metal-organic compounds
Poly[μ2-chlorido-dichlorido[μ2-4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine]copper(I)copper(II)]
aDepartment of Applied Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China, and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: zstu_zhuchaoying@126.com
In the mixed-valence CuI/CuII coordination polymer, [Cu2Cl3(C20H14N4)]n, the two Cu atoms are bridged to a pair of Cl atoms across a centre of inversion. The monovalent metal atoms is coordinated by a pyridine N atom as well as by three Cl atoms in a tetrahedral CuNCl3 geometry. The divalent metal atom is N,N′,N′′-chelated by the heterocycle, and it exists in a square-pyramidal CuN3Cl2 geometry; the apical site is occupied by the second bridging Cl atom. The bridging modes of the Cl atoms and the heterocycle give rise to the formation of a layered arrangement parallel to (001).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811014759/ng5143sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811014759/ng5143Isup2.hkl
The mixture of CuCl (0.020 g, 0.2 mmol), 4'-(4-pyridyl)-2,2':6'2''-terpyridine (pyterpy) (0.062 g, 0.1 mmol), and acetonitrile (6 ml) were placed and sealed in a 15 ml Teflon-lined stainless steel reactor and heated to 180 °C for 72 h, then cooled down to room temperature at a rate of 2 °C/ 20 min. Single crystals suitable for X-ray diffraction were obtained in the form of black bars in ca 20% yield.
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C)
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound. | |
Fig. 2. The 1-D zigzag chain structure of the title compoud. |
[Cu2Cl3(C20H14N4)] | Z = 2 |
Mr = 543.78 | F(000) = 542 |
Triclinic, P1 | Dx = 1.849 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1389 (8) Å | Cell parameters from 1056 reflections |
b = 9.8161 (10) Å | θ = 2.4–26.0° |
c = 12.4823 (13) Å | µ = 2.60 mm−1 |
α = 79.512 (2)° | T = 294 K |
β = 85.036 (2)° | Block, black |
γ = 88.202 (2)° | 0.15 × 0.12 × 0.10 mm |
V = 976.78 (17) Å3 |
Bruker SMART diffractometer | 3778 independent reflections |
Radiation source: fine-focus sealed tube | 3391 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→9 |
Tmin = 0.694, Tmax = 0.771 | k = −12→12 |
7840 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3983P] where P = (Fo2 + 2Fc2)/3 |
3778 reflections | (Δ/σ)max = 0.002 |
262 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Cu2Cl3(C20H14N4)] | γ = 88.202 (2)° |
Mr = 543.78 | V = 976.78 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1389 (8) Å | Mo Kα radiation |
b = 9.8161 (10) Å | µ = 2.60 mm−1 |
c = 12.4823 (13) Å | T = 294 K |
α = 79.512 (2)° | 0.15 × 0.12 × 0.10 mm |
β = 85.036 (2)° |
Bruker SMART diffractometer | 3778 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3391 reflections with I > 2σ(I) |
Tmin = 0.694, Tmax = 0.771 | Rint = 0.014 |
7840 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.40 e Å−3 |
3778 reflections | Δρmin = −0.34 e Å−3 |
262 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.55686 (3) | 0.36696 (3) | −0.35707 (2) | 0.02849 (9) | |
Cu2 | 1.49349 (3) | 0.14312 (3) | −0.05428 (3) | 0.04087 (10) | |
Cl1 | 1.36557 (7) | −0.05058 (6) | −0.10452 (5) | 0.03600 (14) | |
Cl3 | 1.68201 (7) | 0.25884 (6) | −0.18347 (5) | 0.03968 (15) | |
Cl2 | 1.73952 (7) | 0.30031 (7) | −0.48213 (5) | 0.04485 (16) | |
C16 | 0.4539 (2) | 0.3584 (2) | 0.30399 (17) | 0.0271 (4) | |
N2 | 0.6324 (2) | 0.54582 (18) | 0.28869 (14) | 0.0266 (4) | |
N4 | 1.2937 (2) | 0.24557 (19) | 0.00438 (16) | 0.0332 (4) | |
N3 | 0.3521 (2) | 0.43980 (19) | 0.35802 (14) | 0.0299 (4) | |
N1 | 0.6210 (2) | 0.77686 (18) | 0.35354 (14) | 0.0288 (4) | |
C11 | 1.3087 (3) | 0.3651 (2) | 0.03817 (19) | 0.0333 (5) | |
H11 | 1.4103 | 0.4084 | 0.0239 | 0.040* | |
C15 | 0.6150 (2) | 0.4212 (2) | 0.26284 (17) | 0.0265 (4) | |
C14 | 0.7417 (2) | 0.3610 (2) | 0.20518 (17) | 0.0282 (4) | |
H14 | 0.7274 | 0.2755 | 0.1854 | 0.034* | |
C9 | 1.0297 (2) | 0.3681 (2) | 0.11560 (17) | 0.0273 (4) | |
C8 | 0.8918 (2) | 0.4302 (2) | 0.17696 (17) | 0.0260 (4) | |
C6 | 0.7742 (2) | 0.6135 (2) | 0.26509 (17) | 0.0270 (4) | |
C7 | 0.9077 (2) | 0.5576 (2) | 0.20962 (17) | 0.0286 (4) | |
H7 | 1.0068 | 0.6047 | 0.1944 | 0.034* | |
C10 | 1.1832 (3) | 0.4291 (2) | 0.09312 (19) | 0.0324 (5) | |
H10 | 1.2014 | 0.5126 | 0.1150 | 0.039* | |
C1 | 0.6025 (3) | 0.8956 (2) | 0.39099 (19) | 0.0355 (5) | |
H1 | 0.5002 | 0.9170 | 0.4237 | 0.043* | |
C3 | 0.8787 (3) | 0.9570 (3) | 0.3336 (2) | 0.0464 (6) | |
H3 | 0.9655 | 1.0182 | 0.3272 | 0.056* | |
C18 | 0.2576 (3) | 0.1787 (3) | 0.3369 (2) | 0.0415 (6) | |
H18 | 0.2260 | 0.0904 | 0.3308 | 0.050* | |
C4 | 0.9006 (3) | 0.8347 (2) | 0.2933 (2) | 0.0404 (6) | |
H4 | 1.0018 | 0.8122 | 0.2598 | 0.049* | |
C5 | 0.7688 (3) | 0.7472 (2) | 0.30392 (17) | 0.0286 (4) | |
C17 | 0.4102 (3) | 0.2284 (2) | 0.29147 (19) | 0.0335 (5) | |
H17 | 0.4816 | 0.1749 | 0.2532 | 0.040* | |
C2 | 0.7283 (3) | 0.9875 (3) | 0.3832 (2) | 0.0411 (6) | |
H2 | 0.7120 | 1.0691 | 0.4109 | 0.049* | |
C13 | 1.0125 (3) | 0.2455 (3) | 0.0776 (2) | 0.0465 (7) | |
H13 | 0.9113 | 0.2014 | 0.0886 | 0.056* | |
C20 | 0.2040 (3) | 0.3911 (3) | 0.40001 (19) | 0.0368 (5) | |
H20 | 0.1330 | 0.4468 | 0.4364 | 0.044* | |
C19 | 0.1529 (3) | 0.2610 (3) | 0.3913 (2) | 0.0420 (6) | |
H19 | 0.0496 | 0.2296 | 0.4216 | 0.050* | |
C12 | 1.1452 (3) | 0.1887 (3) | 0.0232 (2) | 0.0480 (7) | |
H12 | 1.1300 | 0.1065 | −0.0014 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02035 (14) | 0.03193 (16) | 0.03487 (16) | 0.00211 (10) | 0.00583 (10) | −0.01466 (11) |
Cu2 | 0.02869 (16) | 0.04265 (18) | 0.0509 (2) | 0.00035 (12) | 0.01106 (13) | −0.01440 (14) |
Cl1 | 0.0362 (3) | 0.0355 (3) | 0.0399 (3) | −0.0021 (2) | −0.0025 (2) | −0.0165 (2) |
Cl3 | 0.0261 (3) | 0.0494 (3) | 0.0401 (3) | −0.0083 (2) | 0.0011 (2) | 0.0003 (3) |
Cl2 | 0.0350 (3) | 0.0568 (4) | 0.0461 (3) | 0.0020 (3) | 0.0134 (2) | −0.0265 (3) |
C16 | 0.0199 (10) | 0.0300 (11) | 0.0308 (11) | 0.0016 (8) | 0.0031 (8) | −0.0069 (9) |
N2 | 0.0191 (8) | 0.0270 (9) | 0.0340 (9) | 0.0018 (7) | 0.0035 (7) | −0.0092 (7) |
N4 | 0.0229 (9) | 0.0345 (10) | 0.0428 (11) | 0.0016 (7) | 0.0081 (8) | −0.0140 (8) |
N3 | 0.0234 (9) | 0.0323 (10) | 0.0334 (10) | 0.0012 (7) | 0.0061 (7) | −0.0085 (8) |
N1 | 0.0244 (9) | 0.0311 (9) | 0.0335 (9) | 0.0033 (7) | −0.0003 (7) | −0.0143 (8) |
C11 | 0.0208 (10) | 0.0339 (12) | 0.0455 (13) | −0.0020 (9) | 0.0067 (9) | −0.0120 (10) |
C15 | 0.0211 (10) | 0.0263 (10) | 0.0319 (11) | 0.0001 (8) | 0.0028 (8) | −0.0073 (8) |
C14 | 0.0228 (10) | 0.0270 (10) | 0.0359 (11) | −0.0002 (8) | 0.0051 (8) | −0.0121 (9) |
C9 | 0.0217 (10) | 0.0289 (11) | 0.0315 (11) | 0.0030 (8) | 0.0033 (8) | −0.0092 (9) |
C8 | 0.0211 (10) | 0.0285 (11) | 0.0291 (10) | 0.0023 (8) | 0.0016 (8) | −0.0094 (8) |
C6 | 0.0203 (10) | 0.0284 (11) | 0.0331 (11) | 0.0024 (8) | 0.0015 (8) | −0.0099 (9) |
C7 | 0.0199 (10) | 0.0309 (11) | 0.0365 (12) | −0.0011 (8) | 0.0035 (8) | −0.0125 (9) |
C10 | 0.0235 (11) | 0.0306 (11) | 0.0452 (13) | −0.0013 (9) | 0.0034 (9) | −0.0149 (10) |
C1 | 0.0316 (12) | 0.0363 (12) | 0.0416 (13) | 0.0062 (10) | 0.0012 (10) | −0.0184 (10) |
C3 | 0.0365 (13) | 0.0401 (14) | 0.0682 (18) | −0.0090 (11) | −0.0012 (12) | −0.0244 (13) |
C18 | 0.0294 (12) | 0.0366 (13) | 0.0583 (16) | −0.0068 (10) | 0.0024 (11) | −0.0096 (11) |
C4 | 0.0261 (11) | 0.0393 (13) | 0.0595 (15) | −0.0017 (10) | 0.0031 (10) | −0.0213 (12) |
C5 | 0.0238 (10) | 0.0294 (11) | 0.0342 (11) | 0.0038 (8) | −0.0005 (8) | −0.0117 (9) |
C17 | 0.0232 (11) | 0.0334 (12) | 0.0444 (13) | −0.0002 (9) | 0.0043 (9) | −0.0115 (10) |
C2 | 0.0433 (14) | 0.0348 (13) | 0.0504 (14) | 0.0015 (10) | −0.0019 (11) | −0.0231 (11) |
C13 | 0.0246 (11) | 0.0452 (14) | 0.0749 (18) | −0.0108 (10) | 0.0186 (11) | −0.0334 (13) |
C20 | 0.0240 (11) | 0.0434 (13) | 0.0411 (13) | 0.0019 (10) | 0.0092 (9) | −0.0087 (10) |
C19 | 0.0225 (11) | 0.0462 (14) | 0.0538 (15) | −0.0075 (10) | 0.0082 (10) | −0.0044 (12) |
C12 | 0.0326 (13) | 0.0413 (14) | 0.0762 (19) | −0.0075 (11) | 0.0179 (12) | −0.0361 (13) |
Cu1—N2i | 1.9466 (16) | C14—H14 | 0.9300 |
Cu1—N1i | 2.0455 (18) | C9—C10 | 1.387 (3) |
Cu1—N3i | 2.0557 (18) | C9—C13 | 1.387 (3) |
Cu1—Cl2 | 2.2325 (6) | C9—C8 | 1.483 (3) |
Cu1—Cl3 | 2.5172 (6) | C8—C7 | 1.397 (3) |
Cu2—N4 | 2.0374 (18) | C6—C7 | 1.390 (3) |
Cu2—Cl3 | 2.2933 (6) | C6—C5 | 1.478 (3) |
Cu2—Cl1ii | 2.3964 (7) | C7—H7 | 0.9300 |
Cu2—Cl1 | 2.4007 (6) | C10—H10 | 0.9300 |
Cu2—Cu2ii | 2.8917 (7) | C1—C2 | 1.371 (3) |
Cl1—Cu2ii | 2.3964 (7) | C1—H1 | 0.9300 |
C16—N3 | 1.355 (3) | C3—C2 | 1.373 (3) |
C16—C17 | 1.375 (3) | C3—C4 | 1.385 (3) |
C16—C15 | 1.477 (3) | C3—H3 | 0.9300 |
N2—C6 | 1.333 (3) | C18—C19 | 1.377 (3) |
N2—C15 | 1.335 (3) | C18—C17 | 1.385 (3) |
N2—Cu1i | 1.9466 (16) | C18—H18 | 0.9300 |
N4—C11 | 1.330 (3) | C4—C5 | 1.377 (3) |
N4—C12 | 1.332 (3) | C4—H4 | 0.9300 |
N3—C20 | 1.339 (3) | C17—H17 | 0.9300 |
N3—Cu1i | 2.0557 (18) | C2—H2 | 0.9300 |
N1—C1 | 1.332 (3) | C13—C12 | 1.382 (3) |
N1—C5 | 1.353 (3) | C13—H13 | 0.9300 |
N1—Cu1i | 2.0455 (18) | C20—C19 | 1.381 (3) |
C11—C10 | 1.380 (3) | C20—H20 | 0.9300 |
C11—H11 | 0.9300 | C19—H19 | 0.9300 |
C15—C14 | 1.385 (3) | C12—H12 | 0.9300 |
C14—C8 | 1.403 (3) | ||
N2i—Cu1—N1i | 78.97 (7) | C10—C9—C8 | 121.92 (19) |
N2i—Cu1—N3i | 79.19 (7) | C13—C9—C8 | 121.8 (2) |
N1i—Cu1—N3i | 156.19 (7) | C7—C8—C14 | 118.17 (18) |
N2i—Cu1—Cl2 | 162.20 (6) | C7—C8—C9 | 121.33 (19) |
N1i—Cu1—Cl2 | 99.27 (5) | C14—C8—C9 | 120.49 (19) |
N3i—Cu1—Cl2 | 98.61 (5) | N2—C6—C7 | 120.70 (19) |
N2i—Cu1—Cl3 | 96.91 (5) | N2—C6—C5 | 112.78 (17) |
N1i—Cu1—Cl3 | 97.93 (5) | C7—C6—C5 | 126.51 (19) |
N3i—Cu1—Cl3 | 93.99 (5) | C6—C7—C8 | 119.42 (19) |
Cl2—Cu1—Cl3 | 100.87 (2) | C6—C7—H7 | 120.3 |
N4—Cu2—Cl3 | 120.37 (6) | C8—C7—H7 | 120.3 |
N4—Cu2—Cl1ii | 104.34 (6) | C11—C10—C9 | 119.6 (2) |
Cl3—Cu2—Cl1ii | 107.93 (2) | C11—C10—H10 | 120.2 |
N4—Cu2—Cl1 | 101.32 (6) | C9—C10—H10 | 120.2 |
Cl3—Cu2—Cl1 | 115.66 (2) | N1—C1—C2 | 122.6 (2) |
Cl1ii—Cu2—Cl1 | 105.86 (2) | N1—C1—H1 | 118.7 |
N4—Cu2—Cu2ii | 111.61 (6) | C2—C1—H1 | 118.7 |
Cl3—Cu2—Cu2ii | 127.92 (2) | C2—C3—C4 | 119.6 (2) |
Cl1ii—Cu2—Cu2ii | 52.998 (16) | C2—C3—H3 | 120.2 |
Cl1—Cu2—Cu2ii | 52.861 (18) | C4—C3—H3 | 120.2 |
Cu2ii—Cl1—Cu2 | 74.14 (2) | C19—C18—C17 | 119.5 (2) |
Cu2—Cl3—Cu1 | 112.90 (2) | C19—C18—H18 | 120.2 |
N3—C16—C17 | 122.26 (19) | C17—C18—H18 | 120.2 |
N3—C16—C15 | 113.85 (18) | C5—C4—C3 | 118.4 (2) |
C17—C16—C15 | 123.88 (18) | C5—C4—H4 | 120.8 |
C6—N2—C15 | 121.47 (17) | C3—C4—H4 | 120.8 |
C6—N2—Cu1i | 119.54 (14) | N1—C5—C4 | 121.9 (2) |
C15—N2—Cu1i | 118.95 (14) | N1—C5—C6 | 113.76 (18) |
C11—N4—C12 | 116.29 (19) | C4—C5—C6 | 124.37 (19) |
C11—N4—Cu2 | 121.51 (15) | C16—C17—C18 | 118.6 (2) |
C12—N4—Cu2 | 121.71 (15) | C16—C17—H17 | 120.7 |
C20—N3—C16 | 118.36 (19) | C18—C17—H17 | 120.7 |
C20—N3—Cu1i | 127.42 (15) | C1—C2—C3 | 118.8 (2) |
C16—N3—Cu1i | 114.11 (14) | C1—C2—H2 | 120.6 |
C1—N1—C5 | 118.65 (19) | C3—C2—H2 | 120.6 |
C1—N1—Cu1i | 126.56 (15) | C12—C13—C9 | 120.2 (2) |
C5—N1—Cu1i | 114.75 (14) | C12—C13—H13 | 119.9 |
N4—C11—C10 | 124.2 (2) | C9—C13—H13 | 119.9 |
N4—C11—H11 | 117.9 | N3—C20—C19 | 122.4 (2) |
C10—C11—H11 | 117.9 | N3—C20—H20 | 118.8 |
N2—C15—C14 | 120.84 (19) | C19—C20—H20 | 118.8 |
N2—C15—C16 | 113.24 (17) | C18—C19—C20 | 118.9 (2) |
C14—C15—C16 | 125.90 (19) | C18—C19—H19 | 120.6 |
C15—C14—C8 | 119.30 (19) | C20—C19—H19 | 120.6 |
C15—C14—H14 | 120.4 | N4—C12—C13 | 123.4 (2) |
C8—C14—H14 | 120.4 | N4—C12—H12 | 118.3 |
C10—C9—C13 | 116.26 (19) | C13—C12—H12 | 118.3 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl3(C20H14N4)] |
Mr | 543.78 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 8.1389 (8), 9.8161 (10), 12.4823 (13) |
α, β, γ (°) | 79.512 (2), 85.036 (2), 88.202 (2) |
V (Å3) | 976.78 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.60 |
Crystal size (mm) | 0.15 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.694, 0.771 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7840, 3778, 3391 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.072, 1.06 |
No. of reflections | 3778 |
No. of parameters | 262 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.34 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
References
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825–7832. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, S.-S., Zhan, S.-Z., Li, M., Peng, R. & Li, D. (2007). Inorg. Chem. 46, 4365–4367. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Terpyridine and its derivatives have been receiving rapidly increasing attention recently not only because of their versatility as building blocks in supramolecular assembles, but also due to the interesting electronic, photonic and magnetic properties of their transition metal complexes.
4'-(4-Pyridyl)-2,2':6'2''-terpyridine(pyterpy) belongs to this group of ligands and has usually been used to construct a great variety of structurally interesting entities, such as ribbon-type coordination polymers (Hou et al., 2005) and self-catenated networks (Zhang et al., 2007).
The structure of the title compound (I) is shown in Fig. 1. Single-crystal X-ray diffraction shows that the asymmetric unit contains two Cu crystallographically nonequivalent atoms. The Cu1 atom has a distorted square-pyramidal coordination formed by three N atoms of tridentate 4'-(4-pyridyl)-2,2':6'2''-terpyridine (pyterpy) ligand and two Cl atoms. The Cu2 atom is coordinated by one N atom from the pendent monodentate pyridine of pyterpy as well as by three Cl atoms, conferring a tetrahedral coordination geometry. The two terpy ligands in a transoid arrangement link Cu1 and Cu2 atoms, to form a mixed-valence tetrameric M4L4 rectangular unit with a separation of 11.017 Å, which is smaller than those in reported ribbon-type compounds, and then linked by a Cu2Cl2 cluster, leading to the formation of an infinite 1-D coordination polymer (Fig. 2).