organic compounds
5,6,7-Trichloro-2-methoxy-8-hydroxyquinoline
aFaculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China, bSchool of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and cInstrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
*Correspondence e-mail: pusfxl@mail.sysu.edu.cn
In the title compound, C10H6Cl3NO2, a mean plane fitted through all non-H atoms has an r.m.s. deviation of 0.035 Å. In the crystal, adjacent molecules are connected by O—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid distance = 3.650 (1) Å], resulting in an infinite chain which propagates in the b-axis direction.
Related literature
The title compound was obtained as an unexpected product from an attempt to synthesize a Top1 (DNA topoisomerase IB) inhibitor For general background to Top1, see: Pommier (2006). For the synthesis, see: Shen et al. (2008); Cheng et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811010853/nk2089sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010853/nk2089Isup2.hkl
According to our previously published procedure (Shen et al., 2008), the oxidation of 8-Hydroxyquinoline in concentrated hydrochloric acid with sodium chlorate can give a light yellow solid. The recrystallization of the solid from methanol would give the light yellow crystal.
All H atoms were positioned geometrically and refined using a riding model refined using riding mode. The C—H distances of methyl and benzene ring were 0.98 Å and 0.95 Å, with Uiso(H)=1.5Ueq(C) and 1.2Ueq(C). The O—H distance was 0.84 Å, with Uiso(H)=1.5Ueq(O).
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell
CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C10H6Cl3NO2 | F(000) = 560 |
Mr = 278.51 | Dx = 1.724 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 3109 reflections |
a = 10.0782 (3) Å | θ = 2.1–71.2° |
b = 4.9979 (1) Å | µ = 7.61 mm−1 |
c = 21.5827 (6) Å | T = 150 K |
β = 99.287 (2)° | Block, light yellow |
V = 1072.87 (5) Å3 | 0.40 × 0.21 × 0.20 mm |
Z = 4 |
Oxford Diffraction Xcalibur Onyx Nova diffractometer | 2035 independent reflections |
Radiation source: fine-focus sealed tube | 1812 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.2417 pixels mm-1 | θmax = 71.4°, θmin = 4.2° |
ω scans | h = −11→12 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) | k = −6→5 |
Tmin = 0.151, Tmax = 0.312 | l = −17→25 |
4752 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0765P)2 + 0.4225P] where P = (Fo2 + 2Fc2)/3 |
2035 reflections | (Δ/σ)max = 0.001 |
147 parameters | Δρmax = 0.98 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C10H6Cl3NO2 | V = 1072.87 (5) Å3 |
Mr = 278.51 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 10.0782 (3) Å | µ = 7.61 mm−1 |
b = 4.9979 (1) Å | T = 150 K |
c = 21.5827 (6) Å | 0.40 × 0.21 × 0.20 mm |
β = 99.287 (2)° |
Oxford Diffraction Xcalibur Onyx Nova diffractometer | 2035 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) | 1812 reflections with I > 2σ(I) |
Tmin = 0.151, Tmax = 0.312 | Rint = 0.024 |
4752 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.98 e Å−3 |
2035 reflections | Δρmin = −0.26 e Å−3 |
147 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.47126 (6) | 0.33323 (15) | 0.06402 (3) | 0.0429 (2) | |
Cl2 | 0.49339 (5) | 0.73083 (11) | 0.17798 (3) | 0.03287 (19) | |
Cl3 | 0.27565 (6) | 0.71889 (11) | 0.26624 (3) | 0.03218 (19) | |
C1 | 0.0208 (2) | −0.1743 (5) | 0.08460 (10) | 0.0290 (5) | |
C2 | 0.1158 (2) | −0.1986 (5) | 0.04240 (11) | 0.0313 (5) | |
H2 | 0.1030 | −0.3266 | 0.0094 | 0.038* | |
C3 | 0.2240 (2) | −0.0355 (5) | 0.05045 (10) | 0.0307 (5) | |
H3 | 0.2880 | −0.0468 | 0.0227 | 0.037* | |
C4 | 0.2422 (2) | 0.1530 (4) | 0.10032 (10) | 0.0263 (5) | |
C5 | 0.3521 (2) | 0.3325 (5) | 0.11348 (10) | 0.0286 (5) | |
C6 | 0.3623 (2) | 0.5061 (4) | 0.16321 (10) | 0.0273 (5) | |
C7 | 0.2632 (2) | 0.5050 (4) | 0.20283 (10) | 0.0262 (4) | |
C8 | 0.1556 (2) | 0.3337 (4) | 0.19120 (10) | 0.0253 (4) | |
C9 | 0.1429 (2) | 0.1572 (4) | 0.13944 (9) | 0.0239 (4) | |
C10 | −0.1871 (3) | −0.3090 (7) | 0.11264 (13) | 0.0458 (7) | |
H10A | −0.1477 | −0.3474 | 0.1563 | 0.069* | |
H10B | −0.2610 | −0.4339 | 0.0990 | 0.069* | |
H10C | −0.2214 | −0.1252 | 0.1095 | 0.069* | |
N1 | 0.03253 (18) | −0.0055 (4) | 0.13107 (8) | 0.0268 (4) | |
O1 | −0.08538 (18) | −0.3391 (4) | 0.07291 (8) | 0.0368 (4) | |
O2 | 0.06144 (16) | 0.3332 (3) | 0.22959 (7) | 0.0311 (4) | |
H2A | 0.0161 | 0.1917 | 0.2241 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0362 (3) | 0.0575 (4) | 0.0393 (4) | −0.0108 (3) | 0.0186 (3) | −0.0010 (3) |
Cl2 | 0.0250 (3) | 0.0306 (3) | 0.0418 (3) | −0.0062 (2) | 0.0017 (2) | 0.0043 (2) |
Cl3 | 0.0324 (3) | 0.0297 (3) | 0.0335 (3) | −0.0017 (2) | 0.0023 (2) | −0.0073 (2) |
C1 | 0.0298 (11) | 0.0299 (12) | 0.0261 (11) | −0.0015 (9) | 0.0009 (9) | 0.0037 (9) |
C2 | 0.0351 (13) | 0.0340 (12) | 0.0242 (10) | 0.0016 (10) | 0.0029 (9) | −0.0032 (9) |
C3 | 0.0308 (11) | 0.0359 (13) | 0.0264 (10) | 0.0044 (10) | 0.0075 (8) | 0.0013 (9) |
C4 | 0.0257 (11) | 0.0272 (11) | 0.0256 (10) | 0.0014 (9) | 0.0030 (8) | 0.0027 (9) |
C5 | 0.0248 (11) | 0.0335 (12) | 0.0284 (11) | −0.0005 (9) | 0.0068 (9) | 0.0081 (9) |
C6 | 0.0247 (10) | 0.0241 (11) | 0.0319 (11) | −0.0018 (9) | 0.0013 (8) | 0.0057 (9) |
C7 | 0.0277 (10) | 0.0220 (10) | 0.0284 (10) | 0.0023 (8) | 0.0027 (8) | 0.0007 (8) |
C8 | 0.0245 (10) | 0.0262 (11) | 0.0257 (10) | 0.0024 (9) | 0.0057 (8) | 0.0030 (8) |
C9 | 0.0229 (10) | 0.0244 (11) | 0.0242 (10) | 0.0007 (8) | 0.0035 (8) | 0.0036 (8) |
C10 | 0.0373 (14) | 0.0620 (18) | 0.0399 (14) | −0.0201 (13) | 0.0110 (11) | −0.0090 (13) |
N1 | 0.0261 (9) | 0.0280 (10) | 0.0264 (9) | −0.0019 (8) | 0.0047 (7) | 0.0016 (7) |
O1 | 0.0368 (9) | 0.0393 (10) | 0.0346 (9) | −0.0125 (8) | 0.0067 (7) | −0.0060 (7) |
O2 | 0.0283 (8) | 0.0348 (9) | 0.0331 (8) | −0.0051 (7) | 0.0132 (7) | −0.0062 (7) |
Cl1—C5 | 1.730 (2) | C5—C6 | 1.371 (3) |
Cl2—C6 | 1.724 (2) | C6—C7 | 1.416 (3) |
Cl3—C7 | 1.725 (2) | C7—C8 | 1.372 (3) |
C1—N1 | 1.302 (3) | C8—O2 | 1.357 (3) |
C1—O1 | 1.342 (3) | C8—C9 | 1.413 (3) |
C1—C2 | 1.429 (3) | C9—N1 | 1.366 (3) |
C2—C3 | 1.350 (3) | C10—O1 | 1.446 (3) |
C2—H2 | 0.9500 | C10—H10A | 0.9800 |
C3—C4 | 1.420 (3) | C10—H10B | 0.9800 |
C3—H3 | 0.9500 | C10—H10C | 0.9800 |
C4—C9 | 1.410 (3) | O2—H2A | 0.8400 |
C4—C5 | 1.418 (3) | ||
N1—C1—O1 | 120.9 (2) | C8—C7—C6 | 120.35 (19) |
N1—C1—C2 | 124.0 (2) | C8—C7—Cl3 | 119.08 (17) |
O1—C1—C2 | 115.1 (2) | C6—C7—Cl3 | 120.57 (16) |
C3—C2—C1 | 118.5 (2) | O2—C8—C7 | 119.9 (2) |
C3—C2—H2 | 120.8 | O2—C8—C9 | 119.90 (19) |
C1—C2—H2 | 120.8 | C7—C8—C9 | 120.15 (19) |
C2—C3—C4 | 120.1 (2) | N1—C9—C4 | 123.60 (19) |
C2—C3—H3 | 120.0 | N1—C9—C8 | 116.37 (18) |
C4—C3—H3 | 120.0 | C4—C9—C8 | 120.0 (2) |
C9—C4—C5 | 118.5 (2) | O1—C10—H10A | 109.5 |
C9—C4—C3 | 116.5 (2) | O1—C10—H10B | 109.5 |
C5—C4—C3 | 125.0 (2) | H10A—C10—H10B | 109.5 |
C6—C5—C4 | 120.9 (2) | O1—C10—H10C | 109.5 |
C6—C5—Cl1 | 120.67 (18) | H10A—C10—H10C | 109.5 |
C4—C5—Cl1 | 118.37 (18) | H10B—C10—H10C | 109.5 |
C5—C6—C7 | 120.0 (2) | C1—N1—C9 | 117.30 (18) |
C5—C6—Cl2 | 121.00 (17) | C1—O1—C10 | 116.41 (19) |
C7—C6—Cl2 | 119.02 (16) | C8—O2—H2A | 109.5 |
N1—C1—C2—C3 | −0.7 (4) | Cl3—C7—C8—O2 | −0.4 (3) |
O1—C1—C2—C3 | 178.7 (2) | C6—C7—C8—C9 | −0.1 (3) |
C1—C2—C3—C4 | 0.6 (3) | Cl3—C7—C8—C9 | 179.78 (16) |
C2—C3—C4—C9 | 0.1 (3) | C5—C4—C9—N1 | 179.7 (2) |
C2—C3—C4—C5 | 179.5 (2) | C3—C4—C9—N1 | −0.8 (3) |
C9—C4—C5—C6 | 0.2 (3) | C5—C4—C9—C8 | −1.3 (3) |
C3—C4—C5—C6 | −179.3 (2) | C3—C4—C9—C8 | 178.2 (2) |
C9—C4—C5—Cl1 | −178.18 (16) | O2—C8—C9—N1 | 0.5 (3) |
C3—C4—C5—Cl1 | 2.4 (3) | C7—C8—C9—N1 | −179.7 (2) |
C4—C5—C6—C7 | 1.0 (3) | O2—C8—C9—C4 | −178.55 (19) |
Cl1—C5—C6—C7 | 179.29 (16) | C7—C8—C9—C4 | 1.3 (3) |
C4—C5—C6—Cl2 | −178.17 (17) | O1—C1—N1—C9 | −179.3 (2) |
Cl1—C5—C6—Cl2 | 0.2 (3) | C2—C1—N1—C9 | 0.0 (3) |
C5—C6—C7—C8 | −1.0 (3) | C4—C9—N1—C1 | 0.8 (3) |
Cl2—C6—C7—C8 | 178.16 (17) | C8—C9—N1—C1 | −178.2 (2) |
C5—C6—C7—Cl3 | 179.09 (17) | N1—C1—O1—C10 | 2.7 (3) |
Cl2—C6—C7—Cl3 | −1.8 (2) | C2—C1—O1—C10 | −176.6 (2) |
C6—C7—C8—O2 | 179.70 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O2i | 0.84 | 2.25 | 2.9844 (16) | 146 |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H6Cl3NO2 |
Mr | 278.51 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 10.0782 (3), 4.9979 (1), 21.5827 (6) |
β (°) | 99.287 (2) |
V (Å3) | 1072.87 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 7.61 |
Crystal size (mm) | 0.40 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Onyx Nova diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.151, 0.312 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4752, 2035, 1812 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.615 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.110, 1.04 |
No. of reflections | 2035 |
No. of parameters | 147 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.98, −0.26 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O2i | 0.84 | 2.25 | 2.9844 (16) | 146 |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors acknowledge financial support from the National Natural Science Foundation of China (No. 30801425) and Guangdong Natural Science Fund (No. 10151008901000022).
References
Cheng, Y., An, L. K., Wu, N., Wang, X. D., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). Bioorg. Med. Chem. 16, 4617–4625. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pommier, Y. (2006). Nature Rev. 6, 789–802. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, D. Q., Cheng, Y., An, L. K., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). Chin. Chem. Lett. 19, 533–536. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
DNA topoisomerase I (Top1) is an essential nuclear enzyme, and can be used as a target to discovery anticancer agents (Pommier, 2006). In our previous effort to find novel Top1 inhibitor, the title compound was obtained as a unexpected product from an attempt to synthesize 6,7-dichloroquinoline-5,8-dione (Cheng et al., 2008 and Shen et al., 2008).
The asymmetric unit of the title compound is shown in Fig. 1. All non-H atoms of the molecule adopt an approximately planar conformation (r.m.s. deviation = 0.035 Å). In the crystal, adjacent molecules are connected by O—H···O hydrogen bonds and π-π stacking interactions [centroid-centroid distance = 3.650 (1) Å], resulting in supramolecular chains along the b-axis (Fig. 2).