organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1108

5,6,7-Tri­chloro-2-meth­­oxy-8-hy­dr­oxy­quinoline

aFaculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China, bSchool of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and cInstrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
*Correspondence e-mail: pusfxl@mail.sysu.edu.cn

(Received 22 February 2011; accepted 23 March 2011; online 13 April 2011)

In the title compound, C10H6Cl3NO2, a mean plane fitted through all non-H atoms has an r.m.s. deviation of 0.035 Å. In the crystal, adjacent mol­ecules are connected by O—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.650 (1) Å], resulting in an infinite chain which propagates in the b-axis direction.

Related literature

The title compound was obtained as an unexpected product from an attempt to synthesize a Top1 (DNA topoisomerase IB) inhibitor For general background to Top1, see: Pommier (2006[Pommier, Y. (2006). Nature Rev. 6, 789-802.]). For the synthesis, see: Shen et al. (2008[Shen, D. Q., Cheng, Y., An, L. K., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). Chin. Chem. Lett. 19, 533-536.]); Cheng et al. (2008[Cheng, Y., An, L. K., Wu, N., Wang, X. D., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). Bioorg. Med. Chem. 16, 4617-4625.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6Cl3NO2

  • Mr = 278.51

  • Monoclinic, P 21 /c

  • a = 10.0782 (3) Å

  • b = 4.9979 (1) Å

  • c = 21.5827 (6) Å

  • β = 99.287 (2)°

  • V = 1072.87 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.61 mm−1

  • T = 150 K

  • 0.40 × 0.21 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Onyx Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.151, Tmax = 0.312

  • 4752 measured reflections

  • 2035 independent reflections

  • 1812 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.04

  • 2035 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O2i 0.84 2.25 2.9844 (16) 146
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

DNA topoisomerase I (Top1) is an essential nuclear enzyme, and can be used as a target to discovery anticancer agents (Pommier, 2006). In our previous effort to find novel Top1 inhibitor, the title compound was obtained as a unexpected product from an attempt to synthesize 6,7-dichloroquinoline-5,8-dione (Cheng et al., 2008 and Shen et al., 2008).

The asymmetric unit of the title compound is shown in Fig. 1. All non-H atoms of the molecule adopt an approximately planar conformation (r.m.s. deviation = 0.035 Å). In the crystal, adjacent molecules are connected by O—H···O hydrogen bonds and π-π stacking interactions [centroid-centroid distance = 3.650 (1) Å], resulting in supramolecular chains along the b-axis (Fig. 2).

Related literature top

The title compound was obtained as a unexpected product from an attempt to synthesize a Top1 (DNA topoisomerase IB) inhibitor For general background to Top1, see: Pommier (2006). For the synthesis, see: Shen et al. (2008); Cheng et al. (2008).

Experimental top

According to our previously published procedure (Shen et al., 2008), the oxidation of 8-Hydroxyquinoline in concentrated hydrochloric acid with sodium chlorate can give a light yellow solid. The recrystallization of the solid from methanol would give the light yellow crystal.

Refinement top

All H atoms were positioned geometrically and refined using a riding model refined using riding mode. The C—H distances of methyl and benzene ring were 0.98 Å and 0.95 Å, with Uiso(H)=1.5Ueq(C) and 1.2Ueq(C). The O—H distance was 0.84 Å, with Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Infinite one-dimensional hydrogen bond in the b-axis direction. C-bound H atoms are omitted.
5,6,7-Trichloro-2-methoxy-8-hydroxyquinoline top
Crystal data top
C10H6Cl3NO2F(000) = 560
Mr = 278.51Dx = 1.724 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3109 reflections
a = 10.0782 (3) Åθ = 2.1–71.2°
b = 4.9979 (1) ŵ = 7.61 mm1
c = 21.5827 (6) ÅT = 150 K
β = 99.287 (2)°Block, light yellow
V = 1072.87 (5) Å30.40 × 0.21 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Onyx Nova
diffractometer
2035 independent reflections
Radiation source: fine-focus sealed tube1812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.2417 pixels mm-1θmax = 71.4°, θmin = 4.2°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 65
Tmin = 0.151, Tmax = 0.312l = 1725
4752 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.4225P]
where P = (Fo2 + 2Fc2)/3
2035 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H6Cl3NO2V = 1072.87 (5) Å3
Mr = 278.51Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.0782 (3) ŵ = 7.61 mm1
b = 4.9979 (1) ÅT = 150 K
c = 21.5827 (6) Å0.40 × 0.21 × 0.20 mm
β = 99.287 (2)°
Data collection top
Oxford Diffraction Xcalibur Onyx Nova
diffractometer
2035 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
1812 reflections with I > 2σ(I)
Tmin = 0.151, Tmax = 0.312Rint = 0.024
4752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.98 e Å3
2035 reflectionsΔρmin = 0.26 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47126 (6)0.33323 (15)0.06402 (3)0.0429 (2)
Cl20.49339 (5)0.73083 (11)0.17798 (3)0.03287 (19)
Cl30.27565 (6)0.71889 (11)0.26624 (3)0.03218 (19)
C10.0208 (2)0.1743 (5)0.08460 (10)0.0290 (5)
C20.1158 (2)0.1986 (5)0.04240 (11)0.0313 (5)
H20.10300.32660.00940.038*
C30.2240 (2)0.0355 (5)0.05045 (10)0.0307 (5)
H30.28800.04680.02270.037*
C40.2422 (2)0.1530 (4)0.10032 (10)0.0263 (5)
C50.3521 (2)0.3325 (5)0.11348 (10)0.0286 (5)
C60.3623 (2)0.5061 (4)0.16321 (10)0.0273 (5)
C70.2632 (2)0.5050 (4)0.20283 (10)0.0262 (4)
C80.1556 (2)0.3337 (4)0.19120 (10)0.0253 (4)
C90.1429 (2)0.1572 (4)0.13944 (9)0.0239 (4)
C100.1871 (3)0.3090 (7)0.11264 (13)0.0458 (7)
H10A0.14770.34740.15630.069*
H10B0.26100.43390.09900.069*
H10C0.22140.12520.10950.069*
N10.03253 (18)0.0055 (4)0.13107 (8)0.0268 (4)
O10.08538 (18)0.3391 (4)0.07291 (8)0.0368 (4)
O20.06144 (16)0.3332 (3)0.22959 (7)0.0311 (4)
H2A0.01610.19170.22410.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0362 (3)0.0575 (4)0.0393 (4)0.0108 (3)0.0186 (3)0.0010 (3)
Cl20.0250 (3)0.0306 (3)0.0418 (3)0.0062 (2)0.0017 (2)0.0043 (2)
Cl30.0324 (3)0.0297 (3)0.0335 (3)0.0017 (2)0.0023 (2)0.0073 (2)
C10.0298 (11)0.0299 (12)0.0261 (11)0.0015 (9)0.0009 (9)0.0037 (9)
C20.0351 (13)0.0340 (12)0.0242 (10)0.0016 (10)0.0029 (9)0.0032 (9)
C30.0308 (11)0.0359 (13)0.0264 (10)0.0044 (10)0.0075 (8)0.0013 (9)
C40.0257 (11)0.0272 (11)0.0256 (10)0.0014 (9)0.0030 (8)0.0027 (9)
C50.0248 (11)0.0335 (12)0.0284 (11)0.0005 (9)0.0068 (9)0.0081 (9)
C60.0247 (10)0.0241 (11)0.0319 (11)0.0018 (9)0.0013 (8)0.0057 (9)
C70.0277 (10)0.0220 (10)0.0284 (10)0.0023 (8)0.0027 (8)0.0007 (8)
C80.0245 (10)0.0262 (11)0.0257 (10)0.0024 (9)0.0057 (8)0.0030 (8)
C90.0229 (10)0.0244 (11)0.0242 (10)0.0007 (8)0.0035 (8)0.0036 (8)
C100.0373 (14)0.0620 (18)0.0399 (14)0.0201 (13)0.0110 (11)0.0090 (13)
N10.0261 (9)0.0280 (10)0.0264 (9)0.0019 (8)0.0047 (7)0.0016 (7)
O10.0368 (9)0.0393 (10)0.0346 (9)0.0125 (8)0.0067 (7)0.0060 (7)
O20.0283 (8)0.0348 (9)0.0331 (8)0.0051 (7)0.0132 (7)0.0062 (7)
Geometric parameters (Å, º) top
Cl1—C51.730 (2)C5—C61.371 (3)
Cl2—C61.724 (2)C6—C71.416 (3)
Cl3—C71.725 (2)C7—C81.372 (3)
C1—N11.302 (3)C8—O21.357 (3)
C1—O11.342 (3)C8—C91.413 (3)
C1—C21.429 (3)C9—N11.366 (3)
C2—C31.350 (3)C10—O11.446 (3)
C2—H20.9500C10—H10A0.9800
C3—C41.420 (3)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C4—C91.410 (3)O2—H2A0.8400
C4—C51.418 (3)
N1—C1—O1120.9 (2)C8—C7—C6120.35 (19)
N1—C1—C2124.0 (2)C8—C7—Cl3119.08 (17)
O1—C1—C2115.1 (2)C6—C7—Cl3120.57 (16)
C3—C2—C1118.5 (2)O2—C8—C7119.9 (2)
C3—C2—H2120.8O2—C8—C9119.90 (19)
C1—C2—H2120.8C7—C8—C9120.15 (19)
C2—C3—C4120.1 (2)N1—C9—C4123.60 (19)
C2—C3—H3120.0N1—C9—C8116.37 (18)
C4—C3—H3120.0C4—C9—C8120.0 (2)
C9—C4—C5118.5 (2)O1—C10—H10A109.5
C9—C4—C3116.5 (2)O1—C10—H10B109.5
C5—C4—C3125.0 (2)H10A—C10—H10B109.5
C6—C5—C4120.9 (2)O1—C10—H10C109.5
C6—C5—Cl1120.67 (18)H10A—C10—H10C109.5
C4—C5—Cl1118.37 (18)H10B—C10—H10C109.5
C5—C6—C7120.0 (2)C1—N1—C9117.30 (18)
C5—C6—Cl2121.00 (17)C1—O1—C10116.41 (19)
C7—C6—Cl2119.02 (16)C8—O2—H2A109.5
N1—C1—C2—C30.7 (4)Cl3—C7—C8—O20.4 (3)
O1—C1—C2—C3178.7 (2)C6—C7—C8—C90.1 (3)
C1—C2—C3—C40.6 (3)Cl3—C7—C8—C9179.78 (16)
C2—C3—C4—C90.1 (3)C5—C4—C9—N1179.7 (2)
C2—C3—C4—C5179.5 (2)C3—C4—C9—N10.8 (3)
C9—C4—C5—C60.2 (3)C5—C4—C9—C81.3 (3)
C3—C4—C5—C6179.3 (2)C3—C4—C9—C8178.2 (2)
C9—C4—C5—Cl1178.18 (16)O2—C8—C9—N10.5 (3)
C3—C4—C5—Cl12.4 (3)C7—C8—C9—N1179.7 (2)
C4—C5—C6—C71.0 (3)O2—C8—C9—C4178.55 (19)
Cl1—C5—C6—C7179.29 (16)C7—C8—C9—C41.3 (3)
C4—C5—C6—Cl2178.17 (17)O1—C1—N1—C9179.3 (2)
Cl1—C5—C6—Cl20.2 (3)C2—C1—N1—C90.0 (3)
C5—C6—C7—C81.0 (3)C4—C9—N1—C10.8 (3)
Cl2—C6—C7—C8178.16 (17)C8—C9—N1—C1178.2 (2)
C5—C6—C7—Cl3179.09 (17)N1—C1—O1—C102.7 (3)
Cl2—C6—C7—Cl31.8 (2)C2—C1—O1—C10176.6 (2)
C6—C7—C8—O2179.70 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.842.252.9844 (16)146
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6Cl3NO2
Mr278.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.0782 (3), 4.9979 (1), 21.5827 (6)
β (°) 99.287 (2)
V3)1072.87 (5)
Z4
Radiation typeCu Kα
µ (mm1)7.61
Crystal size (mm)0.40 × 0.21 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Onyx Nova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.151, 0.312
No. of measured, independent and
observed [I > 2σ(I)] reflections
4752, 2035, 1812
Rint0.024
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.04
No. of reflections2035
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.842.252.9844 (16)146
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 30801425) and Guangdong Natural Science Fund (No. 10151008901000022).

References

First citationCheng, Y., An, L. K., Wu, N., Wang, X. D., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). Bioorg. Med. Chem. 16, 4617–4625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPommier, Y. (2006). Nature Rev. 6, 789–802.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, D. Q., Cheng, Y., An, L. K., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). Chin. Chem. Lett. 19, 533–536.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1108
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds