organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1151

2H-Chromen-4(3H)-one

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 5 April 2011; accepted 11 April 2011; online 16 April 2011)

In the title compound, C9H8O2, a benzo-annulated heterocyclic ketone, the non-aromatic six-membered ring adopts an E2 conformation. In the crystal, C—H⋯O contacts connect the mol­ecules into double sheets perpendicular to the crystallographic a axis. The centroid–centroid distance for two π-systems is 3.7699 (6) Å.

Related literature

For the structure of a chromium(0) compound containing the title compound as a ligand, see: Stewart et al. (1984[Stewart, K. R., Levine, S. G. & McPhail, A. T. (1984). J. Organomet. Chem. 263, 45-53.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O2

  • Mr = 148.15

  • Monoclinic, P 21 /c

  • a = 7.5538 (4) Å

  • b = 8.0896 (4) Å

  • c = 13.0410 (6) Å

  • β = 115.364 (3)°

  • V = 720.08 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.48 × 0.41 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6367 measured reflections

  • 1774 independent reflections

  • 1578 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.05

  • 1774 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H11⋯O2i 0.99 2.53 3.4674 (13) 157
C1—H12⋯O2ii 0.99 2.56 3.3934 (15) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae,et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In general, saturated, six-membered carbocycles and heterocycles adopt energetically favourable chair- or boat-conformations in solution and in the solid state although a variety of other conformations such as half-chair- or twist-forms are available. The annulation of aromatic rings can influence the conformation of such ring-systems and "freeze" one of the less common conformations. In our continued interest in effects of substituents and annulation of differently-substituted aromatic systems on the conformation of six-, seven- and eight-membered ring systems, we determined the crystal structure of the title compound to enable comparative studies. As of today, only one structural analysis of a chromium(0)-compound featuring the title compound as a ligand is apparent in the literature (Stewart et al. 1984).

The heterocyclic six-membered ring adopts an E2 conformation with carbon atom C1 acting as the envelope-atom. The latter one is displaced by 0.337 (1) Å from the least-squares plane defined by the atoms of the heterocycle. The least-squares planes defined by the carbon atoms of the phenyl ring as well as the skeletal atoms of the heterocycle intersect at an angle of 7.73 (6)°.

In the crystal structure, C–H···O contacts whose ranges fall by about 0.2 Å below the sum of van-der-Waals radii of the atoms participating are observed. These include both H atoms of the methylene group in ortho-position to the intracyclic O atom as donor atoms and exclusively the O atom of the carbonyl group as acceptor (Fig. 2). In total, the molecules are connected to double layers perpendicular to the crystallographic a axis. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) the descriptor for these contacts on the unitary level is C(5)C(5). The shortest Cg···Cg-distance for two π-systems was measured at 3.7699 (6) Å.

The packing of the title compound is shown in Figure 3.

Related literature top

For the structure of a chromium(0) compound containing the title compound as a ligand, see: Stewart et al. (1984). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided product.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms and C—H 0.99 Å for aliphatic C atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae, et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i x, -y + 1/2, z + 1/2; ii -x, y - 1/2, -z + 1/2; iii -x, y + 1/2, -z + 1/2; iv x, -y + 1/2, z - 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2H-Chromen-4(3H)-one top
Crystal data top
C9H8O2F(000) = 312
Mr = 148.15Dx = 1.367 Mg m3
Monoclinic, P21/cMelting point = 308–311 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.5538 (4) ÅCell parameters from 4401 reflections
b = 8.0896 (4) Åθ = 3.0–28.3°
c = 13.0410 (6) ŵ = 0.10 mm1
β = 115.364 (3)°T = 200 K
V = 720.08 (6) Å3Block, colourless
Z = 40.48 × 0.41 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
1578 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 28.3°, θmin = 3.5°
ϕ and ω scansh = 910
6367 measured reflectionsk = 1010
1774 independent reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1339P]
where P = (Fo2 + 2Fc2)/3
1774 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C9H8O2V = 720.08 (6) Å3
Mr = 148.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5538 (4) ŵ = 0.10 mm1
b = 8.0896 (4) ÅT = 200 K
c = 13.0410 (6) Å0.48 × 0.41 × 0.29 mm
β = 115.364 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1578 reflections with I > 2σ(I)
6367 measured reflectionsRint = 0.041
1774 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
1774 reflectionsΔρmin = 0.19 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32152 (11)0.53935 (9)0.22765 (6)0.0337 (2)
O20.15764 (13)0.19047 (10)0.39707 (7)0.0434 (2)
C10.20014 (15)0.40212 (13)0.16627 (8)0.0327 (2)
H110.22960.37350.10140.039*
H120.06060.43480.13570.039*
C20.23447 (15)0.25263 (12)0.24191 (8)0.0307 (2)
H210.14320.16320.19910.037*
H220.36990.21200.26540.037*
C30.20392 (13)0.29406 (11)0.34541 (8)0.0262 (2)
C40.23848 (12)0.46883 (11)0.38176 (7)0.0232 (2)
C50.29805 (12)0.58227 (11)0.32203 (8)0.0255 (2)
C60.33856 (14)0.74544 (12)0.35963 (9)0.0349 (2)
H60.38020.82280.31970.042*
C70.31759 (15)0.79357 (13)0.45538 (10)0.0400 (3)
H70.34500.90470.48070.048*
C80.25740 (16)0.68291 (14)0.51532 (9)0.0389 (3)
H80.24240.71800.58070.047*
C90.21953 (14)0.52099 (13)0.47876 (8)0.0310 (2)
H90.18010.44410.52000.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0403 (4)0.0338 (4)0.0332 (4)0.0066 (3)0.0217 (3)0.0014 (3)
O20.0608 (5)0.0309 (4)0.0420 (4)0.0108 (3)0.0254 (4)0.0046 (3)
C10.0385 (5)0.0353 (5)0.0253 (4)0.0009 (4)0.0146 (4)0.0024 (4)
C20.0348 (5)0.0262 (4)0.0318 (5)0.0008 (4)0.0147 (4)0.0051 (4)
C30.0263 (4)0.0239 (4)0.0267 (4)0.0010 (3)0.0098 (3)0.0018 (3)
C40.0221 (4)0.0233 (4)0.0231 (4)0.0013 (3)0.0086 (3)0.0007 (3)
C50.0234 (4)0.0240 (4)0.0279 (4)0.0001 (3)0.0098 (3)0.0012 (3)
C60.0318 (5)0.0236 (5)0.0446 (6)0.0032 (4)0.0117 (4)0.0013 (4)
C70.0329 (5)0.0275 (5)0.0474 (6)0.0022 (4)0.0057 (4)0.0114 (4)
C80.0374 (5)0.0423 (6)0.0314 (5)0.0087 (4)0.0095 (4)0.0107 (4)
C90.0313 (5)0.0358 (5)0.0256 (4)0.0042 (4)0.0121 (4)0.0001 (4)
Geometric parameters (Å, º) top
O1—C51.3616 (11)C4—C51.3970 (12)
O1—C11.4439 (12)C4—C91.3977 (13)
O2—C31.2166 (12)C5—C61.3957 (13)
C1—C21.5112 (14)C6—C71.3803 (16)
C1—H110.9900C6—H60.9500
C1—H120.9900C7—C81.3870 (18)
C2—C31.5013 (13)C7—H70.9500
C2—H210.9900C8—C91.3813 (15)
C2—H220.9900C8—H80.9500
C3—C41.4785 (12)C9—H90.9500
C5—O1—C1113.55 (7)C5—C4—C3120.27 (8)
O1—C1—C2111.27 (8)C9—C4—C3120.43 (9)
O1—C1—H11109.4O1—C5—C6117.70 (9)
C2—C1—H11109.4O1—C5—C4122.30 (8)
O1—C1—H12109.4C6—C5—C4119.99 (9)
C2—C1—H12109.4C7—C6—C5119.45 (10)
H11—C1—H12108.0C7—C6—H6120.3
C3—C2—C1111.02 (8)C5—C6—H6120.3
C3—C2—H21109.4C6—C7—C8121.35 (9)
C1—C2—H21109.4C6—C7—H7119.3
C3—C2—H22109.4C8—C7—H7119.3
C1—C2—H22109.4C9—C8—C7119.13 (10)
H21—C2—H22108.0C9—C8—H8120.4
O2—C3—C4122.29 (9)C7—C8—H8120.4
O2—C3—C2122.37 (9)C8—C9—C4120.82 (10)
C4—C3—C2115.33 (8)C8—C9—H9119.6
C5—C4—C9119.25 (9)C4—C9—H9119.6
C5—O1—C1—C255.93 (11)C3—C4—C5—O11.80 (13)
O1—C1—C2—C355.36 (11)C9—C4—C5—C60.23 (13)
C1—C2—C3—O2154.40 (10)C3—C4—C5—C6177.25 (8)
C1—C2—C3—C426.96 (11)O1—C5—C6—C7179.64 (9)
O2—C3—C4—C5177.76 (9)C4—C5—C6—C70.55 (14)
C2—C3—C4—C50.88 (12)C5—C6—C7—C80.14 (15)
O2—C3—C4—C90.32 (14)C6—C7—C8—C90.60 (16)
C2—C3—C4—C9178.33 (8)C7—C8—C9—C40.93 (15)
C1—O1—C5—C6153.72 (9)C5—C4—C9—C80.52 (14)
C1—O1—C5—C427.22 (12)C3—C4—C9—C8177.99 (8)
C9—C4—C5—O1179.27 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H11···O2i0.992.533.4674 (13)157
C1—H12···O2ii0.992.563.3934 (15)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8O2
Mr148.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.5538 (4), 8.0896 (4), 13.0410 (6)
β (°) 115.364 (3)
V3)720.08 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.41 × 0.29
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6367, 1774, 1578
Rint0.041
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.05
No. of reflections1774
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae, et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H11···O2i0.992.533.4674 (13)157
C1—H12···O2ii0.992.563.3934 (15)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Raynard Fourie for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, K. R., Levine, S. G. & McPhail, A. T. (1984). J. Organomet. Chem. 263, 45–53.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1151
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds