organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1242

Phen­yl(3-methyl-1-phenyl­sulfonyl-1H-indol-2-yl)methanone

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 31 March 2011; accepted 20 April 2011; online 29 April 2011)

In the title compound, C22H17NO3S, the N atom of the indole ring system deviates by 0.031 (3) Å from a least-squares plane fitted through all nine non-H ring atoms. The geometry around the S atom can be described as distorted tetra­hedral. As a result of the electron-withdrawing character of the phenyl­sulfonyl groups, the N—Csp2 bond lengths are longer than the typical mean value for N atoms with a planar configuration.

Related literature

For background to the biological activity of indole-containing compounds, see: Ma et al. (2001[Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525-4542.]). For a related structure, see: Ranjith et al. (2011[Ranjith, S., SubbiahPandi, A., Govindan, E., Dhayalan, V. & MohanaKrishnan, A. K. (2011). Acta Cryst. E67, o844.]). For discussion of bond angles around N atoms, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17NO3S

  • Mr = 375.43

  • Monoclinic, C 2/c

  • a = 22.8120 (7) Å

  • b = 10.5199 (4) Å

  • c = 16.1346 (6) Å

  • β = 103.926 (1)°

  • V = 3758.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.964

  • 24166 measured reflections

  • 5682 independent reflections

  • 3487 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.145

  • S = 1.02

  • 5682 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.45 3.025 (2) 120
C15—H15⋯N1 0.93 2.61 3.254 (2) 127
C21—H21⋯O1 0.93 2.53 2.904 (2) 104
C21—H21⋯O2i 0.93 2.29 3.127 (2) 149
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole ring system is present in a number of natural products, many of which are found to possess anticancer, antimalarial and antihypertensive activities (Ma et al., 2001). Sulfonamide derivates are well known drugs and are used to control diseases caused by bacterial infections. Against this background and in order to obtain detailed information on molecular conformations in the solid state, X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The indole ring system is essentially planar with a mean deviation from a plane defined by the nine non-H ring atoms of 0.031 (3) Å for N. The sum of bond angles around N1 [348.4 (12)°] of the pyrrole ring is in accordance with sp3 hybridization (Beddoes et al., 1986). The indole ring system makes dihedral angles of 61.7 (8) and 77.7 (8)°, respectively, with the benzene and phenyl rings.

The S—O, S—C, and S—N distances are 1.425 (2), 1.748 (2) and 1.670 (1) Å, respectively and these values are comparable as observed in similar structures (Ranjith et al., 2011). As a result of the electron-withdrawing character of the phenylsulfonyl groups, the N—Csp2 bond lengths, viz. N1—C1 [1.420 (2) Å] and N1—C8 [1.422 (2) Å] are longer than the mean value of 1.355 (1) Å reported for N atoms with planar configurations (Ranjith et al., 2011).

Related literature top

For background to the biological activity of indole-containing compounds, see: Ma et al. (2001). For a related structure, see: Ranjith et al. (2011). For discussion of bond angles around N atoms, see: Beddoes et al. (1986). [Please check added text]

Experimental top

To a solution of N-(2-acetylphenyl)benzenesulfonamide (0.4 g, 1.45 mmol) in dry CH3CN (20 ml), K2CO3 (0.6 g, 4.34 mmol), 2-bromo-1-phenylethanone (0.34 g, 1.70 mmol) were added. The reaction mixture was stirred at room temperature for 6 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice–water (50 ml), extracted with chloroform (3 × 10 ml) and dried (Na2SO4). Removal of solvent followed by the residue was dissolved in CH3CN (20 ml), Concentrated HCl (3 ml) was added. The reaction mixture was then refluxed for 2 h. It was then poured over ice–water (50 ml), extracted with CHCl3 (3 × 10 ml) and dried (Na2SO4). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.
Phenyl(3-methyl-1-phenylsulfonyl-1H-indol-2-yl)methanone top
Crystal data top
C22H17NO3SF(000) = 1568
Mr = 375.43Dx = 1.327 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5682 reflections
a = 22.8120 (7) Åθ = 2.1–30.4°
b = 10.5199 (4) ŵ = 0.19 mm1
c = 16.1346 (6) ÅT = 293 K
β = 103.926 (1)°Block, white
V = 3758.2 (2) Å30.25 × 0.22 × 0.19 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5682 independent reflections
Radiation source: fine-focus sealed tube3487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 30.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3225
Tmin = 0.953, Tmax = 0.964k = 1114
24166 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.069P)2 + 1.0112P]
where P = (Fo2 + 2Fc2)/3
5682 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C22H17NO3SV = 3758.2 (2) Å3
Mr = 375.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.8120 (7) ŵ = 0.19 mm1
b = 10.5199 (4) ÅT = 293 K
c = 16.1346 (6) Å0.25 × 0.22 × 0.19 mm
β = 103.926 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5682 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3487 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.964Rint = 0.031
24166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
5682 reflectionsΔρmin = 0.36 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.02854 (9)0.3172 (2)0.15082 (14)0.0761 (6)
H50.01290.31600.14590.091*
C40.06108 (10)0.2069 (2)0.16354 (14)0.0753 (6)
H40.04150.13030.16740.090*
C30.12244 (9)0.20748 (18)0.17070 (12)0.0672 (5)
H30.14350.13100.17920.081*
C20.15354 (8)0.31829 (16)0.16568 (11)0.0566 (4)
H20.19510.31800.17110.068*
C10.12076 (7)0.42995 (16)0.15223 (10)0.0487 (3)
C60.05851 (7)0.43214 (19)0.14524 (11)0.0593 (4)
C70.03865 (8)0.5620 (2)0.13190 (13)0.0688 (5)
C80.08715 (7)0.63472 (17)0.13080 (11)0.0581 (4)
C220.02630 (10)0.6044 (3)0.1168 (2)0.1116 (10)
H22A0.03040.68860.09300.167*
H22B0.03820.60470.17000.167*
H22C0.05170.54700.07770.167*
C90.08567 (9)0.77369 (19)0.11124 (13)0.0692 (5)
C100.09789 (8)0.82165 (16)0.03063 (11)0.0579 (4)
C110.07967 (9)0.94417 (18)0.00483 (13)0.0683 (5)
H110.06130.99460.03870.082*
C120.08861 (10)0.9915 (2)0.07082 (15)0.0775 (6)
H120.07571.07310.08830.093*
C130.11653 (10)0.9185 (2)0.12028 (14)0.0763 (6)
H130.12300.95140.17090.092*
C140.13492 (9)0.7980 (2)0.09585 (13)0.0718 (5)
H140.15410.74910.12960.086*
C150.12516 (8)0.74826 (18)0.02105 (12)0.0631 (4)
H150.13690.66530.00530.076*
C160.20700 (7)0.60409 (14)0.30154 (10)0.0485 (4)
C170.17865 (8)0.69870 (17)0.33647 (12)0.0621 (4)
H170.15900.76500.30280.074*
C180.17995 (9)0.6930 (2)0.42209 (13)0.0748 (6)
H180.16090.75600.44650.090*
C190.20885 (10)0.5959 (2)0.47163 (13)0.0754 (6)
H190.20950.59330.52950.090*
C200.23697 (10)0.5021 (2)0.43652 (13)0.0750 (6)
H200.25660.43620.47060.090*
C210.23613 (8)0.50521 (17)0.35097 (12)0.0621 (4)
H210.25490.44160.32680.075*
N10.13917 (5)0.55634 (13)0.14070 (8)0.0504 (3)
O10.24984 (5)0.51956 (13)0.17690 (8)0.0667 (4)
O20.20878 (6)0.73760 (13)0.16764 (9)0.0764 (4)
O30.06769 (10)0.84532 (17)0.15969 (12)0.1136 (6)
S10.207048 (18)0.60904 (4)0.19323 (3)0.05342 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0493 (10)0.0991 (16)0.0790 (14)0.0230 (10)0.0134 (9)0.0018 (11)
C40.0763 (13)0.0729 (13)0.0756 (13)0.0247 (11)0.0161 (10)0.0001 (10)
C30.0762 (12)0.0569 (10)0.0683 (12)0.0079 (9)0.0169 (10)0.0009 (9)
C20.0516 (9)0.0594 (10)0.0589 (10)0.0024 (7)0.0134 (8)0.0002 (8)
C10.0422 (7)0.0588 (9)0.0442 (8)0.0075 (6)0.0089 (6)0.0027 (7)
C60.0428 (8)0.0773 (12)0.0565 (10)0.0052 (8)0.0093 (7)0.0003 (9)
C70.0487 (9)0.0880 (14)0.0707 (12)0.0101 (9)0.0164 (9)0.0053 (10)
C80.0535 (9)0.0649 (10)0.0564 (10)0.0102 (8)0.0142 (8)0.0030 (8)
C220.0530 (12)0.135 (2)0.150 (3)0.0246 (13)0.0303 (14)0.0199 (19)
C90.0755 (12)0.0685 (12)0.0652 (11)0.0184 (10)0.0200 (10)0.0017 (9)
C100.0531 (9)0.0575 (10)0.0594 (10)0.0056 (7)0.0063 (8)0.0012 (8)
C110.0672 (11)0.0567 (10)0.0796 (13)0.0070 (9)0.0145 (10)0.0024 (9)
C120.0796 (14)0.0596 (12)0.0886 (15)0.0007 (10)0.0110 (12)0.0145 (11)
C130.0770 (13)0.0802 (14)0.0694 (12)0.0102 (11)0.0130 (10)0.0121 (11)
C140.0691 (12)0.0820 (14)0.0641 (12)0.0036 (10)0.0158 (10)0.0001 (10)
C150.0643 (10)0.0613 (10)0.0604 (10)0.0116 (8)0.0089 (8)0.0019 (8)
C160.0431 (7)0.0449 (8)0.0552 (9)0.0064 (6)0.0075 (7)0.0017 (7)
C170.0603 (10)0.0564 (10)0.0655 (11)0.0067 (8)0.0072 (8)0.0034 (8)
C180.0669 (12)0.0868 (14)0.0714 (13)0.0021 (10)0.0183 (10)0.0201 (11)
C190.0761 (13)0.0931 (16)0.0565 (11)0.0167 (11)0.0150 (10)0.0039 (11)
C200.0831 (14)0.0692 (13)0.0645 (12)0.0053 (10)0.0020 (10)0.0134 (10)
C210.0675 (11)0.0514 (10)0.0640 (11)0.0036 (8)0.0093 (9)0.0005 (8)
N10.0422 (7)0.0539 (8)0.0537 (7)0.0025 (5)0.0088 (6)0.0010 (6)
O10.0425 (6)0.0876 (9)0.0726 (8)0.0042 (6)0.0193 (6)0.0121 (7)
O20.0855 (9)0.0646 (8)0.0716 (8)0.0255 (7)0.0043 (7)0.0147 (6)
O30.1770 (18)0.0842 (11)0.0986 (12)0.0421 (12)0.0703 (13)0.0065 (9)
S10.0469 (2)0.0572 (3)0.0552 (3)0.01117 (17)0.01038 (17)0.00133 (18)
Geometric parameters (Å, º) top
C5—C41.366 (3)C11—H110.9300
C5—C61.403 (3)C12—C131.370 (3)
C5—H50.9300C12—H120.9300
C4—C31.377 (3)C13—C141.364 (3)
C4—H40.9300C13—H130.9300
C3—C21.377 (2)C14—C151.382 (3)
C3—H30.9300C14—H140.9300
C2—C11.381 (2)C15—H150.9300
C2—H20.9300C16—C171.379 (2)
C1—C61.397 (2)C16—C211.380 (2)
C1—N11.420 (2)C16—S11.7485 (17)
C6—C71.439 (3)C17—C181.376 (3)
C7—C81.348 (3)C17—H170.9300
C7—C221.510 (3)C18—C191.365 (3)
C8—N11.422 (2)C18—H180.9300
C8—C91.494 (3)C19—C201.372 (3)
C22—H22A0.9600C19—H190.9300
C22—H22B0.9600C20—C211.376 (3)
C22—H22C0.9600C20—H200.9300
C9—O31.225 (2)C21—H210.9300
C9—C101.483 (3)N1—S11.6709 (13)
C10—C111.387 (3)O1—S11.4257 (13)
C10—C151.389 (2)O2—S11.4174 (13)
C11—C121.378 (3)
C4—C5—C6119.11 (18)C13—C12—C11120.15 (19)
C4—C5—H5120.4C13—C12—H12119.9
C6—C5—H5120.4C11—C12—H12119.9
C5—C4—C3120.89 (19)C14—C13—C12120.4 (2)
C5—C4—H4119.6C14—C13—H13119.8
C3—C4—H4119.6C12—C13—H13119.8
C4—C3—C2121.80 (19)C13—C14—C15120.1 (2)
C4—C3—H3119.1C13—C14—H14120.0
C2—C3—H3119.1C15—C14—H14120.0
C3—C2—C1117.52 (16)C14—C15—C10120.25 (18)
C3—C2—H2121.2C14—C15—H15119.9
C1—C2—H2121.2C10—C15—H15119.9
C2—C1—C6121.86 (16)C17—C16—C21121.05 (17)
C2—C1—N1130.61 (14)C17—C16—S1120.01 (13)
C6—C1—N1107.51 (14)C21—C16—S1118.94 (13)
C1—C6—C5118.82 (18)C18—C17—C16118.66 (17)
C1—C6—C7107.75 (15)C18—C17—H17120.7
C5—C6—C7133.42 (17)C16—C17—H17120.7
C8—C7—C6108.09 (15)C19—C18—C17120.76 (19)
C8—C7—C22127.3 (2)C19—C18—H18119.6
C6—C7—C22124.5 (2)C17—C18—H18119.6
C7—C8—N1109.56 (16)C18—C19—C20120.3 (2)
C7—C8—C9125.49 (17)C18—C19—H19119.8
N1—C8—C9124.53 (15)C20—C19—H19119.8
C7—C22—H22A109.5C19—C20—C21120.12 (19)
C7—C22—H22B109.5C19—C20—H20119.9
H22A—C22—H22B109.5C21—C20—H20119.9
C7—C22—H22C109.5C20—C21—C16119.10 (18)
H22A—C22—H22C109.5C20—C21—H21120.5
H22B—C22—H22C109.5C16—C21—H21120.5
O3—C9—C10120.85 (19)C1—N1—C8107.01 (12)
O3—C9—C8117.45 (19)C1—N1—S1120.76 (11)
C10—C9—C8121.25 (16)C8—N1—S1120.73 (12)
C11—C10—C15118.80 (18)O2—S1—O1120.52 (9)
C11—C10—C9118.25 (17)O2—S1—N1104.85 (8)
C15—C10—C9122.92 (16)O1—S1—N1106.22 (7)
C12—C11—C10120.25 (19)O2—S1—C16109.05 (8)
C12—C11—H11119.9O1—S1—C16109.29 (8)
C10—C11—H11119.9N1—S1—C16105.88 (7)
C6—C5—C4—C30.1 (3)C13—C14—C15—C101.5 (3)
C5—C4—C3—C20.2 (3)C11—C10—C15—C141.3 (3)
C4—C3—C2—C10.6 (3)C9—C10—C15—C14179.47 (18)
C3—C2—C1—C61.0 (3)C21—C16—C17—C180.1 (3)
C3—C2—C1—N1176.99 (16)S1—C16—C17—C18179.28 (14)
C2—C1—C6—C51.0 (3)C16—C17—C18—C190.2 (3)
N1—C1—C6—C5177.45 (16)C17—C18—C19—C200.2 (3)
C2—C1—C6—C7179.79 (16)C18—C19—C20—C210.1 (3)
N1—C1—C6—C71.78 (19)C19—C20—C21—C160.3 (3)
C4—C5—C6—C10.5 (3)C17—C16—C21—C200.4 (3)
C4—C5—C6—C7179.5 (2)S1—C16—C21—C20179.02 (14)
C1—C6—C7—C80.1 (2)C2—C1—N1—C8179.02 (17)
C5—C6—C7—C8179.0 (2)C6—C1—N1—C82.74 (17)
C1—C6—C7—C22176.8 (2)C2—C1—N1—S135.5 (2)
C5—C6—C7—C222.2 (4)C6—C1—N1—S1146.23 (12)
C6—C7—C8—N11.6 (2)C7—C8—N1—C12.74 (19)
C22—C7—C8—N1175.0 (2)C9—C8—N1—C1175.68 (16)
C6—C7—C8—C9174.50 (17)C7—C8—N1—S1146.25 (14)
C22—C7—C8—C92.1 (3)C9—C8—N1—S140.8 (2)
C7—C8—C9—O362.9 (3)C1—N1—S1—O2178.64 (12)
N1—C8—C9—O3125.3 (2)C8—N1—S1—O240.07 (15)
C7—C8—C9—C10109.4 (2)C1—N1—S1—O152.73 (14)
N1—C8—C9—C1062.4 (3)C8—N1—S1—O1168.70 (12)
O3—C9—C10—C119.9 (3)C1—N1—S1—C1663.40 (13)
C8—C9—C10—C11162.15 (18)C8—N1—S1—C1675.17 (13)
O3—C9—C10—C15171.9 (2)C17—C16—S1—O233.31 (15)
C8—C9—C10—C1516.0 (3)C21—C16—S1—O2146.06 (14)
C15—C10—C11—C120.0 (3)C17—C16—S1—O1166.94 (13)
C9—C10—C11—C12178.23 (18)C21—C16—S1—O112.44 (15)
C10—C11—C12—C131.2 (3)C17—C16—S1—N179.03 (14)
C11—C12—C13—C141.0 (3)C21—C16—S1—N1101.60 (14)
C12—C13—C14—C150.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.453.025 (2)120
C15—H15···N10.932.613.254 (2)127
C21—H21···O10.932.532.904 (2)104
C21—H21···O2i0.932.293.127 (2)149
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H17NO3S
Mr375.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.8120 (7), 10.5199 (4), 16.1346 (6)
β (°) 103.926 (1)
V3)3758.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
24166, 5682, 3487
Rint0.031
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.145, 1.02
No. of reflections5682
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.453.025 (2)120
C15—H15···N10.932.613.254 (2)127
C21—H21···O10.932.532.904 (2)104
C21—H21···O2i0.932.293.127 (2)148.8
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMa, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525–4542.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRanjith, S., SubbiahPandi, A., Govindan, E., Dhayalan, V. & MohanaKrishnan, A. K. (2011). Acta Cryst. E67, o844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1242
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds