organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1230-o1231

Methyl 4-{[6-(4-bromo­phen­yl)-3-oxo-2,3,4,5-tetra­hydro­pyridazin-4-yl]methyl}benzoate

aDepartamento de Química, UFSC, 88040-900 Florianópolis, SC, Brazil, and bDepartamento de Química, UEM, 87020-900 Maringá, PR, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 13 April 2011; accepted 19 April 2011; online 29 April 2011)

The structure of the title compound, C19H17BrN2O3, consists of two cyclic groups, viz. 4-(meth­oxy­carbon­yl)phenyl and 6-(4-bromo­phen­yl)-3-oxo-2,3,4,5-dihydro­pyridazin-4-yl, which are linked by a methyl­ene spacer. The pyridazine ring is twisted and the dihedral angle between its mean plane and that of the bromo­phenyl mean plane is 17.2 (2)°. The 4-(meth­oxy­carbon­yl)phenyl group shows a quasi-planar conformation, where the dihedral angle between the mean planes of the phenyl ring and carboxyl­ate ester group is 7.9 (4)°. Centrosymmetric inter­molecular N—H⋯O hydrogen bonds form dimers. These are linked by C—Br⋯O=C inter­actions [Br⋯O = 3.10 (1) Å] to form a one-dimensional polymeric structure running along the [1[\overline{2}]0] direction.

Related literature

For specific details concerning organic reactions and synthetic procedures for 4,5-diihydro-3(2H)-pyridazinone derivatives, see: Meyer et al. (2004[Meyer, E., Joussef, A. C., Gallardo, H. & de Souza, L. de B. P. (2004). Synth. Commun. 34, 783-793.]). For the biological activity of heterocyclic compounds containing the 3(2H)-pyridazinone group, see: Sayed et al. (2002[Sayed, G. H., Sayed, M. A., Mahmoud, M. R. & Shaaban, S. S. (2002). Egypt. J. Chem. 45, 767-776.]); Katrusiak & Baloniak (1994[Katrusiak, A. & Baloniak, S. (1994). Tetrahedron, 50, 12933-12940.]); Dogruer et al. (2003[Dogruer, D. S., Sahin, M. F., Kupeli, E. & Yesilada, E. (2003). Turk. J. Chem. 27, 727-738.]); Pieretti et al. (2006[Pieretti, S., Dominici, L., Giannuario, A. D., Cesari, N. & Piaz, V. D. (2006). Life Sci. 79, 791-800.]); Cao et al. (2003[Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152-155.]); Piaz et al. (1994[Piaz, V. D., Ciciani, G. & Giovannoni, M. P. (1994). Synthesis, pp. 669-671.]); Xu et al. (2008[Xu, H., Hu, X.-H., Zou, X.-M., Liu, B., Zhu, Y.-Q., Wang, Y., Hu, F.-Z. & Uang, H.-Z. (2008). J. Agric. Food Chem. 56, 6567-6572.]); Giovannoni et al. (2007[Giovannoni, M. P., Cesari, N., Vergelli, C., Graziano, A., Biancalani, C., Biagini, P., Ghelardini, C., Vivoli, E. & Piaz, V. D. (2007). J. Med. Chem. 50, 3945-3953.]); Coelho et al. (2007[Coelho, A., Raviña, E., Fraiz, N., Yáñez, M., Laguna, R., Cano, E. & Sotelo, E. (2007). J. Med. Chem. 50, 6476-6484.]); Malinka et al. (2003[Malinka, W., Redzicka, A. & Losach, O. (2003). Il Farmaco, 59, 457-462.]); Wexler et al. (1996[Wexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. M. (1996). J. Med. Chem. 39, 625-656.]); Barbaro et al., (2001[Barbaro, R., Betti, L., Botta, M., Corelli, F., Giannaccini, G., Maccari, L., Manetti, F., Strappaghetti, G. & Corsano, S. (2001). J. Med. Chem. 44, 2118-21332.]); Vergelli et al. (2007[Vergelli, C., Giovannoni, M. P., Pieretti, S., Giannuario, A. D., Piaz, V. D., Biagini, P., Biancalani, C., Graziano, A. & Cesari, N. (2007). Bioorg. Med. Chem. 15, 5563-5575.]); Abudshait (2007[Abudshait, S. A. (2007). Molecules, 12, 25-42.]). For related structures, see: Zhang et al. (2006[Zhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, o2999-o3000.]); Zhou & Zhou (2007[Zhou, Z.-Z. & Zhou, H.-B. (2007). Acta Cryst. E63, o2512.]). For C—Br⋯O inter­actions, see: Voronina et al. (2009[Voronina, Yu. K., Saifina, L. F., Romanova, E. S., Lodochnikova, O. A. & Litvinov, I. A. (2009). J. Struct. Chem. 50, 588-591.])

[Scheme 1]

Experimental

Crystal data
  • C19H17BrN2O3

  • Mr = 401.26

  • Triclinic, [P \overline 1]

  • a = 5.991 (1) Å

  • b = 8.958 (1) Å

  • c = 17.531 (2) Å

  • α = 99.502 (11)°

  • β = 95.241 (12)°

  • γ = 105.499 (10)°

  • V = 885.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.50 × 0.33 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan [North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.567, Tmax = 0.978

  • 3368 measured reflections

  • 3151 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.03

  • 3151 reflections

  • 237 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 2.08 2.910 (4) 162
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x-2, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocyclic compounds containing 3-(2H)-pyridazinone moiety in their structures have attracted a great deal of attention due to their wide spectrum of biological activity such as antimicrobial (Sayed et al., 2002; Katrusiak & Baloniak, 1994), anti-inflammatory (Dogruer et al., 2003; Pieretti et al., 2006), antifeedant (Cao et al., 2003), herbicidal (Piaz et al., 1994; Xu et al., 2008), antiplatelet (Giovannoni et al., 2007; Coelho et al., 2007), anticancer (Malinka et al., 2003), antihypertensive (Wexler et al., 1996; Barbaro et al., 2001), antinociceptive agent (Giovannoni et al., 2007; Vergelli et al., 2007) and other biological and pharmacological properties (Abudshait, 2007). In our study toward the synthesis of dihydropyridazinones as potential candidates for antihypertensive activity the structure of methyl 4-[6-(4-bromophenyl)-3-oxo-2,3,4,5-dihydropyridazin-4-ylmethyl]benzoate has been determined.

The structure of the title compound consists of two cyclic moieties, 4-(methoxycarbonyl)phenyl and 6-(4-bromophenyl)-3-oxo-2,3,4,5-dihydropyridazin-4-yl, which are linked by methylene spacer (Fig. 1). The pyridazinyl ring is twisted, the greatest deviation is observed for carbon atoms C5 and the disordered C6A and C6B atoms, which are -0.0674 (8), 0.479 (5) and -0.415 (12) Å, respectively, out of the mean plane of all atoms in the ring. The dihedral angle between the mean plane of this ring and that of the bromophenyl mean plane is 17.2 (2)°. The 4-(Methoxycarbonyl)phenyl moiety shows quasi-planar conformation, where the dihedral angle between the mean planes of the phenyl ring and carboxylate ester group is 7.9 (4)°. Intermolecular N3—H3N···O1 hydrogen bonds form centrosymmetric dimers (Fig. 2). Each dimer is linked to two neighboring dimers through C4O1···Br—C14 interactions (Voronina et al., 2009) forming an one-dimensional polymeric structure along [120] direction (Fig. 3). In addition, packing analysis shows that the molecules are perfectly stacked along [100] direction (Fig. 4).

Related literature top

For specific details concerning organic reactions and synthetic procedures for 4,5-diihydro-3(2H)-pyridazinone derivatives, see: Meyer et al. (2004). For biological activity, see: Sayed et al. (2002); Katrusiak & Baloniak (1994); Dogruer et al. (2003); Pieretti et al. (2006); Cao et al. (2003); Piaz et al. (1994); Xu et al. (2008); Giovannoni et al. (2007); Coelho et al. (2007); Malinka et al. (2003); Wexler et al. (1996); Barbaro et al., (2001); Vergelli et al. (2007); Abudshait (2007). For related structures, see: Zhang et al. (2006); Zhou & Zhou (2007). For C—Br···O interactions, see: Voronina et al. (2009)

Experimental top

The title compound was synthesized according to a previously described method (Meyer et al., 2004). A careful crystallization from methanol/water (1:1 v/v) provided colorless crystals suitable for X-ray analysis.

Refinement top

H atoms were placed at their idealized positions with distances of 0.93, 0.98, 0.97 and 0.96 Å and Uiso fixed at 1.2 and 1.5 times Ueq of the preceding atom for C—HAr, CH, CH2 and CH3, respectively. H atom bonded to N atom at the pyridazinyl ring was found from Fourier difference map and treated with riding model and its Uiso fixed at 1.2 times Ueq of the parent atom. One C atom (C6) of the pyridazinyl ring is disordered over two alternative positions. The position of the disordered atoms were restrained and the occupancies were refined giving 0.696 (16) and 0.304 (16) for C6A and C6B, respectively.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Dimeric structure formed by hydrogen bonds. Symmetry code: -x + 3, -y + 1, -z + 1
[Figure 3] Fig. 3. One-dimensional polymeric structure formed by C—Br···O=C interactions. Symmetry code: -2 + x, -1 + y, z
[Figure 4] Fig. 4. Packing showing the molecules staked along [100] direction.
Methyl 4-{[6-(4-bromophenyl)-3-oxo-2,3,4,5-tetrahydropyridazin-4-yl]methyl}benzoate top
Crystal data top
C19H17BrN2O3Z = 2
Mr = 401.26F(000) = 408
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 5.991 (1) ÅCell parameters from 25 reflections
b = 8.958 (1) Åθ = 8.2–13.4°
c = 17.531 (2) ŵ = 2.34 mm1
α = 99.502 (11)°T = 293 K
β = 95.241 (12)°Block, colourless
γ = 105.499 (10)°0.50 × 0.33 × 0.13 mm
V = 885.1 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2033 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.1°, θmin = 2.4°
ω/2θ scansh = 76
Absorption correction: ψ scan
[PLATON (Spek, 2009) and North et al. (1968)]
k = 010
Tmin = 0.567, Tmax = 0.978l = 2020
3368 measured reflections3 standard reflections every 200 reflections
3151 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.047P)2 + 0.1645P]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.28 e Å3
4 restraintsΔρmin = 0.36 e Å3
Crystal data top
C19H17BrN2O3γ = 105.499 (10)°
Mr = 401.26V = 885.1 (2) Å3
Triclinic, P1Z = 2
a = 5.991 (1) ÅMo Kα radiation
b = 8.958 (1) ŵ = 2.34 mm1
c = 17.531 (2) ÅT = 293 K
α = 99.502 (11)°0.50 × 0.33 × 0.13 mm
β = 95.241 (12)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2033 reflections with I > 2σ(I)
Absorption correction: ψ scan
[PLATON (Spek, 2009) and North et al. (1968)]
Rint = 0.024
Tmin = 0.567, Tmax = 0.9783 standard reflections every 200 reflections
3368 measured reflections intensity decay: 1%
3151 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
3151 reflectionsΔρmin = 0.36 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.15083 (6)0.19522 (5)0.35018 (3)0.06171 (18)
O11.4961 (4)0.5375 (3)0.40556 (15)0.0636 (7)
O20.7322 (7)0.1015 (5)0.0912 (2)0.1113 (14)
O30.5072 (5)0.2549 (4)0.05798 (17)0.0862 (10)
N20.9579 (5)0.2989 (3)0.44336 (17)0.0477 (7)
N31.1821 (5)0.4010 (3)0.45053 (17)0.0495 (7)
H31.25940.43240.49690.059*
C10.8308 (5)0.2698 (4)0.37748 (19)0.0441 (9)
C41.2910 (6)0.4559 (4)0.3928 (2)0.0478 (9)
C51.1519 (6)0.4051 (6)0.3128 (2)0.0748 (13)
H5A1.17180.30010.29590.090*0.696 (16)
H5B1.06610.48280.32570.090*0.304 (16)
C6A0.9009 (7)0.3670 (12)0.3173 (5)0.053 (2)0.696 (16)
H61A0.81500.30970.26670.063*0.696 (16)
H62A0.85820.46440.32970.063*0.696 (16)
C6B0.936 (2)0.2760 (19)0.3030 (5)0.049 (5)0.304 (16)
H61B0.96840.17650.28520.059*0.304 (16)
H62B0.82340.28910.26300.059*0.304 (16)
C110.5908 (5)0.1601 (4)0.3696 (2)0.0430 (8)
C120.4841 (6)0.1357 (4)0.4353 (2)0.0485 (9)
H120.56200.19130.48430.058*
C130.2661 (6)0.0313 (4)0.4295 (2)0.0505 (9)
H130.19700.01630.47410.061*
C140.1509 (5)0.0509 (4)0.3570 (2)0.0459 (9)
C150.2488 (6)0.0279 (4)0.2906 (2)0.0505 (9)
H150.16800.08260.24180.061*
C160.4696 (6)0.0776 (4)0.2968 (2)0.0489 (9)
H160.53700.09320.25200.059*
C201.2585 (6)0.4905 (5)0.2539 (2)0.0636 (11)
H20A1.41720.48360.25320.076*
H20B1.26640.60130.26860.076*
C211.1228 (6)0.4253 (5)0.1732 (2)0.0578 (10)
C221.1646 (7)0.3022 (6)0.1252 (3)0.0761 (13)
H221.28790.26420.14080.091*
C231.0265 (8)0.2329 (6)0.0538 (3)0.0768 (13)
H231.05840.14940.02200.092*
C240.8429 (7)0.2863 (5)0.0295 (2)0.0592 (10)
C250.8033 (7)0.4128 (5)0.0761 (2)0.0659 (11)
H250.68280.45280.05980.079*
C260.9426 (8)0.4809 (5)0.1475 (2)0.0679 (12)
H260.91360.56630.17870.082*
C270.6928 (8)0.2035 (6)0.0460 (3)0.0723 (12)
C280.3469 (9)0.1770 (7)0.1296 (3)0.116 (2)
H28A0.20530.20750.12800.173*
H28B0.31130.06450.13440.173*
H28C0.41840.20750.17360.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0414 (2)0.0561 (3)0.0743 (3)0.00418 (16)0.00693 (18)0.00672 (19)
O10.0418 (14)0.0744 (18)0.0551 (17)0.0138 (13)0.0059 (12)0.0156 (14)
O20.117 (3)0.150 (3)0.065 (2)0.070 (3)0.010 (2)0.025 (2)
O30.080 (2)0.117 (3)0.058 (2)0.046 (2)0.0112 (16)0.0057 (18)
N20.0352 (15)0.0527 (18)0.0452 (19)0.0005 (13)0.0002 (14)0.0052 (14)
N30.0373 (15)0.0555 (18)0.0426 (18)0.0010 (13)0.0034 (13)0.0021 (15)
C10.0352 (18)0.049 (2)0.046 (2)0.0084 (16)0.0029 (17)0.0105 (17)
C40.0378 (19)0.052 (2)0.046 (2)0.0031 (16)0.0008 (17)0.0083 (18)
C50.049 (2)0.103 (3)0.049 (3)0.016 (2)0.0062 (19)0.021 (2)
C6A0.041 (3)0.051 (5)0.060 (4)0.004 (3)0.004 (3)0.027 (4)
C6B0.051 (8)0.041 (9)0.045 (8)0.001 (7)0.003 (6)0.010 (7)
C110.0337 (17)0.047 (2)0.046 (2)0.0069 (15)0.0014 (16)0.0103 (17)
C120.0414 (19)0.055 (2)0.040 (2)0.0050 (17)0.0025 (16)0.0011 (17)
C130.0406 (19)0.055 (2)0.051 (2)0.0053 (17)0.0113 (17)0.0082 (19)
C140.0328 (17)0.045 (2)0.055 (2)0.0027 (15)0.0058 (16)0.0088 (18)
C150.0422 (19)0.054 (2)0.044 (2)0.0036 (17)0.0019 (17)0.0005 (18)
C160.0420 (19)0.061 (2)0.040 (2)0.0066 (17)0.0063 (16)0.0113 (18)
C200.049 (2)0.073 (3)0.057 (3)0.005 (2)0.0006 (19)0.020 (2)
C210.045 (2)0.071 (3)0.050 (3)0.0007 (19)0.0047 (19)0.021 (2)
C220.059 (3)0.111 (4)0.064 (3)0.035 (3)0.006 (2)0.017 (3)
C230.078 (3)0.102 (4)0.054 (3)0.040 (3)0.009 (2)0.003 (3)
C240.060 (2)0.078 (3)0.042 (2)0.022 (2)0.0082 (19)0.016 (2)
C250.070 (3)0.071 (3)0.056 (3)0.024 (2)0.001 (2)0.013 (2)
C260.082 (3)0.062 (3)0.053 (3)0.016 (2)0.001 (2)0.008 (2)
C270.079 (3)0.095 (4)0.044 (3)0.031 (3)0.009 (2)0.009 (3)
C280.102 (4)0.165 (6)0.068 (4)0.056 (4)0.028 (3)0.018 (4)
Geometric parameters (Å, º) top
Br—C141.901 (3)C12—C131.372 (5)
Br—O1i3.096 (2)C12—H120.9300
O1—C41.229 (4)C13—C141.376 (5)
O2—C271.196 (5)C13—H130.9300
O3—C271.325 (5)C14—C151.372 (5)
O3—C281.456 (5)C15—C161.388 (4)
N2—C11.271 (4)C15—H150.9300
N2—N31.389 (4)C16—H160.9300
N3—C41.343 (4)C20—C211.505 (5)
N3—H30.8600C20—H20A0.9700
C1—C111.488 (4)C20—H20B0.9700
C1—C6A1.495 (4)C21—C221.366 (6)
C1—C6B1.504 (5)C21—C261.375 (6)
C4—C51.498 (5)C22—C231.385 (6)
C5—C6B1.462 (5)C22—H220.9300
C5—C6A1.463 (4)C23—C241.373 (5)
C5—C201.477 (5)C23—H230.9300
C5—H5A0.9800C24—C251.371 (6)
C5—H5B0.9800C24—C271.487 (6)
C6A—H5B1.2052C25—C261.386 (6)
C6A—H61A0.9700C25—H250.9300
C6A—H62A0.9700C26—H260.9300
C6B—H61B0.9700C28—H28A0.9600
C6B—H62B0.9700C28—H28B0.9600
C11—C121.388 (5)C28—H28C0.9600
C11—C161.391 (5)
C14—Br—O1i152.32 (12)C12—C13—C14119.2 (3)
C27—O3—C28116.1 (4)C12—C13—H13120.4
C1—N2—N3116.8 (3)C14—C13—H13120.4
C4—N3—N2127.0 (3)C15—C14—C13121.0 (3)
C4—N3—H3116.5C15—C14—Br120.3 (3)
N2—N3—H3116.5C13—C14—Br118.7 (3)
N2—C1—C11116.9 (3)C14—C15—C16119.4 (3)
N2—C1—C6A120.7 (4)C14—C15—H15120.3
C11—C1—C6A121.2 (3)C16—C15—H15120.3
N2—C1—C6B121.5 (7)C15—C16—C11120.5 (3)
C11—C1—C6B115.6 (4)C15—C16—H16119.7
O1—C4—N3121.0 (3)C11—C16—H16119.7
O1—C4—C5122.8 (3)C5—C20—C21112.3 (3)
N3—C4—C5116.1 (3)C5—C20—H20A109.1
C6B—C5—C20129.0 (5)C21—C20—H20A109.1
C6A—C5—C20122.3 (4)C5—C20—H20B109.1
C6B—C5—C4116.4 (6)C21—C20—H20B109.1
C6A—C5—C4110.8 (4)H20A—C20—H20B107.9
C20—C5—C4114.6 (3)C22—C21—C26117.9 (4)
C6A—C5—H5A101.8C22—C21—C20121.1 (4)
C20—C5—H5A101.8C26—C21—C20120.9 (4)
C4—C5—H5A101.8C21—C22—C23121.2 (4)
C6B—C5—H5B90.6C21—C22—H22119.4
C20—C5—H5B90.6C23—C22—H22119.4
C4—C5—H5B90.6C24—C23—C22120.6 (4)
H5A—C5—H5B156.6C24—C23—H23119.7
C5—C6A—C1112.7 (4)C22—C23—H23119.7
C1—C6A—H5B126.3C25—C24—C23118.8 (4)
C5—C6A—H61A109.1C25—C24—C27122.6 (4)
C1—C6A—H61A109.1C23—C24—C27118.7 (4)
H5B—C6A—H61A123.3C24—C25—C26120.0 (4)
C5—C6A—H62A109.1C24—C25—H25120.0
C1—C6A—H62A109.1C26—C25—H25120.0
H61A—C6A—H62A107.8C21—C26—C25121.5 (4)
C5—C6B—C1112.2 (5)C21—C26—H26119.2
C5—C6B—H61B109.2C25—C26—H26119.2
C1—C6B—H61B109.2O2—C27—O3123.1 (4)
C5—C6B—H62B109.2O2—C27—C24124.5 (4)
C1—C6B—H62B109.2O3—C27—C24112.4 (4)
H61B—C6B—H62B107.9O3—C28—H28A109.5
C12—C11—C16118.3 (3)O3—C28—H28B109.5
C12—C11—C1120.5 (3)H28A—C28—H28B109.5
C16—C11—C1121.2 (3)O3—C28—H28C109.5
C13—C12—C11121.4 (3)H28A—C28—H28C109.5
C13—C12—H12119.3H28B—C28—H28C109.5
C11—C12—H12119.3
C1—N2—N3—C49.7 (5)C12—C13—C14—Br179.9 (3)
N3—N2—C1—C11179.8 (3)O1i—Br—C14—C15137.0 (3)
N3—N2—C1—C6A12.7 (6)O1i—Br—C14—C1344.1 (5)
N3—N2—C1—C6B28.2 (10)C13—C14—C15—C161.3 (6)
N2—N3—C4—O1175.0 (3)Br—C14—C15—C16179.8 (3)
N2—N3—C4—C52.1 (6)C14—C15—C16—C110.3 (6)
O1—C4—C5—C6B164.1 (11)C12—C11—C16—C150.8 (5)
N3—C4—C5—C6B13.0 (11)C1—C11—C16—C15178.0 (3)
O1—C4—C5—C6A157.3 (5)C6B—C5—C20—C212.8 (14)
N3—C4—C5—C6A25.7 (6)C6A—C5—C20—C2146.4 (8)
O1—C4—C5—C2014.0 (6)C4—C5—C20—C21174.9 (4)
N3—C4—C5—C20168.9 (4)C5—C20—C21—C2287.0 (5)
C20—C5—C6A—C1175.7 (5)C5—C20—C21—C2688.7 (5)
C4—C5—C6A—C144.3 (9)C26—C21—C22—C231.5 (6)
N2—C1—C6A—C540.7 (10)C20—C21—C22—C23174.3 (4)
C11—C1—C6A—C5152.3 (5)C21—C22—C23—C240.2 (7)
C20—C5—C6B—C1154.1 (8)C22—C23—C24—C252.0 (7)
C4—C5—C6B—C128.1 (19)C22—C23—C24—C27177.2 (4)
N2—C1—C6B—C538.1 (19)C23—C24—C25—C262.1 (6)
C11—C1—C6B—C5169.9 (10)C27—C24—C25—C26177.1 (4)
N2—C1—C11—C1221.7 (5)C22—C21—C26—C251.5 (6)
C6A—C1—C11—C12145.8 (6)C20—C21—C26—C25174.3 (4)
C6B—C1—C11—C12175.0 (11)C24—C25—C26—C210.3 (7)
N2—C1—C11—C16157.2 (4)C28—O3—C27—O21.4 (7)
C6A—C1—C11—C1635.4 (7)C28—O3—C27—C24178.3 (4)
C6B—C1—C11—C163.8 (11)C25—C24—C27—O2173.6 (5)
C16—C11—C12—C131.0 (5)C23—C24—C27—O27.2 (7)
C1—C11—C12—C13177.9 (3)C25—C24—C27—O36.6 (6)
C11—C12—C13—C140.0 (6)C23—C24—C27—O3172.6 (4)
C12—C13—C14—C151.2 (6)
Symmetry code: (i) x2, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1ii0.862.082.910 (4)162
C14—Br···O1i1.90 (1)3.10 (1)?152 (1)
Symmetry codes: (i) x2, y1, z; (ii) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H17BrN2O3
Mr401.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.991 (1), 8.958 (1), 17.531 (2)
α, β, γ (°)99.502 (11), 95.241 (12), 105.499 (10)
V3)885.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.50 × 0.33 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
[PLATON (Spek, 2009) and North et al. (1968)]
Tmin, Tmax0.567, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
3368, 3151, 2033
Rint0.024
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.03
No. of reflections3151
No. of parameters237
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: , SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.082.910 (4)162
C14—Br···O1ii1.901 (3)3.096 (2)?152.32 (12)
Symmetry codes: (i) x+3, y+1, z+1; (ii) x2, y1, z.
 

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.

References

First citationAbudshait, S. A. (2007). Molecules, 12, 25–42.  Web of Science PubMed Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarbaro, R., Betti, L., Botta, M., Corelli, F., Giannaccini, G., Maccari, L., Manetti, F., Strappaghetti, G. & Corsano, S. (2001). J. Med. Chem. 44, 2118–21332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoelho, A., Raviña, E., Fraiz, N., Yáñez, M., Laguna, R., Cano, E. & Sotelo, E. (2007). J. Med. Chem. 50, 6476–6484.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDogruer, D. S., Sahin, M. F., Kupeli, E. & Yesilada, E. (2003). Turk. J. Chem. 27, 727–738.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGiovannoni, M. P., Cesari, N., Vergelli, C., Graziano, A., Biancalani, C., Biagini, P., Ghelardini, C., Vivoli, E. & Piaz, V. D. (2007). J. Med. Chem. 50, 3945–3953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKatrusiak, A. & Baloniak, S. (1994). Tetrahedron, 50, 12933–12940.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalinka, W., Redzicka, A. & Losach, O. (2003). Il Farmaco, 59, 457–462.  CrossRef Google Scholar
First citationMeyer, E., Joussef, A. C., Gallardo, H. & de Souza, L. de B. P. (2004). Synth. Commun. 34, 783–793.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPiaz, V. D., Ciciani, G. & Giovannoni, M. P. (1994). Synthesis, pp. 669–671.  CrossRef Google Scholar
First citationPieretti, S., Dominici, L., Giannuario, A. D., Cesari, N. & Piaz, V. D. (2006). Life Sci. 79, 791–800.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSayed, G. H., Sayed, M. A., Mahmoud, M. R. & Shaaban, S. S. (2002). Egypt. J. Chem. 45, 767–776.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVergelli, C., Giovannoni, M. P., Pieretti, S., Giannuario, A. D., Piaz, V. D., Biagini, P., Biancalani, C., Graziano, A. & Cesari, N. (2007). Bioorg. Med. Chem. 15, 5563–5575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVoronina, Yu. K., Saifina, L. F., Romanova, E. S., Lodochnikova, O. A. & Litvinov, I. A. (2009). J. Struct. Chem. 50, 588–591.  CrossRef CAS Google Scholar
First citationWexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. M. (1996). J. Med. Chem. 39, 625–656.  CrossRef CAS PubMed Web of Science Google Scholar
First citationXu, H., Hu, X.-H., Zou, X.-M., Liu, B., Zhu, Y.-Q., Wang, Y., Hu, F.-Z. & Uang, H.-Z. (2008). J. Agric. Food Chem. 56, 6567–6572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, o2999–o3000.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Z.-Z. & Zhou, H.-B. (2007). Acta Cryst. E63, o2512.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1230-o1231
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds