organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1167

3-(7-Meth­­oxy-β-carbolin-1-yl)propionic acid monohydrate

aKey Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, 1st Qianhu Nan Road, Ningbo 315100, People's Republic of China, bShanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (West), Shanghai 200040, People's Republic of China, and cBeijing Huilongguan Hospital, No.1 Nandian Huilongguan, Changping District, Beijing 100096, People's Republic of China
*Correspondence e-mail: happyddm@126.com

(Received 18 March 2011; accepted 11 April 2011; online 16 April 2011)

In the title compound, C15H14N2O3·H2O [systematic name: 3-(7-meth­oxy-9H-pyrido[3,4-b]indol-1-yl)propanoic acid monohydrate], the fused rings make dhedral angles of 0.4 (1), 1.1 (2) and 1.4 (2)°. In the crystal, the water mol­ecule is involved in the formation of three independent hydrogen-bonded chains via O—H⋯O and N—H⋯O hydrogen bonds, while the carb­oxy group forms an inter­molecular O—H⋯N hydrogen bond.

Related literature

For the isolation of the title compound, see: Kardono et al. (1991[Kardono, L. B. S., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). J. Nat. Prod. 54, 1360-1367.]). For the preparation, see: Kardono et al. (1991[Kardono, L. B. S., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). J. Nat. Prod. 54, 1360-1367.]). For its pharmacological activity, see: Kuo et al. (2003[Kuo, P. C., Shi, L. S., Damu, A. G., Su, C. R., Huang, C. H., Ke, C. H., Wu, J. B., Lin, A. J., Bastow, K. F., Lee, K. H. & Wu, T. S. (2003). J. Nat. Prod. 66, 1324-1327.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3·H2O

  • Mr = 288.30

  • Monoclinic, P 21 /n

  • a = 4.5114 (1) Å

  • b = 10.8637 (2) Å

  • c = 28.0865 (3) Å

  • β = 92.414 (1)°

  • V = 1375.31 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • 9119 measured reflections

  • 2366 independent reflections

  • 2048 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.05

  • 2366 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13A⋯OWi 0.86 1.86 2.7224 (18) 180
O5′—H5′A⋯N2ii 0.82 1.79 2.5965 (18) 169
OW—HWA⋯O5′iii 0.85 (3) 1.92 (3) 2.7514 (19) 169 (2)
OW—HWB⋯O4′iv 0.87 (3) 1.89 (3) 2.764 (2) 175 (2)
Symmetry codes: (i) x-1, y, z; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was isolated from the roots of Eurycoma longifolia. It is prepared according to the procedure of Kardono et al. (Kardono et al., 1991) and recrystallized from methanol.

Bond lengths and angles are in agreement with reported literature values (Allen et al., 1987). The rings (A, B and C) are each essentially planar with r.m.s deviations of 0.0018 (5) Å, 0.0027 (8)Å and 0.0052 (16) Å, respectively. The dihedral angles between the rings are A/B =1.1 (2)°, A/C = 0.4 (1)° and B/C=1.4 (2)°. The lattice water molecule is involved in formation of three independent hydrogen-bonded chains via O—H···O and N—H···O hydrogen bonds while the carboxy group forms an intermolecular O—H···N hydrogen bond (Fig.2 and Table 1). The lattice water molecules could be considered to be a hydrogen-bond bridge which provide further stability to the crystal lattice.

Related literature top

For the isolation of the title compound, see: Kardono et al. (1991). For general background, see: Kardono et al. (1991); Kuo et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the procedure of Kardono et al., 1991.Crystals suitable for data collection were obtained by slow evaporation from methanol solution at 283 K over a period of two weeks.

Refinement top

Water H atoms were initially located in a difference Fourier map,and all other H atoms were constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.2Ueq(C)for CH; 0.97 Å and Uiso(H) = 1.2Ueq (C)for CH2; 0.96 Å and Uiso(H) = 1.5Ueq(C)for CH3; and 0.82 Å and Uiso(H) = 1.5Ueq(C)for OH atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title compound,viewed down the a axis. The dashed line indicates the hydrogen bond.
3-(7-methoxy-9H-pyrido[3,4-b]indol-1-yl)propanoic acid monohydrate top
Crystal data top
C15H14N2O3·H2OF(000) = 608
Mr = 288.30Dx = 1.392 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 3368 reflections
a = 4.5114 (1) Åθ = 3.2–67.6°
b = 10.8637 (2) ŵ = 0.85 mm1
c = 28.0865 (3) ÅT = 296 K
β = 92.414 (1)°Prism, colourless
V = 1375.31 (4) Å30.12 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2048 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.022
Graphite monochromatorθmax = 67.6°, θmin = 3.2°
Detector resolution: 0 pixels mm-1h = 45
ϕ and ω scansk = 1212
9119 measured reflectionsl = 3333
2366 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.3134P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
2366 reflectionsΔρmax = 0.49 e Å3
201 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
C15H14N2O3·H2OV = 1375.31 (4) Å3
Mr = 288.30Z = 4
Monoclinic, P21/nCu Kα radiation
a = 4.5114 (1) ŵ = 0.85 mm1
b = 10.8637 (2) ÅT = 296 K
c = 28.0865 (3) Å0.12 × 0.10 × 0.05 mm
β = 92.414 (1)°
Data collection top
Bruker APEXII
diffractometer
2048 reflections with I > 2σ(I)
9119 measured reflectionsRint = 0.022
2366 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.49 e Å3
2366 reflectionsΔρmin = 0.17 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0343 (3)0.45008 (14)0.16867 (5)0.0351 (3)
N20.0495 (3)0.32718 (11)0.16361 (5)0.0402 (3)
C30.2158 (4)0.27148 (15)0.13080 (6)0.0458 (4)
H3A0.21770.18600.12910.055*
C40.3807 (4)0.33780 (15)0.10014 (6)0.0438 (4)
H4A0.49250.29850.07760.053*
C50.7128 (4)0.57535 (16)0.04262 (6)0.0443 (4)
H5A0.78040.50500.02760.053*
C60.8037 (4)0.68936 (17)0.02872 (6)0.0487 (4)
H6A0.93240.69620.00390.058*
C70.7055 (4)0.79694 (16)0.05145 (6)0.0460 (4)
C80.5138 (4)0.79159 (15)0.08833 (6)0.0427 (4)
H8A0.45020.86240.10350.051*
C90.4200 (3)0.67511 (14)0.10178 (5)0.0374 (4)
C100.5163 (3)0.56590 (14)0.07978 (5)0.0381 (4)
C110.3771 (3)0.46622 (14)0.10355 (5)0.0370 (3)
C120.2008 (3)0.52071 (14)0.13862 (5)0.0350 (3)
N130.2299 (3)0.64599 (12)0.13699 (4)0.0381 (3)
H13A0.14370.69780.15500.046*
O140.8192 (3)0.90335 (12)0.03401 (5)0.0602 (4)
C150.7305 (6)1.01607 (19)0.05520 (8)0.0734 (7)
H15A0.82501.08370.03990.110*
H15B0.78771.01560.08850.110*
H15C0.51911.02480.05140.110*
C1'0.1536 (3)0.50276 (13)0.20627 (5)0.0364 (4)
H1'A0.31040.44490.21290.044*
H1'B0.24580.57800.19440.044*
C2'0.0251 (4)0.53087 (15)0.25274 (6)0.0437 (4)
H2'A0.09660.45450.26700.052*
H2'B0.19570.58110.24580.052*
C3'0.1657 (4)0.59823 (14)0.28756 (5)0.0416 (4)
O4'0.2512 (4)0.54636 (12)0.32330 (4)0.0655 (4)
O5'0.2315 (4)0.70783 (11)0.27682 (5)0.0618 (4)
H5'A0.32680.73840.29810.25 (3)*
OW0.9592 (4)0.81052 (13)0.19395 (6)0.0690 (5)
HWA0.894 (5)0.789 (2)0.2205 (10)0.081 (8)*
HWB0.882 (5)0.883 (3)0.1889 (9)0.076 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (8)0.0361 (8)0.0322 (7)0.0001 (6)0.0022 (6)0.0003 (6)
N20.0474 (8)0.0356 (7)0.0381 (7)0.0008 (5)0.0062 (6)0.0012 (5)
C30.0572 (10)0.0358 (8)0.0450 (9)0.0031 (7)0.0082 (7)0.0047 (6)
C40.0489 (9)0.0433 (9)0.0397 (8)0.0070 (7)0.0089 (7)0.0061 (6)
C50.0431 (9)0.0531 (10)0.0374 (8)0.0014 (7)0.0097 (7)0.0048 (7)
C60.0482 (10)0.0627 (11)0.0363 (8)0.0041 (8)0.0146 (7)0.0008 (7)
C70.0487 (9)0.0521 (10)0.0375 (8)0.0068 (7)0.0064 (7)0.0072 (7)
C80.0483 (9)0.0419 (9)0.0383 (8)0.0002 (7)0.0084 (7)0.0012 (6)
C90.0384 (8)0.0422 (8)0.0318 (7)0.0006 (6)0.0049 (6)0.0006 (6)
C100.0376 (8)0.0443 (9)0.0326 (7)0.0012 (6)0.0039 (6)0.0012 (6)
C110.0371 (8)0.0411 (8)0.0330 (7)0.0028 (6)0.0029 (6)0.0026 (6)
C120.0362 (8)0.0372 (8)0.0316 (7)0.0019 (6)0.0033 (6)0.0009 (6)
N130.0440 (7)0.0350 (7)0.0362 (6)0.0021 (5)0.0120 (5)0.0008 (5)
O140.0749 (9)0.0543 (8)0.0530 (7)0.0113 (6)0.0232 (6)0.0087 (6)
C150.1093 (18)0.0520 (12)0.0610 (12)0.0196 (11)0.0274 (12)0.0019 (9)
C1'0.0378 (8)0.0352 (8)0.0367 (8)0.0002 (6)0.0081 (6)0.0004 (6)
C2'0.0472 (9)0.0451 (9)0.0389 (8)0.0062 (7)0.0038 (7)0.0023 (7)
C3'0.0501 (9)0.0387 (8)0.0365 (8)0.0028 (6)0.0061 (7)0.0041 (6)
O4'0.1062 (11)0.0451 (7)0.0477 (7)0.0034 (7)0.0302 (7)0.0001 (5)
O5'0.0916 (10)0.0433 (7)0.0528 (8)0.0155 (6)0.0297 (7)0.0040 (5)
OW0.1082 (13)0.0425 (7)0.0594 (9)0.0149 (7)0.0382 (8)0.0023 (6)
Geometric parameters (Å, º) top
C1—N21.3447 (19)C10—C111.431 (2)
C1—C121.385 (2)C11—C121.421 (2)
C1—C1'1.4955 (19)C12—N131.3683 (19)
N2—C31.355 (2)N13—H13A0.8600
C3—C41.367 (2)O14—C151.426 (2)
C3—H3A0.9300C15—H15A0.9600
C4—C111.399 (2)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C5—C61.367 (2)C1'—C2'1.535 (2)
C5—C101.401 (2)C1'—H1'A0.9700
C5—H5A0.9300C1'—H1'B0.9700
C6—C71.412 (2)C2'—C3'1.518 (2)
C6—H6A0.9300C2'—H2'A0.9700
C7—O141.364 (2)C2'—H2'B0.9700
C7—C81.378 (2)C3'—O4'1.228 (2)
C8—C91.392 (2)C3'—O5'1.261 (2)
C8—H8A0.9300O5'—H5'A0.8200
C9—N131.3728 (19)OW—HWA0.85 (3)
C9—C101.414 (2)OW—HWB0.87 (3)
N2—C1—C12117.01 (13)N13—C12—C1128.81 (13)
N2—C1—C1'119.18 (13)N13—C12—C11109.50 (13)
C12—C1—C1'123.80 (13)C1—C12—C11121.69 (14)
C1—N2—C3123.20 (13)C12—N13—C9108.49 (12)
N2—C3—C4121.64 (15)C12—N13—H13A125.8
N2—C3—H3A119.2C9—N13—H13A125.8
C4—C3—H3A119.2C7—O14—C15117.49 (14)
C3—C4—C11118.33 (14)O14—C15—H15A109.5
C3—C4—H4A120.8O14—C15—H15B109.5
C11—C4—H4A120.8H15A—C15—H15B109.5
C6—C5—C10119.07 (15)O14—C15—H15C109.5
C6—C5—H5A120.5H15A—C15—H15C109.5
C10—C5—H5A120.5H15B—C15—H15C109.5
C5—C6—C7121.16 (15)C1—C1'—C2'112.56 (12)
C5—C6—H6A119.4C1—C1'—H1'A109.1
C7—C6—H6A119.4C2'—C1'—H1'A109.1
O14—C7—C8124.26 (16)C1—C1'—H1'B109.1
O14—C7—C6114.16 (15)C2'—C1'—H1'B109.1
C8—C7—C6121.58 (15)H1'A—C1'—H1'B107.8
C7—C8—C9116.74 (15)C3'—C2'—C1'110.62 (13)
C7—C8—H8A121.6C3'—C2'—H2'A109.5
C9—C8—H8A121.6C1'—C2'—H2'A109.5
N13—C9—C8127.69 (14)C3'—C2'—H2'B109.5
N13—C9—C10109.52 (13)C1'—C2'—H2'B109.5
C8—C9—C10122.79 (14)H2'A—C2'—H2'B108.1
C5—C10—C9118.65 (14)O4'—C3'—O5'123.37 (15)
C5—C10—C11134.97 (15)O4'—C3'—C2'120.80 (15)
C9—C10—C11106.38 (13)O5'—C3'—C2'115.82 (14)
C4—C11—C12118.13 (14)C3'—O5'—H5'A109.5
C4—C11—C10135.75 (14)HWA—OW—HWB104 (2)
C12—C11—C10106.11 (13)
C12—C1—N2—C30.5 (2)C5—C10—C11—C12179.98 (18)
C1'—C1—N2—C3179.45 (15)C9—C10—C11—C120.48 (17)
C1—N2—C3—C40.2 (3)N2—C1—C12—N13178.44 (14)
N2—C3—C4—C110.6 (3)C1'—C1—C12—N130.4 (2)
C10—C5—C6—C70.6 (3)N2—C1—C12—C110.8 (2)
C5—C6—C7—O14179.06 (15)C1'—C1—C12—C11179.69 (14)
C5—C6—C7—C80.3 (3)C4—C11—C12—N13178.96 (13)
O14—C7—C8—C9179.74 (15)C10—C11—C12—N130.36 (17)
C6—C7—C8—C90.5 (3)C4—C11—C12—C10.4 (2)
C7—C8—C9—N13179.63 (16)C10—C11—C12—C1179.75 (14)
C7—C8—C9—C100.9 (2)C1—C12—N13—C9179.43 (15)
C6—C5—C10—C90.3 (2)C11—C12—N13—C90.09 (17)
C6—C5—C10—C11179.79 (17)C8—C9—N13—C12179.34 (16)
N13—C9—C10—C5179.93 (14)C10—C9—N13—C120.22 (17)
C8—C9—C10—C50.5 (2)C8—C7—O14—C150.7 (3)
N13—C9—C10—C110.44 (17)C6—C7—O14—C15179.95 (18)
C8—C9—C10—C11179.14 (15)N2—C1—C1'—C2'95.18 (16)
C3—C4—C11—C120.3 (2)C12—C1—C1'—C2'83.68 (18)
C3—C4—C11—C10178.79 (18)C1—C1'—C2'—C3'173.08 (13)
C5—C10—C11—C40.9 (3)C1'—C2'—C3'—O4'108.25 (18)
C9—C10—C11—C4178.66 (18)C1'—C2'—C3'—O5'70.68 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···OWi0.861.862.7224 (18)180
O5—H5A···N2ii0.821.792.5965 (18)169
OW—HWA···O5iii0.85 (3)1.92 (3)2.7514 (19)169 (2)
OW—HWB···O4iv0.87 (3)1.89 (3)2.764 (2)175 (2)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O3·H2O
Mr288.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.5114 (1), 10.8637 (2), 28.0865 (3)
β (°) 92.414 (1)
V3)1375.31 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.12 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9119, 2366, 2048
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.05
No. of reflections2366
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···OWi0.861.862.7224 (18)180
O5'—H5'A···N2ii0.821.792.5965 (18)169
OW—HWA···O5'iii0.85 (3)1.92 (3)2.7514 (19)169 (2)
OW—HWB···O4'iv0.87 (3)1.89 (3)2.764 (2)175 (2)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKardono, L. B. S., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). J. Nat. Prod. 54, 1360–1367.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKuo, P. C., Shi, L. S., Damu, A. G., Su, C. R., Huang, C. H., Ke, C. H., Wu, J. B., Lin, A. J., Bastow, K. F., Lee, K. H. & Wu, T. S. (2003). J. Nat. Prod. 66, 1324–1327.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1167
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds