (10)C13—C141.5314 (13)
O5—C171.4520 (11)C13—C151.5330 (13)
N1—C11.3937 (11)C13—H13A0.9800
N1—C21.3955 (11)C14—H14A0.9600
N1—C161.4686 (11)C14—H14B0.9600
N2—C111.2764 (11)C14—H14C0.9600
N2—C121.4569 (10)C15—H15A0.9600
C1—C91.5203 (11)C15—H15B0.9600
C2—C31.4830 (12)C15—H15C0.9600
C3—C81.3950 (11)C16—H16A0.9600
C3—C41.3991 (12)C16—H16B0.9600
C4—C51.3849 (12)C16—H16C0.9600
C4—H4A0.9300C17—H17A0.9600
C5—C61.3947 (13)C17—H17B0.9600
C5—H5A0.9300C17—H17C0.9600
C6—C71.3907 (12)C18—H18A0.9600
C6—H6A0.9300C18—H18B0.9600
C7—C81.3965 (11)C18—H18C0.9600
C10—O3—C993.30 (6)N2—C11—C18126.18 (8)
C11—O4—C10104.66 (6)O4—C11—C18115.10 (8)
C10—O5—C17113.61 (7)N2—C12—C13112.66 (7)
C1—N1—C2123.92 (7)N2—C12—C10104.11 (6)
C1—N1—C16117.07 (7)C13—C12—C10121.79 (7)
C2—N1—C16118.29 (7)N2—C12—C9112.13 (6)
C11—N2—C12106.96 (7)C13—C12—C9119.31 (7)
O1—C1—N1121.13 (7)C10—C12—C983.07 (6)
O1—C1—C9122.16 (7)C12—C13—C14111.17 (7)
N1—C1—C9116.58 (7)C12—C13—C15110.04 (7)
O2—C2—N1120.47 (8)C14—C13—C15110.86 (8)
O2—C2—C3122.39 (8)C12—C13—H13A108.2
N1—C2—C3117.09 (7)C14—C13—H13A108.2
C8—C3—C4120.38 (7)C15—C13—H13A108.2
C8—C3—C2121.32 (7)C13—C14—H14A109.5
C4—C3—C2118.28 (8)C13—C14—H14B109.5
C5—C4—C3119.69 (8)H14A—C14—H14B109.5
C5—C4—H4A120.2C13—C14—H14C109.5
C3—C4—H4A120.2H14A—C14—H14C109.5
C4—C5—C6120.19 (8)H14B—C14—H14C109.5
C4—C5—H5A119.9C13—C15—H15A109.5
C6—C5—H5A119.9C13—C15—H15B109.5
C7—C6—C5120.23 (8)H15A—C15—H15B109.5
C7—C6—H6A119.9C13—C15—H15C109.5
C5—C6—H6A119.9H15A—C15—H15C109.5
C6—C7—C8119.97 (8)H15B—C15—H15C109.5
C6—C7—H7A120.0N1—C16—H16A109.5
C8—C7—H7A120.0N1—C16—H16B109.5
C3—C8—C7119.53 (7)H16A—C16—H16B109.5
C3—C8—C9119.08 (7)N1—C16—H16C109.5
C7—C8—C9121.29 (7)H16A—C16—H16C109.5
O3—C9—C8112.32 (6)H16B—C16—H16C109.5
O3—C9—C1109.99 (6)O5—C17—H17A109.5
C8—C9—C1113.71 (7)O5—C17—H17B109.5
O3—C9—C1290.01 (6)H17A—C17—H17B109.5
C8—C9—C12116.10 (6)O5—C17—H17C109.5
C1—C9—C12112.35 (6)H17A—C17—H17C109.5
O5—C10—O3113.67 (7)H17B—C17—H17C109.5
O5—C10—O4111.35 (7)C11—C18—H18A109.5
O3—C10—O4110.37 (6)C11—C18—H18B109.5
O5—C10—C12121.22 (7)H18A—C18—H18B109.5
O3—C10—C1293.42 (6)C11—C18—H18C109.5
O4—C10—C12105.29 (6)H18A—C18—H18C109.5
N2—C11—O4118.71 (7)H18B—C18—H18C109.5
C2—N1—C1—O1162.97 (9)C17—O5—C10—O470.72 (9)
C16—N1—C1—O17.11 (12)C17—O5—C10—C12164.67 (8)
C2—N1—C1—C921.02 (12)C9—O3—C10—O5122.71 (7)
C16—N1—C1—C9168.91 (7)C9—O3—C10—O4111.37 (6)
C1—N1—C2—O2178.18 (9)C9—O3—C10—C123.67 (6)
C16—N1—C2—O28.22 (14)C11—O4—C10—O5138.23 (7)
C1—N1—C2—C30.57 (13)C11—O4—C10—O394.54 (7)
C16—N1—C2—C3169.39 (8)C11—O4—C10—C125.10 (8)
O2—C2—C3—C8173.71 (9)C12—N2—C11—O41.58 (11)
N1—C2—C3—C88.73 (12)C12—N2—C11—C18177.19 (9)
O2—C2—C3—C48.11 (14)C10—O4—C11—N24.53 (11)
N1—C2—C3—C4169.45 (8)C10—O4—C11—C18174.37 (8)
C8—C3—C4—C50.38 (13)C11—N2—C12—C13132.03 (8)
C2—C3—C4—C5178.58 (8)C11—N2—C12—C101.88 (9)
C3—C4—C5—C60.71 (13)C11—N2—C12—C990.04 (8)
C4—C5—C6—C70.05 (13)O5—C10—C12—N2131.75 (8)
C5—C6—C7—C80.95 (13)O3—C10—C12—N2107.82 (6)
C4—C3—C8—C70.61 (12)O4—C10—C12—N24.38 (8)
C2—C3—C8—C7177.53 (8)O5—C10—C12—C133.21 (12)
C4—C3—C8—C9175.90 (8)O3—C10—C12—C13123.64 (8)
C2—C3—C8—C95.95 (12)O4—C10—C12—C13124.16 (8)
C6—C7—C8—C31.27 (12)O5—C10—C12—C9117.10 (8)
C6—C7—C8—C9175.16 (8)O3—C10—C12—C93.33 (5)
C10—O3—C9—C8114.88 (7)O4—C10—C12—C9115.52 (6)
C10—O3—C9—C1117.40 (7)O3—C9—C12—N299.19 (7)
C10—O3—C9—C123.52 (6)C8—C9—C12—N2145.79 (7)
C3—C8—C9—O3152.15 (7)C1—C9—C12—N212.51 (9)
C7—C8—C9—O331.40 (10)O3—C9—C12—C13125.97 (7)
C3—C8—C9—C126.43 (10)C8—C9—C12—C1310.95 (10)
C7—C8—C9—C1157.12 (8)C1—C9—C12—C13122.33 (8)
C3—C8—C9—C12106.23 (8)O3—C9—C12—C103.26 (5)
C7—C8—C9—C1270.21 (10)C8—C9—C12—C10111.76 (7)
O1—C1—C9—O323.47 (11)C1—C9—C12—C10114.96 (7)
N1—C1—C9—O3160.56 (7)N2—C12—C13—C1461.23 (9)
O1—C1—C9—C8150.42 (8)C10—C12—C13—C14174.06 (7)
N1—C1—C9—C833.61 (10)C9—C12—C13—C1473.40 (9)
O1—C1—C9—C1275.15 (10)N2—C12—C13—C1561.98 (9)
N1—C1—C9—C12100.83 (8)C10—C12—C13—C1562.73 (10)
C17—O5—C10—O354.68 (9)C9—C12—C13—C15163.39 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.593.3754 (12)143
C15—H15A···O50.962.563.2151 (12)126
C18—H18A···O1ii0.962.583.4298 (13)148
C18—H18C···O2iii0.962.583.3641 (12)139
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H20N2O5
Mr344.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.5721 (2), 10.4260 (2), 15.7633 (3)
β (°) 101.641 (1)
V3)1701.77 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.51 × 0.37 × 0.35
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.951, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
23124, 6242, 5286
Rint0.026
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.02
No. of reflections6242
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.593.3754 (12)143
C15—H15A···O50.962.563.2151 (12)126
C18—H18A···O1ii0.962.583.4298 (13)148
C18—H18C···O2iii0.962.583.3641 (12)139
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the National Science Foundation of China (20972067) is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613–1623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDu, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205–30215.  CrossRef CAS Google Scholar
First citationHarris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610–1619.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMalamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043–2058.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120–126.  CrossRef CAS Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49–58.  CrossRef CAS Web of Science Google Scholar
First citationPollers-Wieers, C., Vekemans, J., Toppet, S. & Hoornaert, G. (1981). Tetrahedron, 37, 4321–4326.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y.-H., Zhang, H.-J., Wu, F., Chen, Y.-H., Ma, X.-Q., Du, J.-Q., Zhou, Z.-L., Li, J.-Y., Nan, F.-J. & Li, J. (2006). FEBS J. 273, 4842–4852.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1271-o1272
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds