organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1143

4-Methyl­sulfanyl-6-(4-pyrid­yl)-1,3,5-triazin-2-amine

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
*Correspondence e-mail: yadxgncl@126.com

(Received 11 March 2011; accepted 8 April 2011; online 16 April 2011)

In the title compound, C9H9N5S, the pyridyl and triazine rings make a dihedral angle of 4.8 (2)°. In the crystal, adjacent mol­ecules are bridged by an N—H⋯N hydrogen bond, forming a helical chain running along the b axis.

Related literature

For the use of N-heterocycles in the synthesis of solid-state architectures, see: Janczak et al. (2003[Janczak, J., Sledz, M. & Kubiak, R. (2003). J. Mol. Struct. 659, 71-79.]). For silmilar triazine derivatives, see: Ma & Che (2003[Ma, D. L. & Che, C. M. (2003). Chem. Eur. J. 9, 6133-6144.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N5S

  • Mr = 219.27

  • Orthorhombic, P 21 21 21

  • a = 3.9002 (11) Å

  • b = 10.111 (3) Å

  • c = 25.143 (7) Å

  • V = 991.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.29 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.982

  • 5053 measured reflections

  • 1083 independent reflections

  • 877 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.096

  • S = 1.06

  • 1083 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N5i 0.86 2.10 2.956 (4) 172
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I), (Fig. 1), crystallizes in space group P2(1)2(1)2(1) with one crystallographically independent molecule per asymmetric unit.Strong intermolecular N—H···N hydrogen bonds link the subunit into the one-dimensional linear structure (Fig. 2).

Related literature top

For the use of N-heterocycles in the synthesis of solid-state architectures, see: Janczak et al. (2003). For silmilar triazine derivatives, see: Ma & Che (2003).

Experimental top

The title compound was crystallized by hydrothermal method. A mixture of Cu(Ac)2.H2O (0.20 mmol), 2-amino-4-methylthio-6-(4-pyridyl)- 1,3,5-triazine (ampt, 0.20 mmol), 3-(4-carboxyphenyl)propionic acid (H2cppa 0.20 mmol) 0.2M NaOH (0.1 mL) and water (10 ml) was stirred for 20 min. The mixture was then transferred to a 23 ml Teflon-lined autoclave and kept at 413 K for 72 h under autogenous pressure. Then the mixture was cooled to room temperature slowly. The targeted ternary Cu(II) coordination polymer was not synthesized. Accidentally,the compound ampt was returned unchangedly and crystallized in the hydrothermal reaction.Finally, Colorless single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with Uiso(H) =1.2Ueq(C). The NH H atoms were found from a difference Fourier map and restrained to 0.86 Å, and refined with Uiso(H) =1.2Ueq(N). Friedel equivalents have been merged.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker,1997); data reduction: SAINT (Bruker,1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and labeling of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional linear structre (I), viewed along the b axis via N—H···N hydrogen bonding interaction. Dashed lines denote hydrogen bonds.
4-Methylsulfanyl-6-(4-pyridyl)-1,3,5-triazin-2-amine top
Crystal data top
C9H9N5SF(000) = 456
Mr = 219.27Dx = 1.469 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abθ = 1.6–25.0°
a = 3.9002 (11) ŵ = 0.30 mm1
b = 10.111 (3) ÅT = 298 K
c = 25.143 (7) ÅPrism, colorless
V = 991.4 (5) Å30.29 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
1083 independent reflections
Radiation source: fine-focus sealed tube877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.919, Tmax = 0.982k = 1012
5053 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2208P]
where P = (Fo2 + 2Fc2)/3
1083 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C9H9N5SV = 991.4 (5) Å3
Mr = 219.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9002 (11) ŵ = 0.30 mm1
b = 10.111 (3) ÅT = 298 K
c = 25.143 (7) Å0.29 × 0.08 × 0.06 mm
Data collection top
Bruker SMART
diffractometer
1083 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
877 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.982Rint = 0.055
5053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
1083 reflectionsΔρmin = 0.24 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.1007 (9)0.9098 (3)0.16248 (11)0.0339 (8)
N21.0449 (9)1.1369 (3)0.13727 (11)0.0343 (9)
N30.8318 (10)0.9659 (3)0.08066 (11)0.0351 (8)
N40.7949 (11)1.1828 (3)0.05641 (13)0.0478 (11)
H4A0.82981.26570.06200.057*
H4B0.69711.15740.02750.057*
N50.8411 (12)0.4703 (3)0.07660 (13)0.0495 (10)
S11.3341 (3)1.07833 (10)0.23066 (4)0.0426 (3)
C11.1382 (10)1.0410 (4)0.17022 (13)0.0329 (9)
C20.8925 (11)1.0938 (4)0.09250 (14)0.0339 (10)
C30.9465 (10)0.8803 (3)0.11698 (14)0.0311 (10)
C41.3782 (12)1.2539 (4)0.22817 (16)0.0508 (12)
H4C1.48501.28460.26030.076*
H4D1.15591.29380.22470.076*
H4E1.51751.27790.19820.076*
C50.9850 (14)0.5082 (4)0.12212 (17)0.0489 (13)
H51.06710.44300.14490.059*
C61.0198 (13)0.6385 (4)0.13752 (15)0.0432 (12)
H61.12080.65940.16990.052*
C70.9028 (10)0.7375 (3)0.10425 (13)0.0309 (9)
C80.7467 (11)0.6986 (4)0.05768 (15)0.0377 (11)
H80.65630.76160.03460.045*
C90.7248 (12)0.5655 (4)0.04524 (16)0.0460 (12)
H90.62300.54170.01320.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.040 (2)0.0343 (19)0.0279 (17)0.0042 (17)0.0046 (16)0.0005 (13)
N20.041 (2)0.0336 (17)0.0289 (18)0.0003 (17)0.0012 (17)0.0010 (14)
N30.049 (2)0.0304 (17)0.0264 (17)0.0020 (18)0.0011 (18)0.0006 (13)
N40.076 (3)0.0345 (17)0.0325 (19)0.003 (2)0.011 (2)0.0013 (15)
N50.066 (3)0.0368 (18)0.046 (2)0.004 (2)0.010 (2)0.0011 (16)
S10.0492 (6)0.0466 (6)0.0318 (5)0.0024 (6)0.0092 (5)0.0037 (4)
C10.027 (2)0.043 (2)0.028 (2)0.002 (2)0.001 (2)0.0035 (17)
C20.040 (3)0.038 (2)0.0235 (19)0.001 (2)0.0020 (19)0.0013 (18)
C30.035 (2)0.034 (2)0.025 (2)0.0040 (19)0.0058 (19)0.0016 (16)
C40.056 (3)0.053 (3)0.044 (2)0.002 (3)0.010 (3)0.015 (2)
C50.059 (3)0.042 (3)0.046 (3)0.002 (2)0.009 (3)0.0127 (19)
C60.055 (3)0.038 (2)0.036 (2)0.005 (2)0.013 (2)0.0021 (19)
C70.031 (2)0.037 (2)0.0238 (19)0.002 (2)0.0028 (19)0.0000 (17)
C80.044 (3)0.037 (2)0.032 (2)0.000 (2)0.002 (2)0.0039 (16)
C90.060 (3)0.041 (2)0.037 (2)0.009 (3)0.005 (2)0.0029 (19)
Geometric parameters (Å, º) top
N1—C31.327 (5)C3—C71.488 (5)
N1—C11.349 (4)C4—H4C0.9600
N2—C11.326 (4)C4—H4D0.9600
N2—C21.345 (4)C4—H4E0.9600
N3—C31.336 (5)C5—C61.379 (5)
N3—C21.348 (4)C5—H50.9300
N4—C21.333 (5)C6—C71.383 (5)
N4—H4A0.8600C6—H60.9300
N4—H4B0.8600C7—C81.377 (5)
N5—C91.325 (5)C8—C91.384 (5)
N5—C51.331 (5)C8—H80.9300
S1—C11.742 (4)C9—H90.9300
S1—C41.785 (4)
C3—N1—C1113.3 (3)H4C—C4—H4D109.5
C1—N2—C2114.1 (3)S1—C4—H4E109.5
C3—N3—C2114.4 (3)H4C—C4—H4E109.5
C2—N4—H4A120.0H4D—C4—H4E109.5
C2—N4—H4B120.0N5—C5—C6123.9 (4)
H4A—N4—H4B120.0N5—C5—H5118.0
C9—N5—C5116.5 (3)C6—C5—H5118.0
C1—S1—C4103.12 (19)C5—C6—C7119.3 (4)
N2—C1—N1126.8 (3)C5—C6—H6120.3
N2—C1—S1120.5 (3)C7—C6—H6120.3
N1—C1—S1112.7 (3)C8—C7—C6117.0 (4)
N4—C2—N2118.5 (3)C8—C7—C3120.7 (3)
N4—C2—N3116.6 (3)C6—C7—C3122.3 (3)
N2—C2—N3124.9 (3)C7—C8—C9119.8 (4)
N1—C3—N3126.5 (3)C7—C8—H8120.1
N1—C3—C7117.1 (3)C9—C8—H8120.1
N3—C3—C7116.3 (3)N5—C9—C8123.4 (4)
S1—C4—H4C109.5N5—C9—H9118.3
S1—C4—H4D109.5C8—C9—H9118.3
C2—N2—C1—N11.3 (6)C2—N3—C3—C7176.7 (4)
C2—N2—C1—S1179.1 (3)C9—N5—C5—C60.5 (8)
C3—N1—C1—N21.5 (6)N5—C5—C6—C70.5 (8)
C3—N1—C1—S1178.9 (3)C5—C6—C7—C81.9 (7)
C4—S1—C1—N23.7 (4)C5—C6—C7—C3177.0 (4)
C4—S1—C1—N1176.0 (3)N1—C3—C7—C8179.7 (4)
C1—N2—C2—N4178.8 (4)N3—C3—C7—C81.0 (6)
C1—N2—C2—N30.6 (6)N1—C3—C7—C60.8 (6)
C3—N3—C2—N4177.4 (4)N3—C3—C7—C6177.9 (4)
C3—N3—C2—N22.0 (6)C6—C7—C8—C92.4 (6)
C1—N1—C3—N30.3 (6)C3—C7—C8—C9176.6 (4)
C1—N1—C3—C7178.3 (3)C5—N5—C9—C80.0 (7)
C2—N3—C3—N11.9 (6)C7—C8—C9—N51.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N5i0.862.102.956 (4)172
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H9N5S
Mr219.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)3.9002 (11), 10.111 (3), 25.143 (7)
V3)991.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.29 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5053, 1083, 877
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.096, 1.06
No. of reflections1083
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker,1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N5i0.862.102.956 (4)172
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This project was supported by the Natural Scientific Research Foundation of the Shaanxi Provincial Education Office of China (2010 J K903, 2010 J K905).

References

First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJanczak, J., Sledz, M. & Kubiak, R. (2003). J. Mol. Struct. 659, 71–79.  CrossRef CAS Google Scholar
First citationMa, D. L. & Che, C. M. (2003). Chem. Eur. J. 9, 6133–6144.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds