organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1092

4-(Di­ethyl­amino)­salicyl­aldehyde azine

aKey Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Eduction, Yanji 133002, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 7 April 2011; accepted 8 April 2011; online 13 April 2011)

The title compound, C22H30N4O2, has a crystallographic inversion center located at the mid-point of the N—N single bond. Apart from the four ethyl C atoms, the non-H atoms are nearly coplanar with a mean deviation of 0.0596 (2) Å. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (100).

Related literature

For the synthesis, see Tang et al. (2009[Tang, W., Yu, X. & Tong, A. (2009). J. Org. Chem. 74, 2163-2166.]). For a related structure, see Gil et al. (2010[Gil, M., Ziółek, M., Organero, J. A. & Douhal, A. (2010). J. Phys. Chem. C, 114, 9554-9562.]). For applications of photochromic aromatic Schiff base mol­ecules as mol­ecular memories and switches, see Sliwa et al. (2005[Sliwa, M., Letard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Keitaro, N. K. (2005). Chem. Mater. 17, 4717-4735.]).

[Scheme 1]

Experimental

Crystal data
  • C22H30N4O2

  • Mr = 382.50

  • Monoclinic, P 21 /c

  • a = 8.736 (5) Å

  • b = 7.809 (5) Å

  • c = 16.122 (10) Å

  • β = 103.57 (2)°

  • V = 1069.1 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 K

  • 0.15 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.988, Tmax = 0.991

  • 9903 measured reflections

  • 2431 independent reflections

  • 1227 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.228

  • S = 1.10

  • 2431 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.64 3.481 (5) 145
O1—H1⋯N1 0.85 1.88 2.640 (3) 149
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002[Rigaku/MSC & Rigaku Corporation (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Salicylaldehyde azine belongs to the photochromic aromatic schiff base molecules with two intramolecular hydrogen bonds (Gil et al., 2010). The photochromism of the molecules, owing to enol-keto intramolecular tautomerism, attracts much interest because of possible applications, for example, in molecular memories and switches (Sliwa et al., 2005). Herein, we report the crystal structure of the title compound.

The title compound, as shown in Fig. 1, all bond lengths and angles are in the normal ranges. Except for four carbon atoms, all the other non-hydrogen atoms nearly lie on the same plane. The intramolecular O—H···N and intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into layers prallel to (100).

Related literature top

For the synthesis, see Tang et al. (2009). For a related structure, see Gil et al. (2010). For applications of photochromic aromatic Schiff base molecules as molecular memories and switches, see Sliwa et al. (2005).

Experimental top

The title compound was prepared according to the literature (Tang et al., 2009). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). The hydroxy H atom was located in a difference Fourier map and treated as riding on its parent O atom with Uiso(H) = 1.5 Ueq(O). The distance of O1 and H1 was restricted to 0.85 Å with DFIX command.

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level. [Symmetry code: A: 1 - x, 1 - y, 1 - z]
4-(Diethylamino)-2-hydroxybenzaldehyde azine top
Crystal data top
C22H30N4O2F(000) = 412
Mr = 382.50Dx = 1.188 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5162 reflections
a = 8.736 (5) Åθ = 3.1–27.7°
b = 7.809 (5) ŵ = 0.08 mm1
c = 16.122 (10) ÅT = 290 K
β = 103.57 (2)°Block, yellow
V = 1069.1 (11) Å30.15 × 0.14 × 0.12 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2431 independent reflections
Radiation source: fine-focus sealed tube1227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.988, Tmax = 0.991k = 1010
9903 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.3133P]
where P = (Fo2 + 2Fc2)/3
2431 reflections(Δ/σ)max = 0.003
129 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C22H30N4O2V = 1069.1 (11) Å3
Mr = 382.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.736 (5) ŵ = 0.08 mm1
b = 7.809 (5) ÅT = 290 K
c = 16.122 (10) Å0.15 × 0.14 × 0.12 mm
β = 103.57 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2431 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1227 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.991Rint = 0.046
9903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0741 restraint
wR(F2) = 0.228H-atom parameters constrained
S = 1.10Δρmax = 0.45 e Å3
2431 reflectionsΔρmin = 0.25 e Å3
129 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2021 (2)0.6394 (3)0.57469 (13)0.0809 (8)
H10.26630.62440.54330.121*
C10.4983 (3)0.4599 (4)0.60317 (18)0.0556 (7)
H1A0.59140.39720.61650.067*
C20.4129 (3)0.4858 (3)0.66828 (16)0.0489 (7)
C30.4698 (3)0.4235 (4)0.75059 (18)0.0602 (8)
H30.56380.36240.76250.072*
C40.3937 (3)0.4480 (4)0.81492 (18)0.0653 (9)
H40.43600.40310.86880.078*
C50.2503 (3)0.5418 (4)0.79966 (18)0.0575 (7)
C60.1898 (3)0.5998 (4)0.71712 (17)0.0558 (7)
H60.09390.65730.70480.067*
C70.2678 (3)0.5745 (4)0.65257 (17)0.0537 (7)
C80.2343 (5)0.5030 (6)0.9510 (2)0.0878 (11)
H8A0.34810.51280.96790.105*
H8B0.19060.56720.99150.105*
C90.1893 (5)0.3226 (6)0.9530 (3)0.1028 (14)
H9A0.07700.31420.94410.154*
H9B0.23870.27421.00740.154*
H9C0.22260.26140.90860.154*
C100.0357 (4)0.6857 (5)0.8511 (2)0.0735 (9)
H10A0.04610.77760.81230.088*
H10B0.03120.73730.90520.088*
C110.1157 (4)0.5939 (5)0.8161 (2)0.0858 (11)
H11A0.11440.54600.76150.129*
H11B0.20180.67290.81000.129*
H11C0.12830.50380.85450.129*
N10.4511 (3)0.5198 (3)0.52728 (15)0.0589 (7)
N20.1766 (3)0.5765 (4)0.86429 (15)0.0752 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0839 (14)0.1066 (19)0.0616 (13)0.0420 (13)0.0362 (11)0.0333 (12)
C10.0554 (15)0.0532 (17)0.0651 (18)0.0019 (13)0.0280 (13)0.0001 (13)
C20.0482 (14)0.0504 (16)0.0521 (15)0.0016 (12)0.0197 (11)0.0012 (12)
C30.0454 (14)0.076 (2)0.0619 (18)0.0117 (13)0.0182 (13)0.0085 (15)
C40.0519 (15)0.097 (2)0.0484 (16)0.0105 (16)0.0142 (12)0.0101 (15)
C50.0505 (14)0.0707 (19)0.0569 (17)0.0039 (13)0.0242 (13)0.0042 (14)
C60.0525 (14)0.0620 (18)0.0581 (16)0.0110 (13)0.0235 (13)0.0091 (14)
C70.0560 (15)0.0550 (17)0.0549 (16)0.0075 (13)0.0227 (13)0.0111 (13)
C80.084 (2)0.115 (3)0.074 (2)0.002 (2)0.0365 (19)0.009 (2)
C90.101 (3)0.114 (4)0.103 (3)0.019 (3)0.043 (2)0.009 (2)
C100.075 (2)0.083 (2)0.072 (2)0.0104 (18)0.0374 (17)0.0018 (17)
C110.079 (2)0.091 (3)0.094 (3)0.009 (2)0.0336 (19)0.007 (2)
N10.0643 (14)0.0606 (15)0.0616 (15)0.0027 (12)0.0345 (11)0.0032 (12)
N20.0708 (16)0.108 (2)0.0548 (15)0.0222 (15)0.0301 (12)0.0097 (14)
Geometric parameters (Å, º) top
O1—C71.351 (3)C8—C91.465 (6)
O1—H10.8461C8—N21.486 (4)
C1—N11.284 (4)C8—H8A0.9700
C1—C21.438 (4)C8—H8B0.9700
C1—H1A0.9300C9—H9A0.9600
C2—C31.391 (4)C9—H9B0.9600
C2—C71.414 (4)C9—H9C0.9600
C3—C41.371 (4)C10—N21.471 (4)
C3—H30.9300C10—C111.494 (5)
C4—C51.422 (4)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—N21.374 (3)C11—H11A0.9600
C5—C61.387 (4)C11—H11B0.9600
C6—C71.386 (3)C11—H11C0.9600
C6—H60.9300N1—N1i1.397 (4)
C7—O1—H1107.9C9—C8—H8B109.4
N1—C1—C2122.6 (3)N2—C8—H8B109.4
N1—C1—H1A118.7H8A—C8—H8B108.0
C2—C1—H1A118.7C8—C9—H9A109.5
C3—C2—C7116.6 (2)C8—C9—H9B109.5
C3—C2—C1121.1 (2)H9A—C9—H9B109.5
C7—C2—C1122.3 (2)C8—C9—H9C109.5
C4—C3—C2123.0 (3)H9A—C9—H9C109.5
C4—C3—H3118.5H9B—C9—H9C109.5
C2—C3—H3118.5N2—C10—C11114.4 (3)
C3—C4—C5120.3 (3)N2—C10—H10A108.7
C3—C4—H4119.8C11—C10—H10A108.7
C5—C4—H4119.8N2—C10—H10B108.7
N2—C5—C6121.5 (2)C11—C10—H10B108.7
N2—C5—C4121.4 (3)H10A—C10—H10B107.6
C6—C5—C4117.1 (2)C10—C11—H11A109.5
C7—C6—C5122.0 (2)C10—C11—H11B109.5
C7—C6—H6119.0H11A—C11—H11B109.5
C5—C6—H6119.0C10—C11—H11C109.5
O1—C7—C6117.9 (2)H11A—C11—H11C109.5
O1—C7—C2121.2 (2)H11B—C11—H11C109.5
C6—C7—C2120.9 (2)C1—N1—N1i114.3 (3)
C9—C8—N2111.0 (3)C5—N2—C10122.0 (2)
C9—C8—H8A109.4C5—N2—C8121.4 (3)
N2—C8—H8A109.4C10—N2—C8116.6 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1ii0.972.643.481 (5)145
O1—H1···N10.851.882.640 (3)149
Symmetry code: (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H30N4O2
Mr382.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.736 (5), 7.809 (5), 16.122 (10)
β (°) 103.57 (2)
V3)1069.1 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.988, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9903, 2431, 1227
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.228, 1.10
No. of reflections2431
No. of parameters129
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.25

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.643.481 (5)145
O1—H1···N10.851.882.640 (3)149
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 21062022) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationGil, M., Ziółek, M., Organero, J. A. & Douhal, A. (2010). J. Phys. Chem. C, 114, 9554–9562.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku Corporation (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliwa, M., Letard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Keitaro, N. K. (2005). Chem. Mater. 17, 4717–4735.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, W., Yu, X. & Tong, A. (2009). J. Org. Chem. 74, 2163–2166.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1092
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds