metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m617-m618

(5,5′-Di­methyl-2,2′-bi­pyridine)­iodido­tri­methyl­platinum(IV)

aCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1126, 0315 Oslo, Norway, bCentre for Materials Science and Nanotechnology & inGAP National Centre of Research-based Innovation, Department of Chemistry, University of Oslo, PO Box 1126, 0315 Oslo, Norway, and cCentre of Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, PO Box 1033, 0371 Oslo, Norway
*Correspondence e-mail: fredrik.lundvall@smn.uio.no

(Received 17 March 2011; accepted 14 April 2011; online 22 April 2011)

In the title compound, [Pt(CH3)3I(C12H12N2)], the PtIV atom is six-coordinated in a slightly distorted octa­hedral configuration with one CH3 group and the I atom forming a near perpendicular axis relative to the square plane formed by the bipyridine ligand and the two remaining CH3 groups. The CH3 group trans to the I atom has a slightly elongated bond to Pt compared to the other CH3 groups, indicating a difference in trans influence between iodine and the bipyridine ligand.

Related literature

For synthetic background to related complexes containing Pt(CH3)3, see: Clegg et al. (1972[Clegg, D. E., Hall, J. R. & Swile, G. A. (1972). J. Organomet. Chem. 38, 403-420.]); Vetter et al. (2006[Vetter, C., Wagner, C., Schmidt, J. & Steinborn, D. (2006). Inorg. Chim. Acta, 359, 4326-4334.]). For structural information on complexes exhibiting a similar geometrical configuration around the PtIV atom, see: Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]); Vetter, Bruhn & Steinborn (2010[Vetter, C., Bruhn, C. & Steinborn, D. (2010). Acta Cryst. E66, m941-m942.]); Vetter, Wagner & Steinborn (2010[Vetter, C., Wagner, C. & Steinborn, D. (2010). Acta Cryst. E66, m286.]). For examples of bimetallic metal-organic frameworks (MOFs), see: Bloch et al. (2010[Bloch, E. D., Britt, D., Lee, C., Doonan, C. J., Uribe-Rome, F. J., Furukawa, H., Long, J. R. & Yaghi, O. M. (2010). J. Am. Chem. Soc. 132, 14382-14384.]); Szeto et al. (2006[Szeto, K. C., Lillerud, K. P., Tilset, M., Bjørgen, M., Prestipino, C., Zecchina, A., Lamberti, C. & Bordiga, S. (2006). J. Phys. Chem. B, 110, 21509-21520.], 2008[Szeto, K. C., Kongshaug, K. O., Jakobsen, S., Tilset, M. & Lillerud, K. P. (2008). Dalton Trans. pp. 2054-2060.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(CH3)3I(C12H12N2)]

  • Mr = 551.32

  • Monoclinic, P 21 /c

  • a = 15.354 (3) Å

  • b = 12.394 (2) Å

  • c = 9.0627 (18) Å

  • β = 106.222 (2)°

  • V = 1655.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.33 mm−1

  • T = 293 K

  • 0.4 × 0.4 × 0.1 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.022, Tmax = 0.356

  • 18721 measured reflections

  • 4094 independent reflections

  • 3477 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.01

  • 4094 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −2.14 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—C14 2.045 (5)
Pt1—C13 2.055 (5)
Pt1—C15 2.092 (5)
Pt1—N2 2.160 (4)
Pt1—N1 2.175 (4)
Pt1—I1 2.7755 (5)
C14—Pt1—C13 85.8 (2)
C13—Pt1—N1 98.62 (18)
C15—Pt1—N1 90.43 (18)
N2—Pt1—N1 76.52 (16)
C15—Pt1—I1 179.94 (17)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a part of a larger project, the title compound and several other compounds based on substituted bipyridines and PtIV salts were synthesized in an NMR-screening for new PtIV complexes for potential application in bimetallic MOFs (Metal-Organic Frameworks). Bimetallic MOFs containing bipyridine, Pt(II) (Szeto et al., 2006, 2008) and Pd(II) (Bloch et al., 2010) have previously been reported, but so far no thermally stable bimetallic MOF containing PtIV is reported in the literature.

The title compound has previously been reported (Clegg et al., 1972) as a part of an extensive NMR-studies to find evidence for cis and trans influences in trimethylplatinum(IV) compounds. The NMR spectra of the compound is in good accordance with what was reported, and the crystal structure supports the finds with regards to trans influences.

Related literature top

For synthetic background to related complexes containing Pt(CH3)3, see: Clegg et al. (1972); Vetter et al. (2006). For structural information on complexes exhibiting a similar geometrical configuration around the PtIV atom, see: Hambley (1986); Hojjat Kashani et al. (2008); Vetter, Bruhn & Steinborn (2010); Vetter, Wagner & Steinborn (2010). For examples of bimetallic MOFs, see: Bloch et al. (2010); Szeto et al. (2006, 2008)

Experimental top

The title compound was synthesized by a modified version of the method used by Clegg et al. (1972). 5,5'-dimethyl-2,2'-bipyridine (1.2 mg, 0.006 mmol) and PtIV(CH3)3I (2.0 mg, 0,005 mmol) was weighed out in an NMR-tube, and 0.5 ml of deuterated benzene (C6D6) was added. The resulting mixture was heated to 75 °C for 3 days without stirring. A number of NMR-spectra were recorded during the synthesis to monitor the formation of the complex. After the NMR-experiments were finished, the NMR-tube was left at ambient temperature for 7 days, during which crystals of the complex formed.

Refinement top

H-atoms were positioned geometrically at distances of 0.93(CH) and 0.96Å (CH3) and refined using a riding model with Uiso(H)=1.2 Ueq(C) and Uiso(H)=1.5 Ueq(Cmethyl)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. [The asymmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.]
[Figure 2] Fig. 2. [Packing diagram of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.]
(5,5'-Dimethyl-2,2'-bipyridine)iodidotrimethylplatinum(IV) top
Crystal data top
[Pt(CH3)3I(C12H12N2)]F(000) = 1024
Mr = 551.32Dx = 2.211 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7297 reflections
a = 15.354 (3) Åθ = 2.8–27.6°
b = 12.394 (2) ŵ = 10.33 mm1
c = 9.0627 (18) ÅT = 293 K
β = 106.222 (2)°Plate, orange
V = 1655.8 (6) Å30.4 × 0.4 × 0.1 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4094 independent reflections
Radiation source: sealed tube3477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.022, Tmax = 0.356k = 1616
18721 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
4094 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 2.14 e Å3
Crystal data top
[Pt(CH3)3I(C12H12N2)]V = 1655.8 (6) Å3
Mr = 551.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.354 (3) ŵ = 10.33 mm1
b = 12.394 (2) ÅT = 293 K
c = 9.0627 (18) Å0.4 × 0.4 × 0.1 mm
β = 106.222 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4094 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2005)
3477 reflections with I > 2σ(I)
Tmin = 0.022, Tmax = 0.356Rint = 0.048
18721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.01Δρmax = 0.82 e Å3
4094 reflectionsΔρmin = 2.14 e Å3
172 parameters
Special details top

Experimental. Synthesis of the complex was performed in deuterated solvent.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.208561 (12)0.071224 (14)0.65323 (2)0.03239 (8)
I10.34139 (2)0.03855 (3)0.50370 (4)0.04465 (10)
N20.3088 (3)0.0375 (3)0.8682 (4)0.0354 (9)
C10.1397 (3)0.1655 (4)0.5835 (6)0.0412 (11)
H10.09810.13440.49950.049*
C30.1999 (4)0.3208 (4)0.7271 (7)0.0540 (14)
H30.20190.39490.74330.065*
C90.4219 (4)0.0869 (5)1.0999 (6)0.0459 (13)
C80.4289 (4)0.0211 (5)1.1424 (6)0.0512 (14)
H80.46910.04121.23550.061*
C70.3777 (4)0.0985 (5)1.0502 (7)0.0520 (14)
H70.38310.17071.07960.062*
N10.1984 (3)0.1024 (3)0.6788 (5)0.0369 (9)
C130.1095 (4)0.0898 (4)0.4489 (6)0.0440 (12)
H13A0.08450.02060.41250.066*
H13B0.13530.12200.37430.066*
H13C0.06230.13560.46430.066*
C20.1371 (4)0.2776 (4)0.6031 (7)0.0474 (13)
C150.1083 (4)0.0958 (4)0.7657 (6)0.0451 (12)
H15A0.13500.09140.87480.068*
H15B0.06230.04140.73420.068*
H15C0.08170.16580.73970.068*
C40.2599 (4)0.2542 (4)0.8277 (6)0.0507 (13)
H40.30210.28350.91250.061*
C140.2236 (4)0.2350 (4)0.6478 (6)0.0487 (13)
H14A0.27000.25780.73720.073*
H14B0.16730.26940.64650.073*
H14C0.24040.25480.55710.073*
C110.4762 (4)0.1730 (5)1.1990 (7)0.0587 (16)
H11A0.51470.14121.29070.088*
H11B0.43600.22391.22590.088*
H11C0.51270.20931.14410.088*
C120.0671 (5)0.3445 (5)0.4897 (8)0.0661 (17)
H12A0.03050.29840.41150.099*
H12B0.02910.38060.54220.099*
H12C0.09710.39700.44330.099*
C50.2577 (3)0.1439 (4)0.8034 (6)0.0381 (10)
C60.3172 (3)0.0669 (4)0.9108 (6)0.0358 (10)
C100.3605 (3)0.1121 (4)0.9595 (5)0.0395 (10)
H100.35500.18370.92760.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02979 (11)0.02980 (11)0.03496 (12)0.00090 (6)0.00471 (8)0.00234 (6)
I10.04027 (19)0.0491 (2)0.04544 (19)0.00213 (15)0.01335 (15)0.00193 (15)
N20.035 (2)0.036 (2)0.034 (2)0.0054 (17)0.0069 (17)0.0060 (16)
C10.043 (3)0.035 (3)0.048 (3)0.000 (2)0.018 (2)0.001 (2)
C30.063 (4)0.032 (3)0.072 (4)0.002 (3)0.027 (3)0.006 (3)
C90.030 (3)0.061 (3)0.042 (3)0.004 (2)0.002 (2)0.009 (2)
C80.046 (3)0.063 (4)0.038 (3)0.009 (3)0.000 (2)0.005 (3)
C70.051 (3)0.049 (3)0.052 (3)0.014 (3)0.008 (3)0.015 (3)
N10.040 (2)0.033 (2)0.040 (2)0.0036 (18)0.0136 (19)0.0008 (17)
C130.041 (3)0.044 (3)0.041 (3)0.007 (2)0.002 (2)0.000 (2)
C20.052 (3)0.031 (2)0.068 (4)0.005 (2)0.031 (3)0.007 (2)
C150.048 (3)0.037 (3)0.049 (3)0.008 (2)0.012 (2)0.002 (2)
C40.059 (3)0.036 (3)0.055 (3)0.010 (3)0.013 (3)0.008 (2)
C140.053 (3)0.030 (3)0.057 (3)0.003 (2)0.006 (3)0.002 (2)
C110.044 (3)0.075 (4)0.048 (3)0.002 (3)0.001 (3)0.014 (3)
C120.069 (4)0.046 (3)0.084 (5)0.012 (3)0.023 (4)0.012 (3)
C50.043 (3)0.034 (2)0.041 (2)0.004 (2)0.018 (2)0.003 (2)
C60.032 (2)0.043 (3)0.033 (2)0.0062 (19)0.009 (2)0.0047 (19)
C100.036 (3)0.042 (3)0.037 (2)0.000 (2)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Pt1—C142.045 (5)N1—C51.339 (6)
Pt1—C132.055 (5)C13—H13A0.9600
Pt1—C152.092 (5)C13—H13B0.9600
Pt1—N22.160 (4)C13—H13C0.9600
Pt1—N12.175 (4)C2—C121.511 (8)
Pt1—I12.7755 (5)C15—H15A0.9600
N2—C101.342 (6)C15—H15B0.9600
N2—C61.346 (6)C15—H15C0.9600
C1—N11.317 (6)C4—C51.384 (7)
C1—C21.402 (7)C4—H40.9300
C1—H10.9300C14—H14A0.9600
C3—C21.369 (8)C14—H14B0.9600
C3—C41.375 (8)C14—H14C0.9600
C3—H30.9300C11—H11A0.9600
C9—C81.388 (8)C11—H11B0.9600
C9—C101.392 (7)C11—H11C0.9600
C9—C111.490 (8)C12—H12A0.9600
C8—C71.367 (9)C12—H12B0.9600
C8—H80.9300C12—H12C0.9600
C7—C61.400 (7)C5—C61.482 (7)
C7—H70.9300C10—H100.9300
C14—Pt1—C1385.8 (2)H13B—C13—H13C109.5
C14—Pt1—C1588.3 (2)C3—C2—C1116.9 (5)
C13—Pt1—C1587.9 (2)C3—C2—C12123.2 (5)
C14—Pt1—N299.02 (19)C1—C2—C12119.8 (5)
C13—Pt1—N2175.08 (17)Pt1—C15—H15A109.5
C15—Pt1—N291.41 (19)Pt1—C15—H15B109.5
C14—Pt1—N1175.34 (19)H15A—C15—H15B109.5
C13—Pt1—N198.62 (18)Pt1—C15—H15C109.5
C15—Pt1—N190.43 (18)H15A—C15—H15C109.5
N2—Pt1—N176.52 (16)H15B—C15—H15C109.5
C14—Pt1—I191.72 (16)C3—C4—C5120.3 (5)
C13—Pt1—I192.07 (16)C3—C4—H4119.8
C15—Pt1—I1179.94 (17)C5—C4—H4119.8
N2—Pt1—I188.65 (10)Pt1—C14—H14A109.5
N1—Pt1—I189.55 (11)Pt1—C14—H14B109.5
C10—N2—C6119.5 (4)H14A—C14—H14B109.5
C10—N2—Pt1124.9 (3)Pt1—C14—H14C109.5
C6—N2—Pt1115.6 (3)H14A—C14—H14C109.5
N1—C1—C2122.9 (5)H14B—C14—H14C109.5
N1—C1—H1118.5C9—C11—H11A109.5
C2—C1—H1118.5C9—C11—H11B109.5
C2—C3—C4119.8 (5)H11A—C11—H11B109.5
C2—C3—H3120.1C9—C11—H11C109.5
C4—C3—H3120.1H11A—C11—H11C109.5
C8—C9—C10116.7 (5)H11B—C11—H11C109.5
C8—C9—C11122.5 (5)C2—C12—H12A109.5
C10—C9—C11120.8 (5)C2—C12—H12B109.5
C7—C8—C9121.4 (5)H12A—C12—H12B109.5
C7—C8—H8119.3C2—C12—H12C109.5
C9—C8—H8119.3H12A—C12—H12C109.5
C8—C7—C6118.6 (5)H12B—C12—H12C109.5
C8—C7—H7120.7N1—C5—C4119.6 (5)
C6—C7—H7120.7N1—C5—C6117.1 (4)
C1—N1—C5120.3 (4)C4—C5—C6123.3 (5)
C1—N1—Pt1125.0 (3)N2—C6—C7121.0 (5)
C5—N1—Pt1114.7 (3)N2—C6—C5116.0 (4)
Pt1—C13—H13A109.5C7—C6—C5123.0 (5)
Pt1—C13—H13B109.5N2—C10—C9122.8 (5)
H13A—C13—H13B109.5N2—C10—H10118.6
Pt1—C13—H13C109.5C9—C10—H10118.6
H13A—C13—H13C109.5
C14—Pt1—N2—C100.3 (4)N1—C1—C2—C30.7 (8)
C15—Pt1—N2—C1088.2 (4)N1—C1—C2—C12179.4 (5)
N1—Pt1—N2—C10178.3 (4)C2—C3—C4—C50.7 (8)
I1—Pt1—N2—C1091.9 (4)C1—N1—C5—C43.0 (7)
C14—Pt1—N2—C6179.4 (3)Pt1—N1—C5—C4177.3 (4)
C15—Pt1—N2—C690.9 (3)C1—N1—C5—C6175.8 (4)
N1—Pt1—N2—C60.8 (3)Pt1—N1—C5—C63.9 (5)
I1—Pt1—N2—C689.1 (3)C3—C4—C5—N11.8 (8)
C10—C9—C8—C70.1 (8)C3—C4—C5—C6177.0 (5)
C11—C9—C8—C7179.4 (6)C10—N2—C6—C71.3 (7)
C9—C8—C7—C60.2 (9)Pt1—N2—C6—C7177.9 (4)
C2—C1—N1—C51.8 (8)C10—N2—C6—C5180.0 (4)
C2—C1—N1—Pt1178.6 (4)Pt1—N2—C6—C50.9 (5)
C13—Pt1—N1—C12.1 (4)C8—C7—C6—N20.4 (8)
C15—Pt1—N1—C185.8 (4)C8—C7—C6—C5179.1 (5)
N2—Pt1—N1—C1177.1 (4)N1—C5—C6—N23.2 (6)
I1—Pt1—N1—C194.1 (4)C4—C5—C6—N2178.0 (5)
C13—Pt1—N1—C5178.2 (4)N1—C5—C6—C7175.5 (5)
C15—Pt1—N1—C593.9 (4)C4—C5—C6—C73.3 (8)
N2—Pt1—N1—C52.5 (3)C6—N2—C10—C91.4 (7)
I1—Pt1—N1—C586.2 (3)Pt1—N2—C10—C9177.6 (4)
C4—C3—C2—C11.9 (8)C8—C9—C10—N20.8 (8)
C4—C3—C2—C12178.2 (5)C11—C9—C10—N2178.5 (5)

Experimental details

Crystal data
Chemical formula[Pt(CH3)3I(C12H12N2)]
Mr551.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.354 (3), 12.394 (2), 9.0627 (18)
β (°) 106.222 (2)
V3)1655.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)10.33
Crystal size (mm)0.4 × 0.4 × 0.1
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2005)
Tmin, Tmax0.022, 0.356
No. of measured, independent and
observed [I > 2σ(I)] reflections
18721, 4094, 3477
Rint0.048
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.01
No. of reflections4094
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 2.14

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Pt1—C142.045 (5)Pt1—N22.160 (4)
Pt1—C132.055 (5)Pt1—N12.175 (4)
Pt1—C152.092 (5)Pt1—I12.7755 (5)
C14—Pt1—C1385.8 (2)N2—Pt1—N176.52 (16)
C13—Pt1—N198.62 (18)C15—Pt1—I1179.94 (17)
C15—Pt1—N190.43 (18)
 

Acknowledgements

We acknowledge support from the Norwegian Research Council and inGAP

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBloch, E. D., Britt, D., Lee, C., Doonan, C. J., Uribe-Rome, F. J., Furukawa, H., Long, J. R. & Yaghi, O. M. (2010). J. Am. Chem. Soc. 132, 14382–14384.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, D. E., Hall, J. R. & Swile, G. A. (1972). J. Organomet. Chem. 38, 403–420.  CrossRef CAS Web of Science Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzeto, K. C., Kongshaug, K. O., Jakobsen, S., Tilset, M. & Lillerud, K. P. (2008). Dalton Trans. pp. 2054–2060.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSzeto, K. C., Lillerud, K. P., Tilset, M., Bjørgen, M., Prestipino, C., Zecchina, A., Lamberti, C. & Bordiga, S. (2006). J. Phys. Chem. B, 110, 21509–21520.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVetter, C., Bruhn, C. & Steinborn, D. (2010). Acta Cryst. E66, m941–m942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVetter, C., Wagner, C., Schmidt, J. & Steinborn, D. (2006). Inorg. Chim. Acta, 359, 4326–4334.  Web of Science CSD CrossRef CAS Google Scholar
First citationVetter, C., Wagner, C. & Steinborn, D. (2010). Acta Cryst. E66, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m617-m618
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds