organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1055

2,6-Di­chloro-1-[(1E)-2-(phenyl­sulfon­yl)ethen­yl]benzene

aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002 USA
*Correspondence e-mail: dforbes@southalabama.edu

(Received 17 March 2011; accepted 30 March 2011; online 7 April 2011)

In the title compound, C14H10Cl2O2S, the product of a base-catalyzed condensation followed by deca­rboxylation of the carboxyl­ate group of the sulfonyl derivative, the configuration of the alkene unit is E. The torsion angle between the alkene unit and the 2,6-dichloro­phenyl ring system is −40.8 (3)°. The dihedral angle between the rings is 80.39 (7)°.

Related literature

For a review on the use of vinyl sulfones in organic chemistry, see: Simpkins (1990[Simpkins, N. S. (1990). Tetrahedron, 46, 6951-6984.]). For the use of phenyl­sulfonyl­acetic acid in the formation of vinyl sulfones, see: Baliah & Seshapathirao (1959[Baliah, V. & Seshapathirao, M. (1959). J. Org. Chem. 24, 867.]). For a general review on the condensation of activated methyl­enes onto aryl aldehydes, see: Jones (1967[Jones, G. (1967). Org. React. 15, 204-599.]). For the structure of the related phenyl vinyl sulfone, see: Briggs et al. (1998[Briggs, A. D., Clegg, W., Elsegood, M. R. J., Frampton, C. S. & Jackson, R. F. W. (1998). Acta Cryst. C54, 1335-1341.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2O2S

  • Mr = 313.18

  • Triclinic, [P \overline 1]

  • a = 7.5924 (6) Å

  • b = 8.3060 (4) Å

  • c = 11.3360 (9) Å

  • α = 78.639 (5)°

  • β = 84.976 (7)°

  • γ = 77.497 (6)°

  • V = 683.49 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 290 K

  • 0.52 × 0.34 × 0.06 mm

Data collection
  • Oxford Xcalibur E diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Abingdon, England.]) Tmin = 0.810, Tmax = 0.961

  • 4291 measured reflections

  • 2491 independent reflections

  • 1741 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 0.95

  • 2491 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS96 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We recently explored the use of commercially available phenylsulfonylacetic acid under base catalysis with the anticipation of observing the same mode of transfer using sulfonium salts; methylene transfer onto carbonyl derivatives. The use of not sulfonium but sulfonyl functionality does allow for one to explore catalysis, which is a realm of S-ylide chemistry yet to be fully explored. For this study, observed was not only methylene transfer but formation of the condensation adduct vinyl sulfone (an α,β-unsaturated sulfone). Under not base but acid catalysis, this type of condensation is common as previously reported by Baliah & Seshapathirao (1959) and Jones (1967). The title compound, C14H10Cl2O2S, was isolated as the major product in moderate yield and offered definitive evidence of the condensation of the 2,6-dichlorobenzaldehyde with phenylsulfonylacetic acid.

The C1–C2 bond distance of 1.320 (3) Å confirms the alkene moiety, the configuration of which is E. This distance is slightly elongated as compared with the comparable distance of 1.313 (3) Å in phenyl vinyl sulfone (PVS) reported by Briggs et al. (1998). Other geometric parameters in the title compound are similar but also subtly affected relative to PVS. For example, the average S=O bond lengths are 1.436 (2) Å in the title compound but 1.443 (1) Å in PVS. Also shortened are the S–C bonds in the title compound (1.7683 (19) and 1.748 (2) Å) relative to PVS (1.770 (2) and 1.755 (2) Å), the longer bond in both cases being to the phenyl moiety. The C–S–C bond is noticably more acute in the title compound (102.84 (9)°) relative to PVS (104.64 (8)°), while the O=S=O angle in PVS (118.79 (8)°) is slightly more acute than the comparable angle in the title compound (119.35 (10)°). The torsion angle between the alkene moiety and the 2,6-dichlorophenyl ring in the title compound is 40.8 (3)°.

Related literature top

For a review on the use of vinyl sulfones in organic chemistry, see: Simpkins (1990). For the use of phenylsulfonylacetic acid in the formation of vinyl sulfones, see: Baliah & Seshapathirao (1959). For a general review on the condensation of activated methylenes onto aryl aldehydes, see: Jones (1967). For the structure of the related phenyl vinyl sulfone, see: Briggs et al. (1998).

Experimental top

To a 0.125M THF solution of phenylsulfonylacetic acid (1 g, 4.99 mmol, 2.0 equiv) was added 439 mg of 2,6-dichlorobenzaldehyde (2.51 mmol, 1.0 equiv). A 40 wt% solution of benzyltrimethylammonium hydroxide in methanol was next added by syringe (2.1 ml, 4.99 mmol, 2.0 equiv). The 50 ml one-neck round bottomed flask equipped with a magnetic stir bar was fitted with a condenser and allowed to warm to reflux. After a period of 18 h, the solution was cooled to 60 °C and 15 ml of deionized water was added and allowed to stir at this temperature for a period of 1 h. The resulting mixture was allowed to cool to room temperature at which time the mixture was washed with approximately 20 ml of ethyl acetate. After partitioning the organic from the aqueous phase, the organic fraction was washed with brine, dried over anhydrous magnesium sulfate, and concentrated in vacuo. Purification by column chromatography over silica gel (eluting with 9:1 hexanes/ethyl acetate) afforded the title compound (355 mg, 45% yield). White crystalline solid, mp: 78–82 °C. IR (KBr): 1628, 1446, 1307, 1147 cm-1. 1H NMR (300 MHz; CDCl3) δ 7.19 (2H, m), 7.35 (2H, s), 7.64 (2H, m), 7.84 (1H, d, J = 15.9 Hz), 7.98 (1H, brs); 13C NMR (300 MHz; CDCl3) δ 128.4, 129.5, 129.9, 131.3, 133.9, 135.3, 135.9, 136.3, 140.1; EI—MS (m/z) 313 (M+); HRMS calcd for C14H10Cl2O2S (M+H) 312.9857, found 312.9858.

Refinement top

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS96 (Sheldrick, 2008); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme.
2,6-Dichloro-1-[(1E)-2-(phenylsulfonyl)ethenyl]benzene top
Crystal data top
C14H10Cl2O2SZ = 2
Mr = 313.18F(000) = 320
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5924 (6) ÅCell parameters from 2060 reflections
b = 8.3060 (4) Åθ = 3.2–25.3°
c = 11.3360 (9) ŵ = 0.62 mm1
α = 78.639 (5)°T = 290 K
β = 84.976 (7)°Plate, colorless
γ = 77.497 (6)°0.52 × 0.34 × 0.06 mm
V = 683.49 (8) Å3
Data collection top
Oxford Xcalibur E
diffractometer
2491 independent reflections
Radiation source: fine-focus sealed tube1741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.0514 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 99
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 610
Tmin = 0.810, Tmax = 0.961l = 1313
4291 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2491 reflectionsΔρmax = 0.20 e Å3
173 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (2)
Crystal data top
C14H10Cl2O2Sγ = 77.497 (6)°
Mr = 313.18V = 683.49 (8) Å3
Triclinic, P1Z = 2
a = 7.5924 (6) ÅMo Kα radiation
b = 8.3060 (4) ŵ = 0.62 mm1
c = 11.3360 (9) ÅT = 290 K
α = 78.639 (5)°0.52 × 0.34 × 0.06 mm
β = 84.976 (7)°
Data collection top
Oxford Xcalibur E
diffractometer
2491 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
1741 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.961Rint = 0.017
4291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 0.95Δρmax = 0.20 e Å3
2491 reflectionsΔρmin = 0.22 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09983 (8)0.38328 (6)0.16893 (5)0.04924 (19)
Cl10.28536 (9)0.37676 (7)0.55021 (6)0.0761 (2)
Cl20.22076 (8)0.20158 (6)0.41978 (5)0.0586 (2)
O10.2065 (2)0.25879 (17)0.10588 (14)0.0635 (5)
O20.0899 (2)0.43654 (18)0.14956 (15)0.0668 (5)
C10.1250 (3)0.3114 (2)0.32340 (19)0.0453 (5)
H10.06780.37930.37740.054*
C20.2236 (3)0.1626 (2)0.36487 (19)0.0429 (5)
H20.28190.10110.30730.051*
C30.2521 (2)0.0828 (2)0.49086 (18)0.0386 (5)
C40.2567 (3)0.0897 (2)0.52656 (19)0.0418 (5)
C50.2828 (3)0.1734 (3)0.6421 (2)0.0534 (6)
H50.28420.28780.66160.064*
C60.3067 (3)0.0875 (3)0.7290 (2)0.0628 (7)
H60.32300.14300.80820.075*
C70.3066 (3)0.0818 (3)0.6987 (2)0.0601 (7)
H70.32490.14000.75720.072*
C80.2794 (3)0.1645 (2)0.5823 (2)0.0489 (6)
C90.1980 (3)0.5626 (2)0.14040 (18)0.0420 (5)
C100.0892 (3)0.7191 (2)0.1258 (2)0.0552 (6)
H100.03580.73150.12950.066*
C110.1671 (4)0.8583 (3)0.1055 (2)0.0666 (7)
H110.09440.96510.09670.080*
C120.3499 (4)0.8396 (3)0.0984 (2)0.0646 (7)
H120.40150.93380.08470.077*
C130.4585 (3)0.6833 (3)0.1112 (2)0.0684 (7)
H130.58340.67160.10480.082*
C140.3827 (3)0.5431 (3)0.1335 (2)0.0574 (6)
H140.45580.43640.14380.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0624 (4)0.0385 (3)0.0468 (4)0.0171 (3)0.0074 (3)0.0017 (2)
Cl10.0899 (5)0.0429 (3)0.1012 (6)0.0076 (3)0.0297 (4)0.0227 (3)
Cl20.0746 (4)0.0417 (3)0.0626 (4)0.0171 (3)0.0078 (3)0.0088 (3)
O10.1015 (13)0.0397 (8)0.0520 (10)0.0200 (8)0.0019 (9)0.0110 (7)
O20.0585 (10)0.0693 (10)0.0709 (12)0.0269 (8)0.0199 (9)0.0141 (8)
C10.0487 (13)0.0397 (11)0.0445 (14)0.0069 (10)0.0002 (10)0.0040 (10)
C20.0411 (12)0.0379 (11)0.0488 (14)0.0107 (9)0.0018 (10)0.0047 (10)
C30.0321 (11)0.0369 (10)0.0441 (13)0.0055 (8)0.0011 (9)0.0031 (9)
C40.0359 (12)0.0397 (11)0.0488 (14)0.0095 (9)0.0015 (10)0.0042 (10)
C50.0530 (14)0.0442 (12)0.0578 (16)0.0106 (10)0.0052 (11)0.0051 (11)
C60.0648 (17)0.0724 (17)0.0435 (16)0.0043 (13)0.0111 (12)0.0009 (12)
C70.0566 (16)0.0715 (16)0.0539 (17)0.0025 (13)0.0132 (12)0.0226 (13)
C80.0426 (13)0.0448 (12)0.0593 (16)0.0020 (10)0.0073 (11)0.0147 (11)
C90.0524 (14)0.0362 (11)0.0372 (13)0.0095 (10)0.0051 (10)0.0043 (9)
C100.0523 (14)0.0432 (12)0.0685 (17)0.0047 (11)0.0138 (12)0.0070 (11)
C110.091 (2)0.0358 (12)0.0729 (19)0.0110 (13)0.0263 (16)0.0023 (11)
C120.096 (2)0.0589 (16)0.0488 (16)0.0414 (15)0.0048 (14)0.0056 (12)
C130.0584 (16)0.0802 (18)0.079 (2)0.0298 (14)0.0101 (14)0.0331 (15)
C140.0552 (15)0.0480 (12)0.0706 (18)0.0073 (11)0.0029 (12)0.0187 (12)
Geometric parameters (Å, º) top
S1—O21.4353 (16)C6—C71.380 (3)
S1—O11.4364 (15)C6—H60.9300
S1—C11.748 (2)C7—C81.373 (3)
S1—C91.7683 (19)C7—H70.9300
Cl1—C81.738 (2)C9—C101.369 (3)
Cl2—C41.736 (2)C9—C141.373 (3)
C1—C21.320 (3)C10—C111.381 (3)
C1—H10.9300C10—H100.9300
C2—C31.464 (3)C11—C121.360 (3)
C2—H20.9300C11—H110.9300
C3—C81.398 (3)C12—C131.367 (3)
C3—C41.404 (3)C12—H120.9300
C4—C51.365 (3)C13—C141.378 (3)
C5—C61.371 (3)C13—H130.9300
C5—H50.9300C14—H140.9300
O2—S1—O1119.35 (10)C8—C7—C6120.1 (2)
O2—S1—C1107.76 (10)C8—C7—H7119.9
O1—S1—C1108.27 (9)C6—C7—H7119.9
O2—S1—C9108.45 (9)C7—C8—C3122.2 (2)
O1—S1—C9108.92 (9)C7—C8—Cl1117.54 (16)
C1—S1—C9102.84 (9)C3—C8—Cl1120.25 (17)
C2—C1—S1121.25 (17)C10—C9—C14120.77 (19)
C2—C1—H1119.4C10—C9—S1119.66 (16)
S1—C1—H1119.4C14—C9—S1119.57 (15)
C1—C2—C3127.63 (19)C9—C10—C11119.2 (2)
C1—C2—H2116.2C9—C10—H10120.4
C3—C2—H2116.2C11—C10—H10120.4
C8—C3—C4115.12 (19)C12—C11—C10120.2 (2)
C8—C3—C2125.15 (17)C12—C11—H11119.9
C4—C3—C2119.72 (17)C10—C11—H11119.9
C5—C4—C3123.29 (18)C11—C12—C13120.5 (2)
C5—C4—Cl2118.16 (15)C11—C12—H12119.7
C3—C4—Cl2118.52 (16)C13—C12—H12119.7
C4—C5—C6119.5 (2)C12—C13—C14120.0 (2)
C4—C5—H5120.3C12—C13—H13120.0
C6—C5—H5120.3C14—C13—H13120.0
C5—C6—C7119.8 (2)C9—C14—C13119.3 (2)
C5—C6—H6120.1C9—C14—H14120.3
C7—C6—H6120.1C13—C14—H14120.3
O2—S1—C1—C2128.08 (17)C2—C3—C8—C7179.5 (2)
O1—S1—C1—C22.3 (2)C4—C3—C8—Cl1177.68 (14)
C9—S1—C1—C2117.47 (18)C2—C3—C8—Cl11.1 (3)
S1—C1—C2—C3177.57 (14)O2—S1—C9—C1010.8 (2)
C1—C2—C3—C840.8 (3)O1—S1—C9—C10142.12 (18)
C1—C2—C3—C4140.4 (2)C1—S1—C9—C10103.16 (19)
C8—C3—C4—C51.1 (3)O2—S1—C9—C14169.41 (17)
C2—C3—C4—C5179.93 (18)O1—S1—C9—C1438.06 (19)
C8—C3—C4—Cl2179.04 (14)C1—S1—C9—C1476.65 (18)
C2—C3—C4—Cl22.1 (3)C14—C9—C10—C110.9 (3)
C3—C4—C5—C60.3 (3)S1—C9—C10—C11178.95 (17)
Cl2—C4—C5—C6178.28 (17)C9—C10—C11—C121.0 (3)
C4—C5—C6—C70.8 (3)C10—C11—C12—C130.0 (4)
C5—C6—C7—C81.1 (4)C11—C12—C13—C141.1 (4)
C6—C7—C8—C30.3 (3)C10—C9—C14—C130.2 (3)
C6—C7—C8—Cl1178.79 (18)S1—C9—C14—C13179.95 (18)
C4—C3—C8—C70.8 (3)C12—C13—C14—C91.2 (4)

Experimental details

Crystal data
Chemical formulaC14H10Cl2O2S
Mr313.18
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)7.5924 (6), 8.3060 (4), 11.3360 (9)
α, β, γ (°)78.639 (5), 84.976 (7), 77.497 (6)
V3)683.49 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.52 × 0.34 × 0.06
Data collection
DiffractometerOxford Xcalibur E
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.810, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
4291, 2491, 1741
Rint0.017
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 0.95
No. of reflections2491
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS96 (Sheldrick, 2008), SHELXL96 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge the National Science Foundation (NSF-CAREER grant to RES, CHE-0846680; NSF-RUI grant to DCF, CHE-0957482). DCF also gratefully acknowledges the NIGMS (NIH NIGMS 1R15GM085936) and the Camille and Henry Dreyfus Foundation (TH-06–008) for partial support of this work.

References

First citationBaliah, V. & Seshapathirao, M. (1959). J. Org. Chem. 24, 867.  CrossRef Google Scholar
First citationBriggs, A. D., Clegg, W., Elsegood, M. R. J., Frampton, C. S. & Jackson, R. F. W. (1998). Acta Cryst. C54, 1335–1341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, G. (1967). Org. React. 15, 204–599.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpkins, N. S. (1990). Tetrahedron, 46, 6951–6984.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1055
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds