organic compounds
(1S*,4′S*,5R*)-1-Isopropyl-5-methoxy-2′,3-dimethyl-4,6-dioxa-2-azaspiro[bicyclo[3.2.0]hept-2-ene-7,4′-isoquinoline]-1′,3′(2′H,4′H)-dione
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my
In the isoquinoline ring system of the title molecule, C18H20N2O5, the N-heterocyclic ring is in a half-boat conformation. The dioxa-2-azaspiro ring is essentially planar, with a maximum deviation of 0.029 (1) Å, and makes a dihedral angle of 30.63 (5)° with the benzene ring. The molecular structure is stabilized by a weak intramolecular C—H⋯O hydrogen bond, which generates a S(6) ring motif. In the crystal, molecules are linked via weak intermolecular C—H⋯O hydrogen bonds into a three-dimensional supramolecular network. Additional stabilization is provided by π–π stacking interactions between symmetry-related benzene rings with a centroid–centroid distance of 3.6507 (5) Å.
Related literature
For general background to and the potential biological activity of the title compound, see: Pollers-Wieers et al. (1981); Malamas et al. (1994); Yu et al. (2010); Du et al. (2008); Chen et al. (2006); Zhang et al. (2006); Mitchell et al. (1995, 2000); Harris et al. (2005); Wang et al. (2010); Huang et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811015315/lh5237sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015315/lh5237Isup2.hkl
The title compound was the main product from the photoreaction between isoquinoline-1,3,4-trione and 4-isopropyl-5-methoxy-2-methyloxazole. The compound was purified by flash
with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality crystals of the title compound was obtained from slow evaporation of an acetone and petroleum ether solution (1:5) (m.p. 451-453 K).All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C18H20N2O5 | F(000) = 728 |
Mr = 344.36 | Dx = 1.344 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9966 reflections |
a = 10.5721 (2) Å | θ = 2.6–32.7° |
b = 10.4260 (2) Å | µ = 0.10 mm−1 |
c = 15.7633 (3) Å | T = 100 K |
β = 101.641 (1)° | Block, colourless |
V = 1701.77 (6) Å3 | 0.51 × 0.37 × 0.35 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 6242 independent reflections |
Radiation source: fine-focus sealed tube | 5286 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 32.7°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −16→15 |
Tmin = 0.951, Tmax = 0.966 | k = −10→15 |
23124 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0531P)2 + 0.4865P] where P = (Fo2 + 2Fc2)/3 |
6242 reflections | (Δ/σ)max = 0.001 |
231 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C18H20N2O5 | V = 1701.77 (6) Å3 |
Mr = 344.36 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.5721 (2) Å | µ = 0.10 mm−1 |
b = 10.4260 (2) Å | T = 100 K |
c = 15.7633 (3) Å | 0.51 × 0.37 × 0.35 mm |
β = 101.641 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 6242 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 5286 reflections with I > 2σ(I) |
Tmin = 0.951, Tmax = 0.966 | Rint = 0.026 |
23124 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.49 e Å−3 |
6242 reflections | Δρmin = −0.21 e Å−3 |
231 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.83725 (6) | 0.47548 (7) | 0.19496 (4) | 0.01927 (13) | |
O2 | 0.43236 (7) | 0.35091 (9) | 0.21065 (5) | 0.03015 (18) | |
O3 | 0.80900 (6) | 0.41336 (6) | 0.02423 (4) | 0.01457 (12) | |
O4 | 1.01024 (6) | 0.31366 (6) | 0.07000 (4) | 0.01661 (12) | |
O5 | 0.88314 (6) | 0.26083 (6) | −0.06194 (4) | 0.01730 (13) | |
N1 | 0.64083 (7) | 0.39850 (8) | 0.20730 (4) | 0.01585 (14) | |
N2 | 0.90028 (7) | 0.20947 (7) | 0.15999 (5) | 0.01627 (14) | |
C1 | 0.74047 (8) | 0.41697 (8) | 0.16262 (5) | 0.01427 (14) | |
C2 | 0.51566 (8) | 0.36231 (9) | 0.16792 (5) | 0.01791 (16) | |
C3 | 0.48885 (8) | 0.34408 (8) | 0.07267 (5) | 0.01483 (15) | |
C4 | 0.36037 (8) | 0.32910 (9) | 0.02963 (6) | 0.01775 (16) | |
H4A | 0.2944 | 0.3288 | 0.0608 | 0.021* | |
C5 | 0.33188 (9) | 0.31473 (9) | −0.05953 (6) | 0.01878 (16) | |
H5A | 0.2467 | 0.3038 | −0.0883 | 0.023* | |
C6 | 0.43059 (9) | 0.31659 (9) | −0.10635 (5) | 0.01847 (16) | |
H6A | 0.4110 | 0.3070 | −0.1662 | 0.022* | |
C7 | 0.55824 (8) | 0.33279 (8) | −0.06381 (5) | 0.01616 (15) | |
H7A | 0.6237 | 0.3353 | −0.0953 | 0.019* | |
C8 | 0.58806 (8) | 0.34536 (8) | 0.02622 (5) | 0.01330 (14) | |
C9 | 0.72502 (8) | 0.35261 (8) | 0.07458 (5) | 0.01283 (14) | |
C10 | 0.88181 (8) | 0.29935 (8) | 0.01999 (5) | 0.01360 (14) | |
C11 | 1.00499 (8) | 0.26235 (9) | 0.14963 (5) | 0.01693 (15) | |
C12 | 0.80770 (8) | 0.22272 (8) | 0.07841 (5) | 0.01327 (14) | |
C13 | 0.73890 (8) | 0.09734 (8) | 0.04853 (6) | 0.01698 (15) | |
H13A | 0.6784 | 0.1133 | −0.0063 | 0.020* | |
C14 | 0.66170 (10) | 0.04867 (9) | 0.11444 (7) | 0.02400 (19) | |
H14A | 0.5977 | 0.1111 | 0.1211 | 0.036* | |
H14B | 0.7190 | 0.0350 | 0.1692 | 0.036* | |
H14C | 0.6200 | −0.0306 | 0.0944 | 0.036* | |
C15 | 0.83697 (10) | −0.00346 (9) | 0.03243 (7) | 0.02421 (19) | |
H15A | 0.8840 | 0.0289 | −0.0091 | 0.036* | |
H15B | 0.7923 | −0.0805 | 0.0105 | 0.036* | |
H15C | 0.8960 | −0.0218 | 0.0858 | 0.036* | |
C16 | 0.66478 (10) | 0.43923 (10) | 0.29833 (5) | 0.02245 (18) | |
H16A | 0.7481 | 0.4091 | 0.3275 | 0.034* | |
H16B | 0.5994 | 0.4041 | 0.3259 | 0.034* | |
H16C | 0.6625 | 0.5312 | 0.3012 | 0.034* | |
C17 | 0.92704 (10) | 0.35916 (10) | −0.11451 (6) | 0.02420 (19) | |
H17A | 0.9248 | 0.3263 | −0.1717 | 0.036* | |
H17B | 1.0138 | 0.3836 | −0.0887 | 0.036* | |
H17C | 0.8715 | 0.4326 | −0.1180 | 0.036* | |
C18 | 1.12452 (9) | 0.27703 (11) | 0.21661 (6) | 0.0258 (2) | |
H18A | 1.1267 | 0.2126 | 0.2604 | 0.039* | |
H18B | 1.1258 | 0.3605 | 0.2425 | 0.039* | |
H18C | 1.1984 | 0.2675 | 0.1904 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0165 (3) | 0.0212 (3) | 0.0188 (3) | −0.0030 (2) | 0.0004 (2) | −0.0021 (2) |
O2 | 0.0189 (3) | 0.0524 (5) | 0.0207 (3) | −0.0037 (3) | 0.0078 (3) | 0.0031 (3) |
O3 | 0.0144 (3) | 0.0141 (3) | 0.0161 (2) | 0.0000 (2) | 0.0054 (2) | 0.0029 (2) |
O4 | 0.0117 (3) | 0.0213 (3) | 0.0163 (3) | −0.0018 (2) | 0.0016 (2) | 0.0039 (2) |
O5 | 0.0197 (3) | 0.0188 (3) | 0.0144 (2) | −0.0020 (2) | 0.0057 (2) | −0.0007 (2) |
N1 | 0.0148 (3) | 0.0204 (3) | 0.0121 (3) | 0.0003 (3) | 0.0024 (2) | 0.0008 (2) |
N2 | 0.0133 (3) | 0.0188 (3) | 0.0162 (3) | 0.0017 (3) | 0.0017 (2) | 0.0049 (2) |
C1 | 0.0139 (3) | 0.0147 (3) | 0.0137 (3) | 0.0012 (3) | 0.0016 (3) | 0.0012 (3) |
C2 | 0.0150 (4) | 0.0221 (4) | 0.0165 (3) | 0.0003 (3) | 0.0028 (3) | 0.0025 (3) |
C3 | 0.0131 (3) | 0.0149 (3) | 0.0158 (3) | −0.0002 (3) | 0.0013 (3) | 0.0012 (3) |
C4 | 0.0130 (4) | 0.0179 (4) | 0.0215 (4) | −0.0006 (3) | 0.0015 (3) | 0.0021 (3) |
C5 | 0.0152 (4) | 0.0159 (4) | 0.0224 (4) | −0.0013 (3) | −0.0030 (3) | 0.0006 (3) |
C6 | 0.0200 (4) | 0.0164 (4) | 0.0165 (3) | 0.0010 (3) | −0.0023 (3) | −0.0010 (3) |
C7 | 0.0171 (4) | 0.0162 (4) | 0.0144 (3) | 0.0016 (3) | 0.0014 (3) | −0.0004 (3) |
C8 | 0.0131 (3) | 0.0117 (3) | 0.0143 (3) | 0.0003 (3) | 0.0008 (3) | 0.0010 (2) |
C9 | 0.0119 (3) | 0.0137 (3) | 0.0128 (3) | −0.0008 (3) | 0.0025 (2) | 0.0015 (2) |
C10 | 0.0120 (3) | 0.0148 (3) | 0.0138 (3) | −0.0005 (3) | 0.0022 (2) | 0.0009 (3) |
C11 | 0.0150 (4) | 0.0190 (4) | 0.0164 (3) | 0.0011 (3) | 0.0020 (3) | 0.0038 (3) |
C12 | 0.0112 (3) | 0.0140 (3) | 0.0145 (3) | 0.0002 (3) | 0.0025 (2) | 0.0023 (3) |
C13 | 0.0147 (4) | 0.0132 (3) | 0.0233 (4) | −0.0006 (3) | 0.0045 (3) | 0.0011 (3) |
C14 | 0.0217 (4) | 0.0165 (4) | 0.0366 (5) | −0.0006 (3) | 0.0126 (4) | 0.0057 (4) |
C15 | 0.0219 (4) | 0.0153 (4) | 0.0372 (5) | 0.0019 (3) | 0.0104 (4) | −0.0001 (3) |
C16 | 0.0236 (4) | 0.0310 (5) | 0.0125 (3) | 0.0002 (4) | 0.0033 (3) | −0.0012 (3) |
C17 | 0.0298 (5) | 0.0280 (5) | 0.0174 (4) | −0.0049 (4) | 0.0107 (3) | 0.0023 (3) |
C18 | 0.0161 (4) | 0.0359 (5) | 0.0224 (4) | −0.0038 (4) | −0.0032 (3) | 0.0084 (4) |
O1—C1 | 1.2118 (10) | C7—H7A | 0.9300 |
O2—C2 | 1.2176 (11) | C8—C9 | 1.4960 (11) |
O3—C10 | 1.4250 (10) | C9—C12 | 1.6063 (12) |
O3—C9 | 1.4504 (10) | C10—C12 | 1.5464 (11) |
O4—C11 | 1.3759 (10) | C11—C18 | 1.4822 (12) |
O4—C10 | 1.4336 (10) | C12—C13 | 1.5237 (12) |
O5—C10 | 1.3553 (10) | C13—C14 | 1.5314 (13) |
O5—C17 | 1.4520 (11) | C13—C15 | 1.5330 (13) |
N1—C1 | 1.3937 (11) | C13—H13A | 0.9800 |
N1—C2 | 1.3955 (11) | C14—H14A | 0.9600 |
N1—C16 | 1.4686 (11) | C14—H14B | 0.9600 |
N2—C11 | 1.2764 (11) | C14—H14C | 0.9600 |
N2—C12 | 1.4569 (10) | C15—H15A | 0.9600 |
C1—C9 | 1.5203 (11) | C15—H15B | 0.9600 |
C2—C3 | 1.4830 (12) | C15—H15C | 0.9600 |
C3—C8 | 1.3950 (11) | C16—H16A | 0.9600 |
C3—C4 | 1.3991 (12) | C16—H16B | 0.9600 |
C4—C5 | 1.3849 (12) | C16—H16C | 0.9600 |
C4—H4A | 0.9300 | C17—H17A | 0.9600 |
C5—C6 | 1.3947 (13) | C17—H17B | 0.9600 |
C5—H5A | 0.9300 | C17—H17C | 0.9600 |
C6—C7 | 1.3907 (12) | C18—H18A | 0.9600 |
C6—H6A | 0.9300 | C18—H18B | 0.9600 |
C7—C8 | 1.3965 (11) | C18—H18C | 0.9600 |
C10—O3—C9 | 93.30 (6) | N2—C11—C18 | 126.18 (8) |
C11—O4—C10 | 104.66 (6) | O4—C11—C18 | 115.10 (8) |
C10—O5—C17 | 113.61 (7) | N2—C12—C13 | 112.66 (7) |
C1—N1—C2 | 123.92 (7) | N2—C12—C10 | 104.11 (6) |
C1—N1—C16 | 117.07 (7) | C13—C12—C10 | 121.79 (7) |
C2—N1—C16 | 118.29 (7) | N2—C12—C9 | 112.13 (6) |
C11—N2—C12 | 106.96 (7) | C13—C12—C9 | 119.31 (7) |
O1—C1—N1 | 121.13 (7) | C10—C12—C9 | 83.07 (6) |
O1—C1—C9 | 122.16 (7) | C12—C13—C14 | 111.17 (7) |
N1—C1—C9 | 116.58 (7) | C12—C13—C15 | 110.04 (7) |
O2—C2—N1 | 120.47 (8) | C14—C13—C15 | 110.86 (8) |
O2—C2—C3 | 122.39 (8) | C12—C13—H13A | 108.2 |
N1—C2—C3 | 117.09 (7) | C14—C13—H13A | 108.2 |
C8—C3—C4 | 120.38 (7) | C15—C13—H13A | 108.2 |
C8—C3—C2 | 121.32 (7) | C13—C14—H14A | 109.5 |
C4—C3—C2 | 118.28 (8) | C13—C14—H14B | 109.5 |
C5—C4—C3 | 119.69 (8) | H14A—C14—H14B | 109.5 |
C5—C4—H4A | 120.2 | C13—C14—H14C | 109.5 |
C3—C4—H4A | 120.2 | H14A—C14—H14C | 109.5 |
C4—C5—C6 | 120.19 (8) | H14B—C14—H14C | 109.5 |
C4—C5—H5A | 119.9 | C13—C15—H15A | 109.5 |
C6—C5—H5A | 119.9 | C13—C15—H15B | 109.5 |
C7—C6—C5 | 120.23 (8) | H15A—C15—H15B | 109.5 |
C7—C6—H6A | 119.9 | C13—C15—H15C | 109.5 |
C5—C6—H6A | 119.9 | H15A—C15—H15C | 109.5 |
C6—C7—C8 | 119.97 (8) | H15B—C15—H15C | 109.5 |
C6—C7—H7A | 120.0 | N1—C16—H16A | 109.5 |
C8—C7—H7A | 120.0 | N1—C16—H16B | 109.5 |
C3—C8—C7 | 119.53 (7) | H16A—C16—H16B | 109.5 |
C3—C8—C9 | 119.08 (7) | N1—C16—H16C | 109.5 |
C7—C8—C9 | 121.29 (7) | H16A—C16—H16C | 109.5 |
O3—C9—C8 | 112.32 (6) | H16B—C16—H16C | 109.5 |
O3—C9—C1 | 109.99 (6) | O5—C17—H17A | 109.5 |
C8—C9—C1 | 113.71 (7) | O5—C17—H17B | 109.5 |
O3—C9—C12 | 90.01 (6) | H17A—C17—H17B | 109.5 |
C8—C9—C12 | 116.10 (6) | O5—C17—H17C | 109.5 |
C1—C9—C12 | 112.35 (6) | H17A—C17—H17C | 109.5 |
O5—C10—O3 | 113.67 (7) | H17B—C17—H17C | 109.5 |
O5—C10—O4 | 111.35 (7) | C11—C18—H18A | 109.5 |
O3—C10—O4 | 110.37 (6) | C11—C18—H18B | 109.5 |
O5—C10—C12 | 121.22 (7) | H18A—C18—H18B | 109.5 |
O3—C10—C12 | 93.42 (6) | C11—C18—H18C | 109.5 |
O4—C10—C12 | 105.29 (6) | H18A—C18—H18C | 109.5 |
N2—C11—O4 | 118.71 (7) | H18B—C18—H18C | 109.5 |
C2—N1—C1—O1 | 162.97 (9) | C17—O5—C10—O4 | −70.72 (9) |
C16—N1—C1—O1 | −7.11 (12) | C17—O5—C10—C12 | 164.67 (8) |
C2—N1—C1—C9 | −21.02 (12) | C9—O3—C10—O5 | 122.71 (7) |
C16—N1—C1—C9 | 168.91 (7) | C9—O3—C10—O4 | −111.37 (6) |
C1—N1—C2—O2 | −178.18 (9) | C9—O3—C10—C12 | −3.67 (6) |
C16—N1—C2—O2 | −8.22 (14) | C11—O4—C10—O5 | −138.23 (7) |
C1—N1—C2—C3 | −0.57 (13) | C11—O4—C10—O3 | 94.54 (7) |
C16—N1—C2—C3 | 169.39 (8) | C11—O4—C10—C12 | −5.10 (8) |
O2—C2—C3—C8 | −173.71 (9) | C12—N2—C11—O4 | −1.58 (11) |
N1—C2—C3—C8 | 8.73 (12) | C12—N2—C11—C18 | 177.19 (9) |
O2—C2—C3—C4 | 8.11 (14) | C10—O4—C11—N2 | 4.53 (11) |
N1—C2—C3—C4 | −169.45 (8) | C10—O4—C11—C18 | −174.37 (8) |
C8—C3—C4—C5 | 0.38 (13) | C11—N2—C12—C13 | 132.03 (8) |
C2—C3—C4—C5 | 178.58 (8) | C11—N2—C12—C10 | −1.88 (9) |
C3—C4—C5—C6 | −0.71 (13) | C11—N2—C12—C9 | −90.04 (8) |
C4—C5—C6—C7 | 0.05 (13) | O5—C10—C12—N2 | 131.75 (8) |
C5—C6—C7—C8 | 0.95 (13) | O3—C10—C12—N2 | −107.82 (6) |
C4—C3—C8—C7 | 0.61 (12) | O4—C10—C12—N2 | 4.38 (8) |
C2—C3—C8—C7 | −177.53 (8) | O5—C10—C12—C13 | 3.21 (12) |
C4—C3—C8—C9 | −175.90 (8) | O3—C10—C12—C13 | 123.64 (8) |
C2—C3—C8—C9 | 5.95 (12) | O4—C10—C12—C13 | −124.16 (8) |
C6—C7—C8—C3 | −1.27 (12) | O5—C10—C12—C9 | −117.10 (8) |
C6—C7—C8—C9 | 175.16 (8) | O3—C10—C12—C9 | 3.33 (5) |
C10—O3—C9—C8 | −114.88 (7) | O4—C10—C12—C9 | 115.52 (6) |
C10—O3—C9—C1 | 117.40 (7) | O3—C9—C12—N2 | 99.19 (7) |
C10—O3—C9—C12 | 3.52 (6) | C8—C9—C12—N2 | −145.79 (7) |
C3—C8—C9—O3 | −152.15 (7) | C1—C9—C12—N2 | −12.51 (9) |
C7—C8—C9—O3 | 31.40 (10) | O3—C9—C12—C13 | −125.97 (7) |
C3—C8—C9—C1 | −26.43 (10) | C8—C9—C12—C13 | −10.95 (10) |
C7—C8—C9—C1 | 157.12 (8) | C1—C9—C12—C13 | 122.33 (8) |
C3—C8—C9—C12 | 106.23 (8) | O3—C9—C12—C10 | −3.26 (5) |
C7—C8—C9—C12 | −70.21 (10) | C8—C9—C12—C10 | 111.76 (7) |
O1—C1—C9—O3 | −23.47 (11) | C1—C9—C12—C10 | −114.96 (7) |
N1—C1—C9—O3 | 160.56 (7) | N2—C12—C13—C14 | 61.23 (9) |
O1—C1—C9—C8 | −150.42 (8) | C10—C12—C13—C14 | −174.06 (7) |
N1—C1—C9—C8 | 33.61 (10) | C9—C12—C13—C14 | −73.40 (9) |
O1—C1—C9—C12 | 75.15 (10) | N2—C12—C13—C15 | −61.98 (9) |
N1—C1—C9—C12 | −100.83 (8) | C10—C12—C13—C15 | 62.73 (10) |
C17—O5—C10—O3 | 54.68 (9) | C9—C12—C13—C15 | 163.39 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O2i | 0.93 | 2.59 | 3.3754 (12) | 143 |
C15—H15A···O5 | 0.96 | 2.56 | 3.2151 (12) | 126 |
C18—H18A···O1ii | 0.96 | 2.58 | 3.4298 (13) | 148 |
C18—H18C···O2iii | 0.96 | 2.58 | 3.3641 (12) | 139 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C18H20N2O5 |
Mr | 344.36 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.5721 (2), 10.4260 (2), 15.7633 (3) |
β (°) | 101.641 (1) |
V (Å3) | 1701.77 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.51 × 0.37 × 0.35 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.951, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23124, 6242, 5286 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.760 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.108, 1.02 |
No. of reflections | 6242 |
No. of parameters | 231 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.21 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O2i | 0.93 | 2.59 | 3.3754 (12) | 143 |
C15—H15A···O5 | 0.96 | 2.56 | 3.2151 (12) | 126 |
C18—H18A···O1ii | 0.96 | 2.58 | 3.4298 (13) | 148 |
C18—H18C···O2iii | 0.96 | 2.58 | 3.3641 (12) | 139 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x+1, y, z. |
Acknowledgements
HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the National Science Foundation of China (20972067) is also acknowledged.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613–1623. Web of Science CrossRef PubMed CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Du, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205–30215. CrossRef CAS Google Scholar
Harris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610–1619. Web of Science CrossRef PubMed CAS Google Scholar
Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631. Web of Science CSD CrossRef CAS PubMed Google Scholar
Malamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043–2058. CSD CrossRef CAS PubMed Web of Science Google Scholar
Mitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120–126. CrossRef CAS Google Scholar
Mitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49–58. CrossRef CAS Web of Science Google Scholar
Pollers-Wieers, C., Vekemans, J., Toppet, S. & Hoornaert, G. (1981). Tetrahedron, 37, 4321–4326. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y.-H., Zhang, H.-J., Wu, F., Chen, Y.-H., Ma, X.-Q., Du, J.-Q., Zhou, Z.-L., Li, J.-Y., Nan, F.-J. & Li, J. (2006). FEBS J. 273, 4842–4852. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isoquinolines are often found in bioactive natural products. They have been used to build blocks of benzo[c]phenanthridine alkaloids (Pollers-Wieers et al., 1981; Malamas et al., 1994; Yu et al., 2010). Isoquinoline-1,3,4-trione derivatives were reported to be a type of small molecular inhibitor against caspase-3 which can promote apoptosis of the cells (Du et al., 2008; Chen et al., 2006). They can also attenuate apoptosis of neuronal cells induced by β-amyloid.(Zhang et al., 2006). Isoquinoline-1,3,4-trione and its derivatives have been reported to be redox mediators of photosystems and have been used as herbicides (Mitchell et al., 2000; 1995). Oxazole rings are also found in some bioactive natural products such as Annuloline and Ostreogrycin A. Oxazoles can be used to inhibit the activity of malignant tumors (Harris et al., 2005). Since a lot of natural products especially the alkaloids containing the isoquinoline or oxazole ring are bioactive, there has been intense development of methodology to construct such moieties (Wang et al., 2010). The title compound which was derived from isoquinoline-1,3,4-trione and oxazoles (Huang et al., 2011) may have potential use in biochemical and pharmaceutical fields. Due to the importance of the isoquinoline-1,3,4-trione derivatives, we report herein the crystal structure of the title compound with a relative configuration of (1S*, 4'S*, 5R*).
In the title racemic compound, Fig. 1, atoms C9, C10 and C12 are the chiral centers. The isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C1 deviating by 0.243 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.2843 (9) Å, Θ = 64.10 (18)° and ϕ =100.97 (19)°. The dioxa-2-azaspiro ring (N2/O4/C10-C12) is essentially planar [maximum deviation of 0.029 (1) Å at atoms O4 and C10] and it inclines at a dihedral angle of 30.63 (5)° with the benzene ring (C3-C8). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by a weak intramolecular C15–H15A···O5 hydrogen bond (Table 1) which generates a S(6) ring motif (Fig. 1, Bernstein et al., 1995).
In the crystal structure, Fig. 2, molecules are linked via intermolecular C6–H6A···O2i, C18–H18A···O1ii and C18–H18C···O2iii hydrogen bonds (Table 1) into a three-dimensional supramolecular network. The crystal packing is further consolidated by π–π stacking interactions between the centroids of the C3-C8 (Cg1) rings, with a Cg1···Cg1iv distance of 3.6507 (5) Å [symmetry code: (iv) 1-x, 1-y, -z].