organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1147

(6RS,9SR)-6,7-Di­bromo-1,2,3,4-tetra­hydro-1,4-methano­anthracene

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 26 March 2011; accepted 11 April 2011; online 16 April 2011)

The title compound, C15H12Br2, comprises a norbornane unit having a dibromo­naphthalene ring fused on one side. Both Br atoms are twisted slightly out of the plane of the naphthalene ring system with a Br—C—C—Br torsion angle of 5.3 (5)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯Br hydrogen bonds, forming an infinite C(9) chain along [110].

Related literature

For the spectroscopy of the title compound and its preparation, see: Chen et al. (2006[Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136-12144.]). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002[Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115-8119.]); Chow et al. (2005[Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967-6975.]); Lewis et al. (1997[Lewis, F. D., Wu, T., Zhang, Y., Letsinger, R. L., Greenfield, S. R. & Wasielewski, M. R. (1997). Science, 277, 673-676.]); Roest et al. (1996[Roest, M. R., Verhoeven, J. W., Schuddeboom, W., Warman, J. M., Lawson, J. M. & Paddon-Row, M. N. (1996). J. Am. Chem. Soc. 118, 1762-1768.]). For related structures, see: Çelik et al. (2006[Çelik, Í., Ersanlı, C. C., Akkurt, M., Daştan, A. & García-Granda, S. (2006). Acta Cryst. E62, o3483-o3485.]); Chiou et al. (2001[Chiou, N. R., Chow, T. J., Chen, C. Y., Hsu, M. A. & Chen, H. C. (2001). Tetrahedron Lett. 42, 29-31.]); Chow et al. (1999[Chow, T. J., Hon, Y. S., Chen, C. Y. & Huang, M. S. (1999). Tetrahedron Lett. 40, 7799-7801.]); Lough et al. (2006[Lough, A. J., Villeneuve, K. & Tam, W. (2006). Acta Cryst. E62, o2846-o2847.]). For the C—H⋯Br hydrogen bond, see: Desiraju & Steiner (2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Farrugia et al. (2007[Farrugia, L. J., Hartley, R. C., Main, C. A. & Rahman, S. S. (2007). Acta Cryst. E63, o2540-o2541.]); Kuś & Jones (2003[Kuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899-o900.]); Yang et al. (2007[Yang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o4404.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Br2

  • Mr = 352.07

  • Monoclinic, C 2/c

  • a = 23.437 (3) Å

  • b = 6.3565 (8) Å

  • c = 18.416 (2) Å

  • β = 111.781 (2)°

  • V = 2547.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.34 mm−1

  • T = 297 K

  • 0.56 × 0.48 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.399, Tmax = 1.000

  • 6895 measured reflections

  • 2501 independent reflections

  • 1817 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 0.96

  • 2501 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Br2i 0.97 3.00 (1) 3.843 (16) 146 (1)
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Electron donor (D)–acceptor (A) chromophores linked by rigid, covalent spacers (S), forming D–S–A dyads, have attracted considerable attention due to their potential applications in the design of molecular devices (Lewis et al., 1997; Roest et al., 1996). Numerous types of spacers have been reported (Chiou et al., 2001; Chow et al., 1999). However, rigid linear rod-shaped structures are not commonly seen. The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. The rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups have been estimated (Chen et al., 2002; Chow et al., 2005). The ET rates were found to correlate well with both D–A distance and solvent polarities. Atoms C6 and C9 of the title compound are chiral centers, but their relative configurations are opposite (6R,9S or 6S,9R). The racemate was prepared as a model compound for investigations of the intramolecular electron transfer reactions (Chen et al., 2006).

The ORTEP diagram of the title compound is shown in Figure 1. The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C5/C6/C15/C9/C10) and B (C6–C9/C15) are Q2 = 0.560 (6)Å and ϕ2 = 71.0 (5)°, and Q2 = 0.602 (6)Å and ϕ2 = 144.7 (6)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Çelik, et al., 2006; Lough, et al., 2006). In addition, the naphthalene ring is essentially planar with a maximum deviation of 0.052 (2)Å for atom C5. Whereas both bromine atoms are slightly twisted out of the plane of the naphthalene ring (5.3 (5)° of Br1—C1—C14—Br2, Table 1). In the crystal structure (Figure 2), the molecules are linked by weak intermolecular C—H···Br (2.998 (2)Å of C8—H8A···Br2 distance and 146 (1)° of C8—H8A—Br2, Table 2) hydrogen bonds (Desiraju et al., 2001; Farrugia et al., 2007; Kuś et al., 2003; Yang et al., 2007) to form an infinite two-dimensional chain, generating a C(9) motif (Bernstein et al., 1995).

Related literature top

For the spectroscopy of the title compound and its preparation, see: Chen et al. (2006). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002); Chow et al. (2005); Lewis et al. (1997); Roest et al. (1996). For related structures, see: Çelik et al. (2006); Chiou et al. (2001); Chow et al. (1999); Lough et al. (2006). For the C—H···Br hydrogen bond, see: Desiraju & Steiner (2001); Farrugia et al. (2007); Kuś & Jones (2003); Yang et al. (2007). For general definition of ring puckering coordinates, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

A mixture of α,α,α',α'-4,5- hexabromo-o-xylene (4.3 mmol), norbornene (4.3 mmol), sodium iodide (30 mmol), and dry DMF (50 ml) was stirred at 65 oC for 24 h. The reaction mixture was poured into cold water (350 ml) containing sodium bisfulfite (5.0 g). The yellow precipitate was purified by chromatography (silica gel column, hexane:ethyl acetate = 6:1) and finally by recrystallization. Colorless needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.

Refinement top

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the b axis.
(6RS,9SR)-6,7- dibromotetracyclo[10.2.1.02,11.04,9]pentadeca-2,4(9),5,7,10-pentaene top
Crystal data top
C15H12Br2F(000) = 1376
Mr = 352.07Dx = 1.836 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2464 reflections
a = 23.437 (3) Åθ = 3.3–25.5°
b = 6.3565 (8) ŵ = 6.34 mm1
c = 18.416 (2) ÅT = 297 K
β = 111.781 (2)°Parallelepiped, colorless
V = 2547.6 (6) Å30.56 × 0.48 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2501 independent reflections
Radiation source: fine-focus sealed tube1817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1928
Tmin = 0.399, Tmax = 1.000k = 77
6895 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
2501 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
C15H12Br2V = 2547.6 (6) Å3
Mr = 352.07Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.437 (3) ŵ = 6.34 mm1
b = 6.3565 (8) ÅT = 297 K
c = 18.416 (2) Å0.56 × 0.48 × 0.20 mm
β = 111.781 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1817 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 1.000Rint = 0.058
6895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.96Δρmax = 1.12 e Å3
2501 reflectionsΔρmin = 1.09 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02569 (2)0.67170 (9)0.16329 (3)0.0637 (2)
Br20.02816 (3)0.21416 (10)0.07270 (4)0.0725 (3)
C10.0959 (2)0.5881 (7)0.1431 (2)0.0420 (10)
C20.1462 (2)0.7148 (7)0.1649 (2)0.0451 (10)
H2A0.14470.84360.18810.054*
C30.2004 (2)0.6583 (7)0.1536 (2)0.0406 (10)
C40.2517 (2)0.7938 (7)0.1720 (2)0.0451 (11)
H4A0.25100.92530.19380.054*
C50.3020 (2)0.7309 (7)0.1576 (2)0.0439 (10)
C60.3608 (2)0.8382 (8)0.1631 (3)0.0545 (13)
H6A0.37260.96050.19790.065*
C70.3561 (2)0.8766 (9)0.0789 (3)0.0583 (13)
H7A0.31780.94660.04880.070*
H7B0.39000.96210.07790.070*
C80.3584 (2)0.6567 (8)0.0465 (3)0.0595 (14)
H8A0.39320.64260.03020.071*
H8B0.32090.62520.00250.071*
C90.3656 (2)0.5124 (9)0.1171 (3)0.0612 (13)
H9A0.38140.37050.11510.073*
C100.3047 (2)0.5253 (7)0.1275 (3)0.0454 (10)
C110.2564 (2)0.3915 (8)0.1093 (3)0.0513 (11)
H11A0.25860.25870.08930.062*
C120.2025 (2)0.4553 (6)0.1210 (2)0.0387 (9)
C130.1496 (2)0.3277 (7)0.0989 (3)0.0479 (11)
H13A0.15040.19610.07720.057*
C140.0971 (2)0.3921 (7)0.1085 (2)0.0454 (10)
C150.4058 (2)0.6541 (10)0.1856 (3)0.0692 (16)
H15A0.41150.59580.23650.083*
H15B0.44520.68850.18260.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0470 (3)0.0745 (4)0.0825 (4)0.0007 (3)0.0389 (3)0.0001 (3)
Br20.0554 (4)0.0786 (4)0.0901 (5)0.0332 (3)0.0345 (3)0.0187 (3)
C10.038 (2)0.052 (3)0.041 (2)0.005 (2)0.021 (2)0.0023 (18)
C20.046 (3)0.048 (3)0.048 (3)0.007 (2)0.025 (2)0.0068 (19)
C30.043 (2)0.045 (2)0.038 (2)0.006 (2)0.020 (2)0.0012 (18)
C40.046 (3)0.054 (3)0.038 (2)0.009 (2)0.019 (2)0.0092 (18)
C50.037 (2)0.056 (3)0.038 (2)0.013 (2)0.013 (2)0.0047 (19)
C60.044 (3)0.072 (3)0.049 (3)0.023 (2)0.018 (2)0.011 (2)
C70.049 (3)0.072 (3)0.058 (3)0.009 (3)0.024 (2)0.008 (2)
C80.041 (3)0.087 (4)0.059 (3)0.011 (3)0.028 (2)0.011 (3)
C90.041 (3)0.065 (3)0.084 (4)0.004 (3)0.031 (3)0.007 (3)
C100.034 (2)0.056 (3)0.048 (2)0.001 (2)0.017 (2)0.003 (2)
C110.050 (3)0.042 (2)0.068 (3)0.001 (2)0.030 (2)0.003 (2)
C120.039 (2)0.041 (2)0.039 (2)0.0049 (19)0.0171 (19)0.0002 (17)
C130.052 (3)0.040 (2)0.059 (3)0.011 (2)0.029 (2)0.0076 (19)
C140.041 (2)0.052 (3)0.044 (2)0.013 (2)0.017 (2)0.0022 (19)
C150.036 (3)0.107 (5)0.061 (3)0.003 (3)0.013 (2)0.019 (3)
Geometric parameters (Å, º) top
Br1—C11.892 (4)C7—H7A0.9700
Br2—C141.881 (4)C7—H7B0.9700
C1—C21.359 (6)C8—C91.548 (7)
C1—C141.405 (6)C8—H8A0.9700
C2—C31.407 (6)C8—H8B0.9700
C2—H2A0.9300C9—C101.512 (6)
C3—C121.432 (6)C9—C151.552 (8)
C3—C41.415 (6)C9—H9A0.9800
C4—C51.363 (6)C10—C111.355 (7)
C4—H4A0.9300C11—C121.417 (6)
C5—C101.430 (7)C11—H11A0.9300
C5—C61.506 (6)C12—C131.409 (6)
C6—C151.526 (8)C13—C141.368 (7)
C6—C71.533 (6)C13—H13A0.9300
C6—H6A0.9800C15—H15A0.9700
C7—C81.529 (7)C15—H15B0.9700
C2—C1—C14119.8 (4)C7—C8—H8B111.2
C2—C1—Br1119.8 (3)C9—C8—H8B111.2
C14—C1—Br1120.3 (3)H8A—C8—H8B109.1
C1—C2—C3122.4 (4)C10—C9—C8105.1 (4)
C1—C2—H2A118.8C10—C9—C15100.5 (4)
C3—C2—H2A118.8C8—C9—C15100.6 (4)
C12—C3—C4119.3 (4)C10—C9—H9A116.1
C12—C3—C2117.8 (4)C8—C9—H9A116.1
C4—C3—C2122.9 (4)C15—C9—H9A116.1
C5—C4—C3119.7 (4)C11—C10—C5121.1 (4)
C5—C4—H4A120.1C11—C10—C9132.6 (5)
C3—C4—H4A120.1C5—C10—C9106.1 (4)
C4—C5—C10120.6 (4)C10—C11—C12119.5 (4)
C4—C5—C6133.7 (4)C10—C11—H11A120.2
C10—C5—C6105.7 (4)C12—C11—H11A120.2
C5—C6—C15101.2 (4)C11—C12—C3119.6 (4)
C5—C6—C7106.4 (4)C11—C12—C13122.0 (4)
C15—C6—C7100.4 (4)C3—C12—C13118.4 (4)
C5—C6—H6A115.6C14—C13—C12121.8 (4)
C15—C6—H6A115.6C14—C13—H13A119.1
C7—C6—H6A115.6C12—C13—H13A119.1
C8—C7—C6104.5 (4)C13—C14—C1119.7 (4)
C8—C7—H7A110.9C13—C14—Br2118.1 (3)
C6—C7—H7A110.9C1—C14—Br2122.1 (4)
C8—C7—H7B110.9C6—C15—C994.3 (4)
C6—C7—H7B110.9C6—C15—H15A112.9
H7A—C7—H7B108.9C9—C15—H15A112.9
C7—C8—C9102.8 (4)C6—C15—H15B112.9
C7—C8—H8A111.2C9—C15—H15B112.9
C9—C8—H8A111.2H15A—C15—H15B110.3
C14—C1—C2—C30.5 (7)C8—C9—C10—C571.4 (5)
Br1—C1—C2—C3178.0 (3)C15—C9—C10—C532.6 (5)
C1—C2—C3—C122.8 (6)C5—C10—C11—C120.6 (7)
C1—C2—C3—C4176.3 (4)C9—C10—C11—C12175.1 (5)
C12—C3—C4—C50.8 (6)C10—C11—C12—C31.5 (6)
C2—C3—C4—C5178.2 (4)C10—C11—C12—C13176.2 (4)
C3—C4—C5—C102.9 (6)C4—C3—C12—C111.4 (6)
C3—C4—C5—C6173.9 (4)C2—C3—C12—C11179.5 (4)
C4—C5—C6—C15147.7 (5)C4—C3—C12—C13176.3 (4)
C10—C5—C6—C1535.1 (5)C2—C3—C12—C132.8 (6)
C4—C5—C6—C7107.8 (6)C11—C12—C13—C14178.3 (4)
C10—C5—C6—C769.4 (5)C3—C12—C13—C140.6 (6)
C5—C6—C7—C868.1 (5)C12—C13—C14—C11.7 (7)
C15—C6—C7—C836.9 (5)C12—C13—C14—Br2177.3 (3)
C6—C7—C8—C91.0 (5)C2—C1—C14—C131.8 (6)
C7—C8—C9—C1069.5 (5)Br1—C1—C14—C13175.7 (3)
C7—C8—C9—C1534.6 (5)C2—C1—C14—Br2177.1 (3)
C4—C5—C10—C112.9 (7)Br1—C1—C14—Br25.3 (5)
C6—C5—C10—C11174.7 (4)C5—C6—C15—C952.5 (4)
C4—C5—C10—C9178.7 (4)C7—C6—C15—C956.7 (4)
C6—C5—C10—C91.0 (5)C10—C9—C15—C651.5 (4)
C8—C9—C10—C11103.6 (6)C8—C9—C15—C656.3 (4)
C15—C9—C10—C11152.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br2i0.973.00 (1)3.843 (16)146 (1)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H12Br2
Mr352.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)23.437 (3), 6.3565 (8), 18.416 (2)
β (°) 111.781 (2)
V3)2547.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)6.34
Crystal size (mm)0.56 × 0.48 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.399, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6895, 2501, 1817
Rint0.058
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.144, 0.96
No. of reflections2501
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 1.09

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br2i0.9723.00 (1)3.843 (16)146 (1)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

Financial support from the National Science Council of the Republic of China is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Ersanlı, C. C., Akkurt, M., Daştan, A. & García-Granda, S. (2006). Acta Cryst. E62, o3483–o3485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChiou, N. R., Chow, T. J., Chen, C. Y., Hsu, M. A. & Chen, H. C. (2001). Tetrahedron Lett. 42, 29–31.  CrossRef CAS Google Scholar
First citationChow, T. J., Hon, Y. S., Chen, C. Y. & Huang, M. S. (1999). Tetrahedron Lett. 40, 7799–7801.  Web of Science CrossRef CAS Google Scholar
First citationChow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J., Hartley, R. C., Main, C. A. & Rahman, S. S. (2007). Acta Cryst. E63, o2540–o2541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899–o900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLewis, F. D., Wu, T., Zhang, Y., Letsinger, R. L., Greenfield, S. R. & Wasielewski, M. R. (1997). Science, 277, 673–676.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLough, A. J., Villeneuve, K. & Tam, W. (2006). Acta Cryst. E62, o2846–o2847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoest, M. R., Verhoeven, J. W., Schuddeboom, W., Warman, J. M., Lawson, J. M. & Paddon-Row, M. N. (1996). J. Am. Chem. Soc. 118, 1762–1768.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o4404.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1147
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds