organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1031

N,N′-Di­benzyl-N,N′-di­methyl-N′′-(4-nitro­benzo­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo - CINN C/ Julián Clavería, 8, 33006 Oviedo (Asturias) Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 22 March 2011; accepted 26 March 2011; online 7 April 2011)

The P atom in the title compound, C23H25N4O4P, is in a slightly distorted tetra­hedral coordination environment and the N atoms show sp2 character. The phosphoryl group and the NH unit are syn with respect to each other. In the crystal, pairs of inter­molecular N—H⋯O(P) hydrogen bonds form centrosymmetric dimers.

Related literature

For phospho­rus compounds with general formula XP(O)[N(CH3)(CH2C6H5)]2, see: Gholivand et al. (2005[Gholivand, K., Pourayoubi, M., Shariatinia, Z. & Mostaanzadeh, H. (2005). Polyhedron, 24, 655-662.]). For bond lengths in a related structure, see: Sabbaghi et al. (2010[Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25N4O4P

  • Mr = 452.44

  • Triclinic, [P \overline 1]

  • a = 8.3526 (5) Å

  • b = 11.8150 (5) Å

  • c = 12.2668 (4) Å

  • α = 77.184 (3)°

  • β = 81.289 (4)°

  • γ = 71.928 (4)°

  • V = 1117.70 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.41 mm−1

  • T = 297 K

  • 0.24 × 0.14 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.941, Tmax = 1.000

  • 8669 measured reflections

  • 4203 independent reflections

  • 3779 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.05

  • 4203 reflections

  • 390 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O2i 0.85 (2) 2.07 (2) 2.909 (2) 169 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Some phosphoric triamide compounds of the general formula XP(O)[N(CH3)(CH2C6H5)]2 [X = Cl, C6H5C(O)NH & CCl3C(O)NH (Gholivand et al., 2005) have been structurally investigated. Here, we report on the synthesis and crystal structure of title compound (where X = 4-NO2C6H4C(O)NH).

The asymmetric unit consists of a single molecule, shown in Fig. 1, of the title compound with no unusual bonding features. The PO and P—N bond lengths are comparable to those in similar compounds like for example in P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2 (Sabbaghi et al., 2010). As can be expected, the N8—C26 bond length is shorter than the other N—C bonds in the molecule.

The phosphorus atom has a slightly distorted tetrahedral configuration, the bond angles around the P atom are in the range of 103.85 (6)° [N6—P1—N7] to 118.67 (6)° [O2—P1—N7]. The average of surrounding angles around the tertiary nitrogen atom N6 (119.7°) shows that it is bonded in an essentially planar geometry; whereas, the environment of N7 is slightly deviated from planarity (average of bond angles around N7 atom is equal to 117.3°). Furthermore, the angle C26—N8—P1 is 124.98 (10)°.

The oxygen atom of PO group is a better H-acceptor than that of the C O counterpart; so, the hydrogen atom of the C(O)NHP(O) moiety is involving in an intermolecular –PO···H—N– hydrogen bond (see Table 1) to form a centrosymmetric dimer [graph set: R22(8) (Etter et al., 1990; Bernstein et al., 1995)].

Related literature top

For phosphorus compounds with general formula XP(O)[N(CH3)(CH2C6H5)]2, see: Gholivand et al. (2005). For bond lengths in a related structure, see: Sabbaghi et al. (2010). For a comparison between the H-acceptor ability of PO and CO groups and hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

4-NO2—C6H4C(O)NHP(O)Cl2 was prepared according to the procedure of literature (Sabbaghi et al., 2010). To a solution of (2 mmol) 4-NO2C6H4C(O)NHP(O)Cl2 in CH3CN (20 ml), a solution of N-methylbenzyl amine (8 mmol) in CH3CN (5 ml) was added dropwise at 273 K. After 4 h stirring, the solvent was removed in vacuum. Single crystals were obtained from a solution of title compound in C2H5OH after slow evaporation at room temperature. IR (KBr, cm-1): 3141, 2881, 1680, 1604, 1522, 1452, 1342, 1273, 1186, 1104, 1005, 949, 853, 793, 708.

Refinement top

At the end of the refinement the highest peak in the electron density was 0.210 e Å -3, while the deepest hole was -0.260 e Å -3. All H atoms were sucessfully located by difference Fourier synthesis and isotropically refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008; software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP style plot of title compound with the atom-labeling scheme. Ellipsoids are shown at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
N,N'-Dibenzyl-N,N'-dimethyl-N''- (4-nitrobenzoyl)phosphoric triamide top
Crystal data top
C23H25N4O4PZ = 2
Mr = 452.44F(000) = 476
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.3526 (5) ÅCell parameters from 5608 reflections
b = 11.8150 (5) Åθ = 3.7–70.5°
c = 12.2668 (4) ŵ = 1.41 mm1
α = 77.184 (3)°T = 297 K
β = 81.289 (4)°Prismatic, colorless
γ = 71.928 (4)°0.24 × 0.14 × 0.05 mm
V = 1117.70 (9) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4203 independent reflections
Radiation source: Enhance (Cu) X-ray Source3779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.2673 pixels mm-1θmax = 70.6°, θmin = 3.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1214
Tmin = 0.941, Tmax = 1.000l = 1414
8669 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1381P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4203 reflectionsΔρmax = 0.21 e Å3
390 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (5)
Crystal data top
C23H25N4O4Pγ = 71.928 (4)°
Mr = 452.44V = 1117.70 (9) Å3
Triclinic, P1Z = 2
a = 8.3526 (5) ÅCu Kα radiation
b = 11.8150 (5) ŵ = 1.41 mm1
c = 12.2668 (4) ÅT = 297 K
α = 77.184 (3)°0.24 × 0.14 × 0.05 mm
β = 81.289 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4203 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3779 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 1.000Rint = 0.025
8669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093All H-atom parameters refined
S = 1.05Δρmax = 0.21 e Å3
4203 reflectionsΔρmin = 0.26 e Å3
390 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.37947 (4)0.43216 (3)0.68154 (3)0.03514 (12)
O20.39241 (13)0.55008 (8)0.61457 (8)0.0441 (2)
O30.40102 (16)0.16957 (10)0.70306 (10)0.0570 (3)
O41.0449 (2)0.09851 (14)0.30155 (13)0.0866 (5)
O50.9874 (2)0.24087 (12)0.42737 (14)0.0867 (5)
N60.18214 (15)0.43519 (10)0.71762 (10)0.0422 (3)
N70.46802 (15)0.38121 (10)0.80040 (10)0.0415 (3)
N80.48310 (16)0.32916 (10)0.59984 (10)0.0404 (3)
N90.9666 (2)0.13399 (13)0.38622 (13)0.0594 (4)
C100.08796 (18)0.59948 (13)0.70707 (13)0.0455 (3)
C110.2562 (2)0.61378 (15)0.69736 (16)0.0559 (4)
C120.3838 (2)0.69259 (18)0.7548 (2)0.0693 (6)
C130.3441 (3)0.75656 (19)0.82172 (19)0.0718 (6)
C140.1776 (3)0.7439 (2)0.8315 (2)0.0717 (5)
C150.0499 (2)0.66649 (16)0.77376 (17)0.0587 (4)
C160.0512 (2)0.51473 (15)0.64516 (14)0.0494 (4)
C170.1226 (2)0.34870 (15)0.80655 (16)0.0537 (4)
C180.3946 (3)0.44794 (17)0.89219 (14)0.0563 (4)
C190.6514 (2)0.32321 (15)0.80428 (14)0.0484 (3)
C200.69385 (18)0.22357 (14)0.90560 (12)0.0451 (3)
C210.7774 (2)0.2365 (2)0.98905 (15)0.0615 (4)
C220.8215 (3)0.1426 (3)1.08008 (17)0.0796 (6)
C230.7830 (3)0.0367 (2)1.08917 (18)0.0742 (6)
C240.7001 (3)0.02349 (18)1.00715 (18)0.0697 (5)
C250.6558 (3)0.11582 (16)0.91598 (16)0.0592 (4)
C260.48804 (18)0.20940 (12)0.62439 (11)0.0402 (3)
C270.61200 (18)0.12548 (12)0.55456 (11)0.0392 (3)
C280.7086 (2)0.16247 (13)0.45913 (12)0.0478 (4)
C290.8241 (2)0.07733 (14)0.40268 (13)0.0526 (4)
C300.8402 (2)0.04361 (13)0.44417 (13)0.0461 (3)
C310.7468 (2)0.08292 (14)0.53841 (15)0.0543 (4)
C320.6313 (2)0.00252 (14)0.59370 (15)0.0515 (4)
H110.278 (3)0.569 (2)0.6490 (18)0.069 (6)*
H120.499 (4)0.701 (2)0.745 (2)0.092 (7)*
H130.432 (3)0.809 (2)0.860 (2)0.087 (7)*
H140.154 (3)0.786 (2)0.882 (2)0.093 (8)*
H150.067 (3)0.6575 (19)0.7821 (18)0.070 (6)*
H16A0.104 (2)0.5613 (17)0.5845 (17)0.054 (5)*
H16B0.001 (3)0.4617 (19)0.6165 (17)0.061 (5)*
H17A0.041 (3)0.3951 (19)0.8615 (18)0.067 (6)*
H17B0.218 (3)0.292 (2)0.843 (2)0.076 (6)*
H17C0.070 (3)0.303 (2)0.7758 (19)0.076 (6)*
H18A0.276 (3)0.490 (2)0.885 (2)0.084 (7)*
H18B0.444 (3)0.512 (3)0.892 (2)0.096 (8)*
H18C0.407 (3)0.394 (2)0.964 (2)0.088 (7)*
H19A0.702 (3)0.3836 (19)0.8089 (17)0.061 (5)*
H19B0.693 (2)0.2926 (17)0.7372 (17)0.057 (5)*
H210.803 (3)0.312 (2)0.9826 (19)0.074 (6)*
H220.878 (4)0.154 (3)1.137 (3)0.117 (10)*
H230.810 (3)0.029 (3)1.148 (2)0.096 (8)*
H240.672 (3)0.051 (2)1.009 (2)0.078 (6)*
H250.600 (3)0.1054 (19)0.8612 (19)0.069 (6)*
H280.698 (2)0.2437 (19)0.4309 (17)0.061 (5)*
H290.894 (3)0.101 (2)0.3376 (19)0.070 (6)*
H310.766 (3)0.165 (2)0.5660 (18)0.069 (6)*
H320.565 (3)0.0228 (19)0.6597 (18)0.066 (6)*
H80.533 (2)0.3600 (17)0.5403 (17)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0438 (2)0.02572 (18)0.03071 (18)0.00681 (13)0.00261 (13)0.00327 (12)
O20.0586 (6)0.0298 (5)0.0380 (5)0.0110 (4)0.0061 (4)0.0035 (4)
O30.0742 (7)0.0362 (5)0.0535 (6)0.0178 (5)0.0162 (5)0.0060 (5)
O40.0973 (11)0.0691 (9)0.0630 (9)0.0154 (8)0.0114 (8)0.0189 (7)
O50.1171 (13)0.0377 (7)0.0854 (10)0.0103 (7)0.0052 (9)0.0200 (7)
N60.0434 (6)0.0352 (6)0.0402 (6)0.0065 (5)0.0002 (5)0.0006 (5)
N70.0460 (6)0.0371 (6)0.0354 (6)0.0048 (5)0.0009 (5)0.0064 (5)
N80.0530 (7)0.0292 (5)0.0337 (6)0.0098 (5)0.0060 (5)0.0044 (4)
N90.0701 (9)0.0463 (8)0.0522 (8)0.0072 (6)0.0137 (7)0.0185 (6)
C100.0418 (7)0.0386 (7)0.0505 (8)0.0079 (6)0.0075 (6)0.0004 (6)
C110.0500 (9)0.0452 (8)0.0674 (10)0.0159 (7)0.0141 (8)0.0087 (8)
C120.0398 (9)0.0600 (11)0.0866 (14)0.0080 (8)0.0010 (8)0.0178 (10)
C130.0578 (11)0.0591 (11)0.0732 (12)0.0025 (9)0.0135 (9)0.0011 (10)
C140.0686 (12)0.0629 (11)0.0768 (13)0.0026 (9)0.0034 (10)0.0243 (10)
C150.0469 (9)0.0555 (10)0.0723 (11)0.0054 (7)0.0089 (8)0.0198 (8)
C160.0514 (8)0.0469 (8)0.0468 (8)0.0072 (7)0.0101 (7)0.0086 (7)
C170.0516 (9)0.0425 (8)0.0578 (10)0.0134 (7)0.0105 (8)0.0012 (7)
C180.0698 (11)0.0528 (10)0.0400 (8)0.0051 (8)0.0041 (7)0.0146 (7)
C190.0449 (8)0.0500 (9)0.0451 (8)0.0141 (7)0.0012 (6)0.0005 (7)
C200.0377 (7)0.0486 (8)0.0418 (7)0.0068 (6)0.0007 (5)0.0036 (6)
C210.0593 (10)0.0786 (13)0.0509 (9)0.0310 (9)0.0070 (7)0.0029 (8)
C220.0693 (12)0.1179 (19)0.0511 (10)0.0358 (12)0.0214 (9)0.0091 (11)
C230.0635 (11)0.0782 (14)0.0599 (11)0.0073 (10)0.0144 (9)0.0174 (10)
C240.0835 (14)0.0454 (10)0.0674 (12)0.0087 (9)0.0101 (10)0.0039 (8)
C250.0723 (11)0.0496 (9)0.0524 (9)0.0128 (8)0.0143 (8)0.0037 (7)
C260.0502 (8)0.0306 (6)0.0365 (7)0.0097 (6)0.0020 (6)0.0034 (5)
C270.0493 (7)0.0294 (6)0.0370 (7)0.0073 (5)0.0076 (6)0.0056 (5)
C280.0675 (10)0.0283 (7)0.0388 (7)0.0052 (6)0.0007 (7)0.0035 (6)
C290.0698 (10)0.0393 (8)0.0377 (7)0.0044 (7)0.0022 (7)0.0058 (6)
C300.0548 (8)0.0353 (7)0.0434 (8)0.0017 (6)0.0126 (6)0.0128 (6)
C310.0673 (10)0.0279 (7)0.0617 (10)0.0059 (7)0.0064 (8)0.0069 (7)
C320.0605 (9)0.0320 (7)0.0558 (9)0.0105 (6)0.0018 (7)0.0042 (6)
Geometric parameters (Å, º) top
P1—O21.4787 (10)C17—H17C0.95 (2)
P1—N61.6319 (13)C18—H18A0.97 (3)
P1—N71.6420 (12)C18—H18B0.96 (3)
P1—N81.6910 (11)C18—H18C0.97 (3)
O3—C261.2163 (18)C19—C201.510 (2)
O4—N91.206 (2)C19—H19A0.95 (2)
O5—N91.219 (2)C19—H19B0.95 (2)
N6—C171.462 (2)C20—C251.380 (3)
N6—C161.4684 (19)C20—C211.382 (2)
N7—C181.4663 (19)C21—C221.391 (3)
N7—C191.474 (2)C21—H210.96 (2)
N8—C261.3686 (18)C22—C231.364 (4)
N8—H80.85 (2)C22—H220.96 (3)
N9—C301.4729 (19)C23—C241.365 (3)
C10—C111.383 (2)C23—H230.93 (3)
C10—C151.385 (2)C24—C251.383 (3)
C10—C161.509 (2)C24—H240.97 (2)
C11—C121.395 (3)C25—H250.92 (2)
C11—H110.95 (2)C26—C271.5035 (19)
C12—C131.367 (3)C27—C281.385 (2)
C12—H120.96 (3)C27—C321.391 (2)
C13—C141.373 (3)C28—C291.388 (2)
C13—H130.94 (3)C28—H280.93 (2)
C14—C151.389 (3)C29—C301.377 (2)
C14—H140.96 (3)C29—H290.96 (2)
C15—H150.97 (2)C30—C311.369 (2)
C16—H16A0.96 (2)C31—C321.383 (2)
C16—H16B1.00 (2)C31—H310.92 (2)
C17—H17A1.01 (2)C32—H320.96 (2)
C17—H17B0.96 (2)
O2—P1—N6110.89 (6)H18A—C18—H18B104 (2)
O2—P1—N7118.67 (6)N7—C18—H18C110.9 (15)
N6—P1—N7103.85 (6)H18A—C18—H18C110 (2)
O2—P1—N8105.24 (6)H18B—C18—H18C108 (2)
N6—P1—N8113.52 (6)N7—C19—C20112.83 (12)
N7—P1—N8104.82 (6)N7—C19—H19A107.8 (12)
C17—N6—C16113.89 (13)C20—C19—H19A107.4 (12)
C17—N6—P1125.48 (11)N7—C19—H19B108.0 (11)
C16—N6—P1119.62 (10)C20—C19—H19B110.6 (12)
C18—N7—C19112.51 (13)H19A—C19—H19B110.2 (17)
C18—N7—P1117.29 (10)C25—C20—C21118.07 (16)
C19—N7—P1122.11 (10)C25—C20—C19121.29 (15)
C26—N8—P1124.98 (10)C21—C20—C19120.60 (16)
C26—N8—H8122.7 (12)C20—C21—C22120.3 (2)
P1—N8—H8112.4 (12)C20—C21—H21118.3 (14)
O4—N9—O5123.56 (15)C22—C21—H21121.4 (14)
O4—N9—C30118.42 (14)C23—C22—C21121.0 (2)
O5—N9—C30118.01 (16)C23—C22—H22120.3 (19)
C11—C10—C15118.31 (16)C21—C22—H22118.7 (19)
C11—C10—C16121.02 (15)C22—C23—C24119.00 (19)
C15—C10—C16120.65 (14)C22—C23—H23124.1 (17)
C10—C11—C12120.54 (18)C24—C23—H23116.9 (17)
C10—C11—H11116.3 (13)C23—C24—C25120.7 (2)
C12—C11—H11123.1 (13)C23—C24—H24121.8 (14)
C13—C12—C11120.40 (18)C25—C24—H24117.5 (14)
C13—C12—H12121.6 (16)C20—C25—C24120.95 (19)
C11—C12—H12118.0 (16)C20—C25—H25119.4 (13)
C12—C13—C14119.66 (19)C24—C25—H25119.6 (14)
C12—C13—H13119.4 (15)O3—C26—N8121.84 (13)
C14—C13—H13120.9 (16)O3—C26—C27120.11 (12)
C13—C14—C15120.3 (2)N8—C26—C27117.97 (12)
C13—C14—H14117.8 (16)C28—C27—C32119.72 (13)
C15—C14—H14121.8 (17)C28—C27—C26124.63 (12)
C10—C15—C14120.80 (18)C32—C27—C26115.62 (13)
C10—C15—H15119.7 (13)C27—C28—C29120.19 (14)
C14—C15—H15119.5 (13)C27—C28—H28121.6 (12)
N6—C16—C10112.55 (12)C29—C28—H28118.2 (12)
N6—C16—H16A108.2 (11)C30—C29—C28118.48 (15)
C10—C16—H16A109.3 (11)C30—C29—H29120.0 (13)
N6—C16—H16B107.3 (12)C28—C29—H29121.5 (13)
C10—C16—H16B108.7 (12)C31—C30—C29122.66 (14)
H16A—C16—H16B110.8 (16)C31—C30—N9118.90 (14)
N6—C17—H17A108.4 (12)C29—C30—N9118.42 (15)
N6—C17—H17B109.0 (14)C30—C31—C32118.49 (14)
H17A—C17—H17B110.9 (18)C30—C31—H31120.1 (13)
N6—C17—H17C110.5 (14)C32—C31—H31121.3 (14)
H17A—C17—H17C110.8 (18)C31—C32—C27120.47 (16)
H17B—C17—H17C107 (2)C31—C32—H32120.0 (13)
N7—C18—H18A110.9 (15)C27—C32—H32119.6 (13)
N7—C18—H18B113.1 (17)
O2—P1—N6—C17162.93 (13)N7—C19—C20—C21112.67 (17)
N7—P1—N6—C1734.39 (15)C25—C20—C21—C220.2 (3)
N8—P1—N6—C1778.85 (14)C19—C20—C21—C22177.67 (17)
O2—P1—N6—C1629.27 (13)C20—C21—C22—C230.2 (3)
N7—P1—N6—C16157.80 (11)C21—C22—C23—C240.1 (3)
N8—P1—N6—C1688.96 (12)C22—C23—C24—C250.1 (3)
O2—P1—N7—C1867.60 (14)C21—C20—C25—C240.1 (3)
N6—P1—N7—C1856.00 (14)C19—C20—C25—C24177.82 (17)
N8—P1—N7—C18175.36 (13)C23—C24—C25—C200.1 (3)
O2—P1—N7—C1978.73 (13)P1—N8—C26—O38.3 (2)
N6—P1—N7—C19157.67 (12)P1—N8—C26—C27168.53 (10)
N8—P1—N7—C1938.30 (13)O3—C26—C27—C28175.52 (15)
O2—P1—N8—C26173.12 (12)N8—C26—C27—C287.6 (2)
N6—P1—N8—C2651.67 (14)O3—C26—C27—C326.7 (2)
N7—P1—N8—C2660.98 (14)N8—C26—C27—C32170.15 (14)
C15—C10—C11—C120.9 (2)C32—C27—C28—C290.0 (2)
C16—C10—C11—C12179.86 (15)C26—C27—C28—C29177.69 (15)
C10—C11—C12—C130.2 (3)C27—C28—C29—C300.3 (3)
C11—C12—C13—C140.6 (3)C28—C29—C30—C310.2 (3)
C12—C13—C14—C150.1 (3)C28—C29—C30—N9178.13 (15)
C11—C10—C15—C141.5 (3)O4—N9—C30—C31177.97 (17)
C16—C10—C15—C14179.55 (18)O5—N9—C30—C312.8 (2)
C13—C14—C15—C101.0 (3)O4—N9—C30—C293.7 (2)
C17—N6—C16—C1065.91 (18)O5—N9—C30—C29175.58 (17)
P1—N6—C16—C10124.93 (13)C29—C30—C31—C320.2 (3)
C11—C10—C16—N6132.44 (15)N9—C30—C31—C32178.54 (15)
C15—C10—C16—N648.6 (2)C30—C31—C32—C270.5 (3)
C18—N7—C19—C2066.18 (18)C28—C27—C32—C310.4 (2)
P1—N7—C19—C20146.04 (12)C26—C27—C32—C31177.47 (15)
N7—C19—C20—C2569.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O2i0.85 (2)2.07 (2)2.909 (2)169 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H25N4O4P
Mr452.44
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.3526 (5), 11.8150 (5), 12.2668 (4)
α, β, γ (°)77.184 (3), 81.289 (4), 71.928 (4)
V3)1117.70 (9)
Z2
Radiation typeCu Kα
µ (mm1)1.41
Crystal size (mm)0.24 × 0.14 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.941, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8669, 4203, 3779
Rint0.025
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.05
No. of reflections4203
No. of parameters390
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008, WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O2i0.85 (2)2.07 (2)2.909 (2)169 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Spanish Ministerio de Educacion y Ciencia (MAT2006–01997, MAT2010–15094 and the `Factoría de Cristalización' Consolider Ingenio 2010) and FEDER funding is acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Pourayoubi, M., Shariatinia, Z. & Mostaanzadeh, H. (2005). Polyhedron, 24, 655–662.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1031
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds