organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1105

Di­methyl­ammonium 2-[(2-oxo-2H-chromen-7-yl)­­oxy]acetate

aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: dongfx@jlu.edu.cn

(Received 1 April 2011; accepted 6 April 2011; online 13 April 2011)

In the title salt, C2H8N+·C11H7O5, the acetate group is twisted out of the plane of the coumarin ring system with a C—O—C—C torsion angle of 76.3 (2)°. In the crystal, N—H⋯O hydrogen bonds link the cations and anions into chains propagating in [100].

Related literature

For the synthesis, see Matsuda et al. (2000[Matsuda, T., Mizutani, M. & Arnold, S. C. (2000). Macromolecules, 33, 795-800.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8N+·C11H7O5

  • Mr = 265.26

  • Triclinic, [P \overline 1]

  • a = 6.714 (5) Å

  • b = 8.146 (7) Å

  • c = 12.767 (12) Å

  • α = 83.33 (4)°

  • β = 79.16 (3)°

  • γ = 67.78 (3)°

  • V = 634.1 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.44 × 0.22 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.986

  • 6310 measured reflections

  • 2881 independent reflections

  • 1878 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.131

  • S = 0.93

  • 2881 reflections

  • 182 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.90 (1) 1.92 (1) 2.799 (2) 166 (2)
N1—H1B⋯O5i 0.90 (1) 1.86 (1) 2.729 (3) 160 (2)
Symmetry code: (i) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin derivatives have been widely studied due to the applications in medicine and optical materials. In this paper, we report the synthesis and crystal structure of the title compound, which is a type of carboxyl modified coumarin derivative.

In the title compound, the acetate group twist outside the plane of coumarin group with a C7—O3—C10—C11 torsion angle of 76.3 (2). The hydrogen atom of carboxyl transfer to the dimethylamine molecule forming N—H···O hydrogen bonding interaction (Figure 1).

In the crystal structure of the title compound, the N—H···O hydrogen bonds bewteen coumarin anions and dimethylammonium cations link them to form a chain structure (Figure 2, Table 1).

Related literature top

For the synthesis, see Matsuda et al. (2000).

Experimental top

A mixture of 7-hydroxycoumarin (0.16 g, 1.0 mmol), potassium carbonate (0.20 g, 1.4 mmol), ethyl bromoacetate (0.20 g, 1.2 mmol), and dry acetone (30 ml) was refluxed for 4 h while stirring in a N2 atmosphere. After removal of salt by filtration, the resulting ester was recrystallized from ethanol. After then, the carboxylic acid derivatives was obtained through refluxing in sodium hydroxide solution and protonized with HCl. Mix the obtained carboxylic acid derivatives with dimethylamine with molar ratio of 1:1 in methanol, needle-like crystals of title compound were obtained after several days.

Refinement top

The reflection data (2 3 2) had been omit in the refinement. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). The N-bound H atoms were initially located in a difference Fourier map and they were refined with N—H=0.90 Å.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions.
[Figure 2] Fig. 2. A partial packing view, showing the hydrogen-bonding chain structure. Dashed lines indicate the hydrogen bonds, no involving H atoms have been omitted for clarity.
Dimethylammonium 2-[(2-oxo-2H-chromen-7-yl)oxy]acetate top
Crystal data top
C2H8N+·C11H7O5Z = 2
Mr = 265.26F(000) = 280
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.714 (5) ÅCell parameters from 4269 reflections
b = 8.146 (7) Åθ = 3.1–27.5°
c = 12.767 (12) ŵ = 0.11 mm1
α = 83.33 (4)°T = 293 K
β = 79.16 (3)°Block, colorless
γ = 67.78 (3)°0.44 × 0.22 × 0.14 mm
V = 634.1 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2881 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.955, Tmax = 0.986k = 1010
6310 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.0078P]
where P = (Fo2 + 2Fc2)/3
2881 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C2H8N+·C11H7O5γ = 67.78 (3)°
Mr = 265.26V = 634.1 (9) Å3
Triclinic, P1Z = 2
a = 6.714 (5) ÅMo Kα radiation
b = 8.146 (7) ŵ = 0.11 mm1
c = 12.767 (12) ÅT = 293 K
α = 83.33 (4)°0.44 × 0.22 × 0.14 mm
β = 79.16 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2881 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1878 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.986Rint = 0.026
6310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.17 e Å3
2881 reflectionsΔρmin = 0.16 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1702 (2)0.71671 (17)0.56112 (12)0.0410 (3)
C10.4408 (3)0.6603 (2)1.12637 (14)0.0474 (4)
C20.2575 (3)0.6054 (3)1.16133 (14)0.0509 (4)
H20.24900.54121.22610.061*
C30.0990 (3)0.6456 (2)1.10186 (14)0.0492 (4)
H30.02000.61201.12700.059*
C40.1103 (2)0.7390 (2)1.00064 (12)0.0390 (4)
C50.0479 (2)0.7886 (2)0.93318 (14)0.0469 (4)
H50.17340.76280.95530.056*
C60.0222 (2)0.8737 (2)0.83609 (13)0.0441 (4)
H60.12940.90530.79290.053*
C70.1668 (2)0.9134 (2)0.80145 (12)0.0352 (3)
C80.3255 (2)0.8682 (2)0.86578 (12)0.0377 (4)
H80.45100.89420.84350.045*
C90.2930 (2)0.7836 (2)0.96401 (12)0.0366 (4)
C100.3639 (2)1.0429 (2)0.66355 (12)0.0366 (4)
H10A0.39511.09510.72010.044*
H10B0.32991.13240.60570.044*
C110.5675 (2)0.8869 (2)0.62315 (12)0.0340 (3)
C120.1952 (3)0.7031 (3)0.44443 (15)0.0557 (5)
H12A0.06620.69490.42710.084*
H12B0.31870.59910.42230.084*
H12C0.21680.80650.40810.084*
C130.1659 (3)0.5537 (3)0.62202 (18)0.0646 (5)
H13A0.28100.45300.58940.097*
H13B0.02810.54300.62250.097*
H13C0.18560.55840.69400.097*
O10.5856 (2)0.6407 (2)1.17600 (11)0.0675 (4)
O20.45322 (16)0.74415 (16)1.02652 (9)0.0459 (3)
O30.17667 (14)0.99754 (15)0.70317 (8)0.0410 (3)
O40.54894 (16)0.75011 (15)0.60073 (10)0.0472 (3)
O50.73879 (16)0.91839 (17)0.61151 (11)0.0571 (4)
H1B0.040 (2)0.802 (2)0.5816 (16)0.067 (6)*
H1A0.279 (2)0.747 (3)0.5738 (16)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0340 (6)0.0366 (7)0.0567 (9)0.0137 (5)0.0116 (6)0.0086 (6)
C10.0462 (9)0.0598 (11)0.0368 (9)0.0195 (8)0.0072 (7)0.0023 (8)
C20.0554 (10)0.0640 (11)0.0366 (9)0.0294 (9)0.0012 (8)0.0013 (8)
C30.0459 (9)0.0642 (11)0.0437 (10)0.0311 (8)0.0046 (7)0.0071 (9)
C40.0322 (7)0.0512 (9)0.0375 (9)0.0207 (6)0.0018 (6)0.0102 (7)
C50.0318 (7)0.0694 (11)0.0474 (10)0.0274 (7)0.0002 (7)0.0124 (9)
C60.0289 (7)0.0650 (11)0.0413 (9)0.0179 (7)0.0062 (6)0.0105 (8)
C70.0275 (7)0.0447 (8)0.0315 (8)0.0107 (6)0.0008 (6)0.0087 (7)
C80.0267 (7)0.0534 (9)0.0358 (8)0.0189 (6)0.0009 (6)0.0046 (7)
C90.0280 (7)0.0492 (9)0.0345 (8)0.0152 (6)0.0035 (6)0.0080 (7)
C100.0345 (7)0.0388 (8)0.0361 (8)0.0131 (6)0.0043 (6)0.0026 (7)
C110.0302 (7)0.0415 (8)0.0315 (8)0.0125 (6)0.0090 (6)0.0007 (6)
C120.0580 (10)0.0542 (10)0.0547 (11)0.0179 (8)0.0144 (9)0.0018 (9)
C130.0706 (12)0.0565 (11)0.0663 (13)0.0243 (10)0.0181 (10)0.0147 (10)
O10.0595 (8)0.1038 (11)0.0491 (8)0.0383 (8)0.0243 (6)0.0135 (8)
O20.0351 (5)0.0709 (8)0.0374 (6)0.0263 (5)0.0095 (5)0.0047 (6)
O30.0282 (5)0.0550 (7)0.0365 (6)0.0115 (4)0.0052 (4)0.0019 (5)
O40.0392 (6)0.0417 (6)0.0615 (8)0.0118 (5)0.0088 (5)0.0145 (6)
O50.0301 (5)0.0638 (8)0.0809 (10)0.0189 (5)0.0076 (6)0.0134 (7)
Geometric parameters (Å, º) top
N1—C131.466 (3)C7—O31.361 (2)
N1—C121.480 (3)C7—C81.381 (2)
N1—H1B0.904 (9)C8—C91.381 (2)
N1—H1A0.899 (9)C8—H80.9300
C1—O11.209 (2)C9—O21.378 (2)
C1—O21.378 (2)C10—O31.4287 (19)
C1—C21.441 (3)C10—C111.524 (2)
C2—C31.341 (3)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.426 (3)C11—O41.238 (2)
C3—H30.9300C11—O51.2490 (19)
C4—C91.392 (2)C12—H12A0.9600
C4—C51.404 (2)C12—H12B0.9600
C5—C61.362 (3)C12—H12C0.9600
C5—H50.9300C13—H13A0.9600
C6—C71.406 (2)C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C13—N1—C12112.95 (16)C9—C8—H8120.9
C13—N1—H1B106.2 (13)C7—C8—H8120.9
C12—N1—H1B107.5 (14)O2—C9—C8116.35 (13)
C13—N1—H1A111.7 (14)O2—C9—C4120.33 (15)
C12—N1—H1A107.7 (13)C8—C9—C4123.32 (14)
H1B—N1—H1A110.8 (19)O3—C10—C11114.33 (13)
O1—C1—O2116.32 (16)O3—C10—H10A108.7
O1—C1—C2126.56 (18)C11—C10—H10A108.7
O2—C1—C2117.12 (15)O3—C10—H10B108.7
C3—C2—C1120.98 (18)C11—C10—H10B108.7
C3—C2—H2119.5H10A—C10—H10B107.6
C1—C2—H2119.5O4—C11—O5127.04 (13)
C2—C3—C4120.98 (15)O4—C11—C10119.35 (13)
C2—C3—H3119.5O5—C11—C10113.50 (14)
C4—C3—H3119.5N1—C12—H12A109.5
C9—C4—C5116.59 (16)N1—C12—H12B109.5
C9—C4—C3118.16 (15)H12A—C12—H12B109.5
C5—C4—C3125.24 (14)N1—C12—H12C109.5
C6—C5—C4121.69 (14)H12A—C12—H12C109.5
C6—C5—H5119.2H12B—C12—H12C109.5
C4—C5—H5119.2N1—C13—H13A109.5
C5—C6—C7119.80 (14)N1—C13—H13B109.5
C5—C6—H6120.1H13A—C13—H13B109.5
C7—C6—H6120.1N1—C13—H13C109.5
O3—C7—C8124.62 (13)H13A—C13—H13C109.5
O3—C7—C6115.05 (13)H13B—C13—H13C109.5
C8—C7—C6120.33 (15)C9—O2—C1122.27 (13)
C9—C8—C7118.24 (13)C7—O3—C10117.87 (11)
C7—O3—C10—C1176.32 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.90 (1)1.92 (1)2.799 (2)166 (2)
N1—H1B···O5i0.90 (1)1.86 (1)2.729 (3)160 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC2H8N+·C11H7O5
Mr265.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.714 (5), 8.146 (7), 12.767 (12)
α, β, γ (°)83.33 (4), 79.16 (3), 67.78 (3)
V3)634.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.44 × 0.22 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.955, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6310, 2881, 1878
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.131, 0.93
No. of reflections2881
No. of parameters182
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.899 (9)1.917 (11)2.799 (2)166.2 (19)
N1—H1B···O5i0.904 (9)1.862 (12)2.729 (3)160.1 (19)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The author thanks Jilin University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMatsuda, T., Mizutani, M. & Arnold, S. C. (2000). Macromolecules, 33, 795–800.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1105
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds