organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1059

Di­methyl 2,5-bis­­(5-hexyl­thio­phen-2-yl)benzene-1,4-dioate

aState Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
*Correspondence e-mail: xuzhg@lzu.edu.cn

(Received 26 March 2011; accepted 29 March 2011; online 7 April 2011)

In the title compound, C30H38O4S2, the centroid of the benzene ring lies on a center of inversion. The thio­phene ring is aligned at 49.8 (1)° with respect to the benzene ring. The alkyl chain adopts an extended zigzag conformation.

Related literature

The title compound and its derivatives are used in the preparation of organic semiconductors. For applications of these materials, see: Tian et al. (2010[Tian, H., Deng, Y., Pan, F., Huang, L., Yan, D., Geng, Y. & Wang, F. (2010). J. Mater. Chem. 20, 7998-8004.]); Zhang et al. (2010[Zhang, W., Smith, J., Watkins, S. E., Gysel, R., McGehee, M., Salleo, A., Kirkpatrick, J., Ashraf, S., Anthopoulos, T., Heeney, M. & McCulloch, I. (2010). J. Am. Chem. Soc. 132, 11437-11439.]). For the synthesis of related compounds, see: Fraind & Tovar (2010[Fraind, A. M. & Tovar, J. D. (2010). J. Phys. Chem. B, 114, 3104-3116.]); Gurthrie & Tovar (2008[Gurthrie, D. A. & Tovar, J. D. (2008). Org. Lett. 10, 4323-4326.]), Hotta (2001[Hotta, S. (2001). J. Heterocycl. Chem. 38, 923-927.]); Kang et al. (1997[Kang, S.-K., Kim, J.-S. & Choi, S.-C. (1997). J. Org. Chem. 62, 4208-4209.]); Lois et al. (2007[Lois, S., Florès, J.-C., Lère-Porte, J.-P., Serein-Spirau, F., Moreau, J. J. E., Miqueu, K., Sotiropoulos, J.-M., Baylère, P., Tillard, M. & Belin, C. (2007). Eur. J. Org. Chem. 4019-4031.]); Shao & Zhao (2009[Shao, M. & Zhao, Y. (2009). Tetrahedron Lett. 50, 6897-6900.]); Zhao et al. (2007[Zhao, C., Zhang, Y. & Ng, M.-K. (2007). J. Org. Chem. 72, 6364-6371.]).

[Scheme 1]

Experimental

Crystal data
  • C30H38O4S2

  • Mr = 526.72

  • Monoclinic, P 2/c

  • a = 15.617 (6) Å

  • b = 8.083 (3) Å

  • c = 11.585 (4) Å

  • β = 104.470 (4)°

  • V = 1416.0 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.35 × 0.32 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.959

  • 6083 measured reflections

  • 2490 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.04

  • 2490 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound and its derivatives are important materials for the preparation of various organic semiconductors, which could find applications in the fields of organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) or solar cells (Tian et al., 2010; Zhang et al., 2010). The device performance of these organic semiconductors are strongly dependent on the molecular packing in their crystals. This led us to pay attention to the synthesis and crystal structure of the compound. Herein, we report the synthesis and structure of the title compound, namely dimethyl 2,5-bis(5-hexylthiophen-2-yl)benzene-1,4-dioate.

The molecular structure of the title compound is shown in Fig.1. Bond lengths and angles in the molecule are within normal ranges. The bond length of C—H in the thiophene and the benzene rings is 0.93 Å and the angle formed by C—S—C in the thiophene is 92.79°. In this structure, the two thiophene rings and the benzene ring are not in the same plane, which give a dihedral angle of 49.84°.

Related literature top

The title compound and its derivatives are used in the preparation of organic semiconductors. For applications of these materials, see: Tian et al. (2010); Zhang et al. (2010). For the synthesis of related compounds, see: Fraind & Tovar (2010); Gurthrie & Tovar (2008), Hotta (2001); Kang et al. (1997); Lois et al. (2007); Shao & Zhao (2009); Zhao et al. (2007).

Experimental top

The title compound was synthesized by Suzuki cross-coupling reaction. Briefly, thiophene-2-boronic acid (2.52 g, 10.00 mmol), dimethyl 2,5-dibromobenzene-1,4-dioate (880 mg, 2.50 mmol), Pd(PPh3)4 (115 mg, 0.10 mmol) and NaHCO3 (840 mg, 10.00 mmol) were mixed in dry THF (10 ml) under argon. The mixture was stirred and refluxed for 24 hrs (monitored by TLC) to give the title compound. The product was purified by column chromatography. Colorless crystals were grown via evaporation from n-hexane and dichloromethane (10:1, v:v) mixture solvents at room temperature for X-ray diffraction.

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry operations: a = -x, 1 - y, -z.
[Figure 2] Fig. 2. Molecular packing of the title compound (I).
Dimethyl 2,5-bis(5-hexylthiophen-2-yl)benzene-1,4-dioate top
Crystal data top
C30H38O4S2F(000) = 564
Mr = 526.72Dx = 1.235 Mg m3
Monoclinic, P2/cMelting point: 362 K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.617 (6) ÅCell parameters from 1616 reflections
b = 8.083 (3) Åθ = 2.5–25.8°
c = 11.585 (4) ŵ = 0.22 mm1
β = 104.470 (4)°T = 293 K
V = 1416.0 (9) Å3Block, colorless
Z = 20.35 × 0.32 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
2490 independent reflections
Radiation source: fine-focus sealed tube1865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1618
Tmin = 0.927, Tmax = 0.959k = 89
6083 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.1877P]
where P = (Fo2 + 2Fc2)/3
2490 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C30H38O4S2V = 1416.0 (9) Å3
Mr = 526.72Z = 2
Monoclinic, P2/cMo Kα radiation
a = 15.617 (6) ŵ = 0.22 mm1
b = 8.083 (3) ÅT = 293 K
c = 11.585 (4) Å0.35 × 0.32 × 0.19 mm
β = 104.470 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2490 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1865 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.959Rint = 0.031
6083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
2490 reflectionsΔρmin = 0.23 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07441 (12)0.8250 (2)0.01209 (17)0.0320 (5)
C20.03976 (12)0.6534 (2)0.00661 (17)0.0301 (4)
C30.07574 (12)0.5472 (2)0.08892 (16)0.0309 (5)
C40.15632 (12)0.5867 (2)0.18357 (17)0.0329 (5)
C50.16918 (13)0.5716 (3)0.30285 (18)0.0411 (5)
H50.12540.53640.33880.049*
C60.25579 (14)0.6143 (3)0.36780 (19)0.0457 (6)
H60.27390.61210.45060.055*
C70.30953 (12)0.6585 (2)0.29820 (18)0.0364 (5)
C80.40559 (13)0.7071 (3)0.3327 (2)0.0480 (6)
H8A0.41220.81150.29460.058*
H8B0.43930.62460.30200.058*
C90.44453 (13)0.7245 (3)0.4653 (2)0.0472 (6)
H9A0.43760.62050.50370.057*
H9B0.41150.80800.49600.057*
C100.54203 (14)0.7720 (3)0.4984 (2)0.0504 (6)
H10A0.57500.68900.46720.060*
H10B0.54890.87640.46040.060*
C110.58113 (14)0.7884 (3)0.6310 (2)0.0539 (6)
H11A0.54660.86880.66210.065*
H11B0.57520.68300.66820.065*
C120.67691 (15)0.8399 (3)0.6673 (2)0.0581 (7)
H12A0.71150.76180.63420.070*
H12B0.68270.94750.63300.070*
C130.71464 (18)0.8491 (3)0.7999 (2)0.0792 (9)
H13A0.68160.92770.83340.119*
H13B0.77540.88330.81640.119*
H13C0.71110.74220.83450.119*
C140.03448 (12)0.3957 (2)0.09348 (17)0.0327 (5)
H140.05740.32480.15690.039*
C150.11166 (16)1.0295 (3)0.1356 (2)0.0549 (6)
H15A0.06821.10600.12180.082*
H15B0.11811.04340.21530.082*
H15C0.16731.05030.07970.082*
O10.08339 (9)0.86154 (16)0.12051 (12)0.0441 (4)
O20.09033 (9)0.91985 (17)0.07033 (12)0.0444 (4)
S10.25288 (3)0.65154 (7)0.15037 (5)0.0447 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (10)0.0378 (11)0.0301 (12)0.0019 (8)0.0026 (9)0.0002 (9)
C20.0278 (10)0.0345 (10)0.0280 (11)0.0041 (8)0.0071 (8)0.0029 (9)
C30.0264 (10)0.0364 (11)0.0283 (12)0.0025 (8)0.0039 (8)0.0035 (9)
C40.0285 (10)0.0340 (10)0.0337 (12)0.0047 (8)0.0031 (9)0.0004 (9)
C50.0347 (12)0.0546 (13)0.0321 (13)0.0116 (10)0.0048 (9)0.0031 (10)
C60.0422 (13)0.0577 (14)0.0311 (13)0.0109 (10)0.0025 (10)0.0009 (10)
C70.0282 (10)0.0383 (11)0.0379 (13)0.0035 (9)0.0010 (9)0.0023 (9)
C80.0298 (11)0.0531 (13)0.0562 (16)0.0086 (10)0.0017 (11)0.0064 (11)
C90.0319 (12)0.0486 (13)0.0535 (15)0.0053 (10)0.0032 (11)0.0030 (11)
C100.0336 (12)0.0491 (13)0.0603 (17)0.0045 (10)0.0037 (11)0.0043 (12)
C110.0404 (13)0.0528 (14)0.0580 (17)0.0087 (11)0.0072 (12)0.0015 (12)
C120.0387 (13)0.0582 (15)0.0659 (18)0.0052 (11)0.0086 (12)0.0039 (13)
C130.0651 (18)0.085 (2)0.066 (2)0.0177 (15)0.0225 (15)0.0089 (16)
C140.0298 (10)0.0379 (11)0.0279 (11)0.0003 (8)0.0023 (9)0.0011 (9)
C150.0672 (16)0.0483 (14)0.0546 (16)0.0134 (12)0.0257 (13)0.0083 (11)
O10.0577 (10)0.0423 (9)0.0349 (9)0.0128 (7)0.0162 (7)0.0015 (6)
O20.0542 (9)0.0409 (8)0.0345 (9)0.0097 (7)0.0039 (7)0.0071 (7)
S10.0315 (3)0.0660 (4)0.0355 (4)0.0110 (3)0.0062 (2)0.0034 (3)
Geometric parameters (Å, º) top
C1—O21.201 (2)C9—H9B0.9700
C1—O11.331 (2)C10—C111.510 (3)
C1—C21.496 (3)C10—H10A0.9700
C2—C14i1.390 (3)C10—H10B0.9700
C2—C31.403 (3)C11—C121.508 (3)
C3—C141.391 (3)C11—H11A0.9700
C3—C41.483 (2)C11—H11B0.9700
C4—C51.351 (3)C12—C131.503 (3)
C4—S11.728 (2)C12—H12A0.9700
C5—C61.416 (3)C12—H12B0.9700
C5—H50.9300C13—H13A0.9600
C6—C71.349 (3)C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—C81.505 (3)C14—C2i1.390 (3)
C7—S11.721 (2)C14—H140.9300
C8—C91.511 (3)C15—O11.452 (2)
C8—H8A0.9700C15—H15A0.9600
C8—H8B0.9700C15—H15B0.9600
C9—C101.523 (3)C15—H15C0.9600
C9—H9A0.9700
O2—C1—O1123.96 (18)C11—C10—H10A108.8
O2—C1—C2124.28 (18)C9—C10—H10A108.8
O1—C1—C2111.74 (16)C11—C10—H10B108.8
C14i—C2—C3119.57 (16)C9—C10—H10B108.8
C14i—C2—C1118.65 (16)H10A—C10—H10B107.7
C3—C2—C1121.56 (16)C12—C11—C10115.4 (2)
C14—C3—C2118.10 (17)C12—C11—H11A108.4
C14—C3—C4118.50 (17)C10—C11—H11A108.4
C2—C3—C4123.39 (17)C12—C11—H11B108.4
C5—C4—C3128.22 (18)C10—C11—H11B108.4
C5—C4—S1109.88 (14)H11A—C11—H11B107.5
C3—C4—S1121.82 (14)C13—C12—C11114.0 (2)
C4—C5—C6113.54 (19)C13—C12—H12A108.7
C4—C5—H5123.2C11—C12—H12A108.7
C6—C5—H5123.2C13—C12—H12B108.7
C7—C6—C5113.65 (19)C11—C12—H12B108.7
C7—C6—H6123.2H12A—C12—H12B107.6
C5—C6—H6123.2C12—C13—H13A109.5
C6—C7—C8129.7 (2)C12—C13—H13B109.5
C6—C7—S1110.14 (15)H13A—C13—H13B109.5
C8—C7—S1120.20 (16)C12—C13—H13C109.5
C7—C8—C9114.55 (19)H13A—C13—H13C109.5
C7—C8—H8A108.6H13B—C13—H13C109.5
C9—C8—H8A108.6C2i—C14—C3122.33 (18)
C7—C8—H8B108.6C2i—C14—H14118.8
C9—C8—H8B108.6C3—C14—H14118.8
H8A—C8—H8B107.6O1—C15—H15A109.5
C8—C9—C10113.74 (19)O1—C15—H15B109.5
C8—C9—H9A108.8H15A—C15—H15B109.5
C10—C9—H9A108.8O1—C15—H15C109.5
C8—C9—H9B108.8H15A—C15—H15C109.5
C10—C9—H9B108.8H15B—C15—H15C109.5
H9A—C9—H9B107.7C1—O1—C15115.35 (16)
C11—C10—C9113.8 (2)C7—S1—C492.78 (10)
O2—C1—C2—C14i129.1 (2)C5—C6—C7—S11.1 (2)
O1—C1—C2—C14i49.3 (2)C6—C7—C8—C96.6 (3)
O2—C1—C2—C345.5 (3)S1—C7—C8—C9174.20 (15)
O1—C1—C2—C3136.11 (18)C7—C8—C9—C10179.42 (19)
C14i—C2—C3—C140.7 (3)C8—C9—C10—C11179.62 (19)
C1—C2—C3—C14173.85 (17)C9—C10—C11—C12178.4 (2)
C14i—C2—C3—C4178.01 (17)C10—C11—C12—C13177.9 (2)
C1—C2—C3—C47.4 (3)C2—C3—C14—C2i0.7 (3)
C14—C3—C4—C548.0 (3)C4—C3—C14—C2i178.05 (17)
C2—C3—C4—C5133.3 (2)O2—C1—O1—C152.0 (3)
C14—C3—C4—S1128.25 (17)C2—C1—O1—C15176.42 (16)
C2—C3—C4—S150.5 (2)C6—C7—S1—C40.48 (17)
C3—C4—C5—C6177.57 (18)C8—C7—S1—C4178.84 (17)
S1—C4—C5—C60.9 (2)C5—C4—S1—C70.28 (16)
C4—C5—C6—C71.4 (3)C3—C4—S1—C7177.16 (16)
C5—C6—C7—C8178.1 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H38O4S2
Mr526.72
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)15.617 (6), 8.083 (3), 11.585 (4)
β (°) 104.470 (4)
V3)1416.0 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.35 × 0.32 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.927, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
6083, 2490, 1865
Rint0.031
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.04
No. of reflections2490
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (NSFC; 20872055, 21073079, J0730425) and the 111 project.

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFraind, A. M. & Tovar, J. D. (2010). J. Phys. Chem. B, 114, 3104–3116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGurthrie, D. A. & Tovar, J. D. (2008). Org. Lett. 10, 4323–4326.  Web of Science PubMed Google Scholar
First citationHotta, S. (2001). J. Heterocycl. Chem. 38, 923–927.  CrossRef CAS Google Scholar
First citationKang, S.-K., Kim, J.-S. & Choi, S.-C. (1997). J. Org. Chem. 62, 4208–4209.  CrossRef PubMed CAS Google Scholar
First citationLois, S., Florès, J.-C., Lère-Porte, J.-P., Serein-Spirau, F., Moreau, J. J. E., Miqueu, K., Sotiropoulos, J.-M., Baylère, P., Tillard, M. & Belin, C. (2007). Eur. J. Org. Chem. 4019–4031.  Google Scholar
First citationShao, M. & Zhao, Y. (2009). Tetrahedron Lett. 50, 6897–6900.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, H., Deng, Y., Pan, F., Huang, L., Yan, D., Geng, Y. & Wang, F. (2010). J. Mater. Chem. 20, 7998-8004.  CrossRef CAS Google Scholar
First citationZhang, W., Smith, J., Watkins, S. E., Gysel, R., McGehee, M., Salleo, A., Kirkpatrick, J., Ashraf, S., Anthopoulos, T., Heeney, M. & McCulloch, I. (2010). J. Am. Chem. Soc. 132, 11437–11439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, C., Zhang, Y. & Ng, M.-K. (2007). J. Org. Chem. 72, 6364–6371.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1059
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds