metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ferrocen­yl(meth­yl)di­phenyl­silane

aBeijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: zhangzj@iccas.ac.cn

(Received 8 April 2011; accepted 20 April 2011; online 29 April 2011)

In the title mol­ecule, [Fe(C5H5)(C18H17Si)], the distances of the Fe atom from the centroids of the unsubstituted and substituted cyclo­penta­dienyl (Cp) rings are 1.651 (1) and 1.646 (1) Å, respectively. The dihedral angle between the two Cp rings is 3.20 (17)°. The crystal packing is mainly stabilized by van der Waals forces.

Related literature

For applications of transition metal compounds derived from ferrocene as catalysts, see: Togni & Hayashi (1994[Togni, A. & Hayashi, T. (1994). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York/Weinheim: Wiley/VCH.]); and as biomolecules, see: Stepnicka (2008[Stepnicka, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. New York: Wiley.]). For the preparation of ferrocenyl lithium, see: Rautz et al. (2001[Rautz, H., Stüger, H., Kickelbick, G. & Pietzsch, C. (2001). J. Organomet. Chem.. 627, 167-178.]); and of analogues of the title compound, see: Herberhold et al. (2002[Herberhold, M., Ayazi, A., Milius, W. & Wrackmeyer, B. (2002). J. Organomet. Chem.. 656, 71-80.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C18H17Si)]

  • Mr = 382.35

  • Monoclinic, P 21 /c

  • a = 7.4318 (15) Å

  • b = 17.795 (4) Å

  • c = 14.367 (3) Å

  • β = 100.408 (4)°

  • V = 1868.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 173 K

  • 0.28 × 0.26 × 0.13 mm

Data collection
  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.792, Tmax = 0.895

  • 16474 measured reflections

  • 4265 independent reflections

  • 3998 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.105

  • S = 1.18

  • 4265 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal compounds derived from ferrocene have attracted considerable interest due to their applications in many fields such as catalysis (Togni & Hayashi, 1994) and biomolecules (Stepnicka, 2008). In this paper we report the synthesis and crystal structure of the title compound. In the ferrocene unit, the distances of the Fe atom from the centroids of the unsubstituted and substituted cyclopentadienyl (Cp) rings are 1.651 (1) and 1.646 (1) Å, respectively. The internal ring angle at the substituted C is smaller than the other internal ring angles. The dihedral angle between the two cyclopentadienyl rings is 3.20 (17)°. The crystal packing is mainly stabilized by van der Waals forces.

Related literature top

For applications of transition metal compounds derived from ferrocene as catalysts, see: Togni & Hayashi (1994); and as biomolecules, see: Stepnicka (2008). For the preparation of FcLi, see: Rautz et al. (2001); and of analogues of the title compound, see: Herberhold et al. (2002).

Experimental top

The preparations of FcLi and the title compound are similar to those previously reported (Rautz et al., 2001; Herberhold et al., 2002). Ferrocene (2.00 g, 26.88 mmol) was dissolved in 12 ml of anhydrous tetrahydrofuran (THF). In the course of 15 min a solution of 10.8 mmol t-BuLi (7.16 ml of a 1.5 M n-pentane solution) was added dropwise at 0°C. n-Hexane (16 ml) was then added and the solution was kept at -78°C for 15 min before the orange precipitate of FcLi was filtered off. The precipitate was washed with small portions of n-hexane. The FcLi was dissolved in THF (15 ml) and was added to a solution of chloromethyldiphenylsilane (2.2 g, 9.45 mmol) in n-hexane (20 ml) at 0°C and then stirred over night at room temperature. The precipitate was filtered off and the solvent was evaporated under vacuum. the orange residue was purified by recrystallization from n-hexane to give 3.26 g of yellow product in 82% yield.

Refinement top

All the H atoms were discernible in the difference electron density maps. Nevertheless, all the H atoms were constrained by the riding-hydrogen formalism with Uiso(H) = 1.2Ueq(Caryl or cyclopentadienyl) or Uiso(H) = 1.5Ueq(Cmethyl). The C—H distances were constrained to 0.95 Å for the aryl H atoms, 0.98 Å for the the methyl H atoms and 1.00 Å for the cyclopentadienyl H atoms respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with 50% probability displacement ellipsoids and the atom-numbering scheme.
Ferrocenyl(methyl)diphenylsilane top
Crystal data top
[Fe(C5H5)(C18H17Si)]F(000) = 800
Mr = 382.35Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6544 reflections
a = 7.4318 (15) Åθ = 1.8–27.5°
b = 17.795 (4) ŵ = 0.87 mm1
c = 14.367 (3) ÅT = 173 K
β = 100.408 (4)°Block, yellow
V = 1868.8 (7) Å30.28 × 0.26 × 0.13 mm
Z = 4
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
4265 independent reflections
Radiation source: rotating anode3998 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.047
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 99
Tmin = 0.792, Tmax = 0.895k = 2223
16474 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.4337P]
where P = (Fo2 + 2Fc2)/3
4265 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Fe(C5H5)(C18H17Si)]V = 1868.8 (7) Å3
Mr = 382.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4318 (15) ŵ = 0.87 mm1
b = 17.795 (4) ÅT = 173 K
c = 14.367 (3) Å0.28 × 0.26 × 0.13 mm
β = 100.408 (4)°
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
4265 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3998 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.895Rint = 0.047
16474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.18Δρmax = 0.35 e Å3
4265 reflectionsΔρmin = 0.25 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. X1A and X1B are the centroids of the substituted and unsubstituted cyclopentadienyl (Cp) rings, respectively.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.26293 (4)0.334745 (19)0.53570 (2)0.02536 (11)
Si10.45588 (9)0.15904 (4)0.48452 (4)0.02365 (15)
C10.4252 (3)0.26273 (13)0.47397 (15)0.0248 (5)
C20.5333 (3)0.31775 (14)0.53173 (18)0.0288 (5)
H2A0.63070.30660.58770.035*
C30.4780 (4)0.39057 (15)0.4979 (2)0.0367 (6)
H3A0.53060.43930.52490.044*
C40.3346 (4)0.38192 (16)0.41877 (19)0.0391 (6)
H4A0.26820.42360.38030.047*
C50.3012 (3)0.30396 (15)0.40376 (16)0.0311 (5)
H5A0.20630.28140.35320.037*
C60.2323 (4)0.33179 (17)0.67424 (18)0.0378 (6)
H6A0.33210.32340.73000.045*
C70.1755 (4)0.40192 (17)0.6337 (2)0.0443 (7)
H7A0.22730.45200.65580.053*
C80.0317 (4)0.3887 (2)0.5559 (2)0.0494 (8)
H8A0.03610.42800.51350.059*
C90.0006 (4)0.3108 (2)0.5492 (2)0.0472 (8)
H9A0.09290.28480.50110.057*
C100.1244 (4)0.27564 (17)0.62260 (19)0.0390 (6)
H10A0.13430.22040.63520.047*
C110.6161 (3)0.13831 (13)0.59914 (16)0.0257 (5)
C120.5675 (4)0.15244 (15)0.68696 (17)0.0344 (6)
H12A0.45170.17430.68920.041*
C130.6844 (4)0.13532 (16)0.77123 (18)0.0395 (6)
H13A0.64780.14520.83010.047*
C140.8527 (4)0.10412 (16)0.76933 (19)0.0413 (7)
H14A0.93270.09240.82690.050*
C150.9057 (4)0.08981 (17)0.6838 (2)0.0409 (6)
H15A1.02230.06840.68240.049*
C160.7881 (3)0.10685 (14)0.59942 (17)0.0311 (5)
H16A0.82580.09680.54090.037*
C170.5722 (3)0.12657 (14)0.38585 (15)0.0256 (5)
C180.5443 (4)0.05473 (14)0.34648 (17)0.0322 (5)
H18A0.46060.02160.36820.039*
C190.6371 (4)0.03118 (16)0.2761 (2)0.0424 (7)
H19A0.61520.01760.24970.051*
C200.7603 (4)0.07783 (17)0.24421 (18)0.0401 (6)
H20A0.82480.06110.19670.048*
C210.7898 (4)0.14908 (17)0.28160 (18)0.0373 (6)
H21A0.87410.18180.25960.045*
C220.6961 (3)0.17263 (15)0.35131 (17)0.0322 (5)
H22A0.71720.22190.37640.039*
C230.2338 (3)0.10882 (16)0.47803 (19)0.0353 (6)
H23A0.15180.12220.41900.053*
H23B0.17770.12340.53210.053*
H23C0.25530.05450.47960.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02179 (18)0.0283 (2)0.02612 (18)0.00286 (14)0.00470 (13)0.00229 (13)
Si10.0220 (3)0.0261 (3)0.0235 (3)0.0012 (3)0.0060 (2)0.0008 (2)
C10.0218 (11)0.0294 (12)0.0250 (11)0.0034 (10)0.0092 (9)0.0005 (9)
C20.0211 (11)0.0294 (12)0.0372 (13)0.0009 (10)0.0089 (9)0.0002 (10)
C30.0326 (14)0.0277 (13)0.0524 (16)0.0049 (11)0.0147 (12)0.0019 (11)
C40.0411 (15)0.0362 (15)0.0427 (15)0.0083 (13)0.0149 (12)0.0140 (11)
C50.0309 (13)0.0387 (14)0.0241 (11)0.0042 (12)0.0062 (9)0.0028 (10)
C60.0326 (14)0.0552 (18)0.0264 (12)0.0024 (13)0.0074 (10)0.0059 (11)
C70.0482 (17)0.0425 (16)0.0460 (16)0.0049 (14)0.0187 (13)0.0158 (13)
C80.0394 (16)0.066 (2)0.0445 (16)0.0295 (16)0.0113 (13)0.0023 (14)
C90.0194 (12)0.080 (2)0.0428 (16)0.0023 (14)0.0086 (11)0.0226 (15)
C100.0366 (14)0.0426 (16)0.0438 (15)0.0039 (13)0.0231 (12)0.0059 (12)
C110.0281 (12)0.0230 (11)0.0263 (11)0.0002 (10)0.0061 (9)0.0009 (9)
C120.0384 (14)0.0374 (14)0.0279 (12)0.0070 (12)0.0069 (10)0.0006 (10)
C130.0522 (17)0.0406 (15)0.0254 (12)0.0000 (14)0.0062 (11)0.0005 (11)
C140.0408 (15)0.0460 (16)0.0329 (14)0.0042 (13)0.0051 (11)0.0114 (11)
C150.0285 (13)0.0491 (17)0.0438 (15)0.0051 (13)0.0028 (11)0.0130 (13)
C160.0285 (12)0.0355 (13)0.0300 (12)0.0003 (11)0.0072 (10)0.0052 (10)
C170.0241 (11)0.0309 (12)0.0214 (10)0.0047 (10)0.0029 (8)0.0019 (9)
C180.0378 (14)0.0273 (12)0.0338 (13)0.0018 (11)0.0124 (11)0.0004 (10)
C190.0571 (18)0.0329 (14)0.0411 (15)0.0067 (14)0.0194 (13)0.0053 (11)
C200.0407 (15)0.0511 (17)0.0324 (13)0.0126 (14)0.0168 (11)0.0004 (12)
C210.0312 (13)0.0524 (17)0.0299 (13)0.0037 (13)0.0101 (10)0.0023 (11)
C220.0304 (13)0.0375 (14)0.0280 (12)0.0045 (11)0.0036 (10)0.0042 (10)
C230.0275 (13)0.0377 (15)0.0412 (14)0.0035 (11)0.0076 (11)0.0043 (11)
Geometric parameters (Å, º) top
Fe1—C42.033 (3)C8—H8A1.0000
Fe1—C82.035 (3)C9—C101.414 (4)
Fe1—C32.037 (3)C9—H9A1.0000
Fe1—C92.039 (3)C10—H10A1.0000
Fe1—C72.040 (3)C11—C161.395 (3)
Fe1—C52.042 (2)C11—C121.397 (3)
Fe1—C22.043 (2)C12—C131.390 (4)
Fe1—C62.045 (3)C12—H12A0.9500
Fe1—C102.047 (3)C13—C141.374 (4)
Fe1—C12.066 (2)C13—H13A0.9500
Si1—C11.862 (2)C14—C151.381 (4)
Si1—C231.864 (3)C14—H14A0.9500
Si1—C171.880 (2)C15—C161.394 (3)
Si1—C111.886 (2)C15—H15A0.9500
C1—C21.432 (3)C16—H16A0.9500
C1—C51.438 (3)C17—C221.390 (3)
C2—C31.419 (3)C17—C181.398 (3)
C2—H2A1.0000C18—C191.388 (3)
C3—C41.419 (4)C18—H18A0.9500
C3—H3A1.0000C19—C201.374 (4)
C4—C51.419 (4)C19—H19A0.9500
C4—H4A1.0000C20—C211.379 (4)
C5—H5A1.0000C20—H20A0.9500
C6—C101.406 (4)C21—C221.384 (4)
C6—C71.409 (4)C21—H21A0.9500
C6—H6A1.0000C22—H22A0.9500
C7—C81.420 (4)C23—H23A0.9800
C7—H7A1.0000C23—H23B0.9800
C8—C91.406 (5)C23—H23C0.9800
C1—Si1—C23112.13 (11)C13—C12—C11121.6 (3)
C1—Si1—C17108.03 (10)C13—C12—H12A119.2
C23—Si1—C17109.78 (11)C11—C12—H12A119.2
C1—Si1—C11108.27 (10)C14—C13—C12119.9 (3)
C23—Si1—C11111.31 (11)C14—C13—H13A120.0
C17—Si1—C11107.13 (10)C12—C13—H13A120.0
C2—C1—C5106.2 (2)C13—C14—C15120.0 (2)
C2—C1—Si1125.65 (18)C13—C14—H14A120.0
C5—C1—Si1128.02 (18)C15—C14—H14A120.0
C3—C2—C1109.2 (2)C14—C15—C16119.9 (3)
C3—C2—H2A125.4C14—C15—H15A120.0
C1—C2—H2A125.4C16—C15—H15A120.0
C2—C3—C4107.7 (2)C15—C16—C11121.4 (2)
C2—C3—H3A126.1C15—C16—H16A119.3
C4—C3—H3A126.1C11—C16—H16A119.3
C3—C4—C5108.2 (2)C22—C17—C18117.0 (2)
C3—C4—H4A125.9C22—C17—Si1120.84 (19)
C5—C4—H4A125.9C18—C17—Si1122.10 (18)
C4—C5—C1108.7 (2)C19—C18—C17120.9 (2)
C4—C5—H5A125.7C19—C18—H18A119.5
C1—C5—H5A125.7C17—C18—H18A119.5
C10—C6—C7108.2 (3)C20—C19—C18120.6 (3)
C10—C6—H6A125.9C20—C19—H19A119.7
C7—C6—H6A125.9C18—C19—H19A119.7
C6—C7—C8107.8 (3)C19—C20—C21119.6 (2)
C6—C7—H7A126.1C19—C20—H20A120.2
C8—C7—H7A126.1C21—C20—H20A120.2
C9—C8—C7107.9 (3)C20—C21—C22119.6 (3)
C9—C8—H8A126.1C20—C21—H21A120.2
C7—C8—H8A126.1C22—C21—H21A120.2
C8—C9—C10108.0 (3)C21—C22—C17122.2 (2)
C8—C9—H9A126.0C21—C22—H22A118.9
C10—C9—H9A126.0C17—C22—H22A118.9
C6—C10—C9108.1 (3)Si1—C23—H23A109.5
C6—C10—H10A125.9Si1—C23—H23B109.5
C9—C10—H10A125.9H23A—C23—H23B109.5
C16—C11—C12117.1 (2)Si1—C23—H23C109.5
C16—C11—Si1120.98 (17)H23A—C23—H23C109.5
C12—C11—Si1121.88 (19)H23B—C23—H23C109.5
C23—Si1—C1—C2135.4 (2)C17—Si1—C11—C12177.0 (2)
C17—Si1—C1—C2103.5 (2)C16—C11—C12—C130.6 (4)
C11—Si1—C1—C212.2 (2)Si1—C11—C12—C13178.4 (2)
C23—Si1—C1—C549.7 (2)C11—C12—C13—C140.4 (4)
C17—Si1—C1—C571.4 (2)C12—C13—C14—C150.0 (4)
C11—Si1—C1—C5172.9 (2)C13—C14—C15—C160.2 (4)
C5—C1—C2—C30.2 (3)C14—C15—C16—C110.1 (4)
Si1—C1—C2—C3175.60 (17)C12—C11—C16—C150.4 (4)
C1—C2—C3—C40.2 (3)Si1—C11—C16—C15178.6 (2)
C2—C3—C4—C50.0 (3)C1—Si1—C17—C2231.9 (2)
C3—C4—C5—C10.1 (3)C23—Si1—C17—C22154.5 (2)
C2—C1—C5—C40.2 (3)C11—Si1—C17—C2284.5 (2)
Si1—C1—C5—C4175.47 (17)C1—Si1—C17—C18150.6 (2)
C10—C6—C7—C80.3 (3)C23—Si1—C17—C1828.0 (2)
C6—C7—C8—C90.1 (3)C11—Si1—C17—C1893.0 (2)
C7—C8—C9—C100.1 (3)C22—C17—C18—C190.0 (4)
C7—C6—C10—C90.4 (3)Si1—C17—C18—C19177.6 (2)
C8—C9—C10—C60.3 (3)C17—C18—C19—C200.7 (4)
C1—Si1—C11—C16114.3 (2)C18—C19—C20—C211.0 (4)
C23—Si1—C11—C16122.0 (2)C19—C20—C21—C220.5 (4)
C17—Si1—C11—C162.0 (2)C20—C21—C22—C170.2 (4)
C1—Si1—C11—C1266.7 (2)C18—C17—C22—C210.5 (4)
C23—Si1—C11—C1256.9 (2)Si1—C17—C22—C21177.1 (2)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C18H17Si)]
Mr382.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.4318 (15), 17.795 (4), 14.367 (3)
β (°) 100.408 (4)
V3)1868.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.28 × 0.26 × 0.13
Data collection
DiffractometerRigaku MM007-HF CCD (Saturn 724+)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.792, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
16474, 4265, 3998
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.105, 1.18
No. of reflections4265
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC, grant No. 50803070).

References

First citationHerberhold, M., Ayazi, A., Milius, W. & Wrackmeyer, B. (2002). J. Organomet. Chem.. 656, 71–80.  CrossRef CAS Google Scholar
First citationRautz, H., Stüger, H., Kickelbick, G. & Pietzsch, C. (2001). J. Organomet. Chem.. 627, 167–178.  CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStepnicka, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. New York: Wiley.  Google Scholar
First citationTogni, A. & Hayashi, T. (1994). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York/Weinheim: Wiley/VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds