metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m599-m600

Bis(μ-hexa­deca­noato-κ2O:O)bis­­[(2,2′-bi­pyridine-κ2N,N′)(hexa­deca­noato-κO)copper(II)] methanol disolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: norbania@um.edu.my, khaledi@siswa.um.edu.my

(Received 1 April 2011; accepted 11 April 2011; online 16 April 2011)

The asymmetric unit of the title compound, [Cu2(C16H31O2)4(C10H8N2)2]·2CH3OH, contains one half-mol­ecule of the metal complex solvated by a methanol mol­ecule. In the complex, two of the metal atoms are doubly bridged by two monodentate bridging hexa­deca­noate ligands around a center of inversion. The square-pyramidal geometry around each CuII ion is completed by a terminal hexa­deca­noate O atom and two N atoms from a 2,2′-bipyridine ligand. The alkyl chains of the carboxyl­ate ligands are arranged in a parallel manner with an all-trans conformation. In the crystal, a ππ inter­action formed by the bipyridine rings [centroid–centroid separation = 3.7723 (17) Å] and inter­molecular C—H⋯O hydrogen bonds link the complex mol­ecules into infinite chains along the b axis. An O—H⋯O interaction between the methanol solvate and one of the carboxylate O atoms is also observed.

Related literature

For background to metallomesogens, see: Giroud-Godquin (1998[Giroud-Godquin, A. M. (1998). Coord. Chem. Rev. 180, 1485-1499.]). For the structures of similar copper(II) complexes, see: Antolini et al. (1985[Antolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219-1222.]); Zhang et al. (2006[Zhang, Z.-G., Dong, X.-D., Li, Y.-P., Pu, X.-H., Huo, F.-J. & Zhu, M.-L. (2006). Acta Cryst. E62, m2326-m2327.]). For a description of the geometry of complexes with a five-coordinate metal atom, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C16H31O2)4(C10H8N2)2]·2CH4O

  • Mr = 1525.16

  • Triclinic, [P \overline 1]

  • a = 9.6064 (3) Å

  • b = 9.7506 (3) Å

  • c = 24.0234 (8) Å

  • α = 92.559 (2)°

  • β = 98.681 (2)°

  • γ = 95.516 (2)°

  • V = 2210.14 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.40 × 0.27 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.814, Tmax = 0.953

  • 13457 measured reflections

  • 8088 independent reflections

  • 5498 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.127

  • S = 0.99

  • 8088 reflections

  • 466 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O1i 0.93 2.50 3.093 (3) 122
C33—H33⋯O3i 0.93 2.57 3.071 (3) 114
C35—H35⋯O2ii 0.93 2.42 3.129 (3) 134
C39—H39⋯O4iii 0.93 2.41 3.258 (4) 152
C41—H41⋯O5iv 0.93 2.46 3.153 (4) 131
C42—H42⋯O1 0.93 2.59 3.096 (3) 115
O5—H5⋯O2 0.86 (2) 1.89 (3) 2.732 (4) 166 (6)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x, y-1, z; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metallomesogens are metal containing liquid crystals. Active research in this field started around 30 years ago (Giroud-Godquin, 1998), and these materials have found useful applications as ordered solvents, catalysts, and templates for synthesis, optical and ferroelectric systems, electronic or ionic conductors, and membranes. However, most metallomesogens have high melting points (greater than 523 K), high viscosity, and narrow isotropic range. Our research group is focused on functional low-temperature and thermally stable metallomesogens for spintronic, electronic, photonic and catalytic applications. To achieve this, we applied the concept of symmetry reduction and use of ligands with long (linear or branched) alkyl chains. Herein, we report the crystal structure of one such complex.

The title compound is a centrosymmetric dinuclear copper(II) complex in which the metal ions are five-coordinate in a square-pyramidal geometry with the τ value (Addison et al., 1984) of 0.016. The coordination geometry around each metal center is defined by two nitrogen atoms from a 2,2'-bipyridine and two O atoms from two monodentate hexadecanoato ligands at the basal positions. The square-pyramidal coordination of Cu(II) is completed by bonding to the bridging hexadecanoate O atom in the axial direction with Cu—O distance of 2.349 (2) Å. Within this double bridged dimer, the Cu···Cu distance [3.3740 (6) Å] is comparable to those observed in similar structures (Antolini et al., 1985; Zhang et al., 2006). The alkyl chains of the carboxylate ligands are arranged in a parallel manner with an all trans conformation. The methanol solvent molecule is a hydrogen bond donor to the carboxylate O2 atom. In the crystal, intermolecular C—H···O interactions (Table 1) connect the molecules into infinite chains along the b axis. The one-dimensional link is supplemented by a π-π stacking interaction between the anti-parallely arranged bipyridine rings of the adjacent molecules, the pyridyl rings centroid-centroid separation being 3.7723 (17) Å. Intramolecular C—H···O interactions are also observed.

Related literature top

For background to metallomesogens, see: Giroud-Godquin (1998). For the structures of similar copper(II) complexes, see: Antolini et al. (1985); Zhang et al. (2006). For a description of the geometry of complexes with a five-coordinate metal atom, see: Addison et al. (1984).

Experimental top

An aqueous solution of copper(II)nitrate trihydrate (5.7 g, 23.4 mmol) was added portionwise to a hot ethanolic solution (150 ml) of hexadecanoic acid (6 g, 23.4 mmol) and p-aminobenzoic acid (3.2 g, 23.6 mmol). The green solution formed was allowed to cool to room temperature, and then an excess amount of ammonia (30%) was added. The purple solution formed was stirred at room temperature overnight, and then heated gently to remove excess ammonia and get the pale blue precipitate of [Cu2(p-H2NC6H4COO)2(CH3(CH2)14COO)2]. 2,2'-Bipyridine (0.19 g, 1.2 mmol) was added to a suspension of [Cu2(p-H2NC6H4COO)2(CH3(CH2)14COO)2] (1 g, 1.1 mmol) in a 1:2 mixture of methanol-ethanol (60 ml). The mixture was heated for 30 minutes and the black precipitate was filtered off. The small blue crystals obtained from the filtrate, on standing overnight, were recrystallized from methanol-THF (1:1), to give the dark blue crystals of the title compound after two weeks.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions (C–H 0.93–0.97 Å), and were treated as riding on their parent carbon atoms. The oxygen-bound H atom was located in a difference Fourier map and refined with distance restraint of O–H 0.82±0.02 Å. For hydrogen atoms Uiso(H) were set to 1.2–1.5 times Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Atom labels for consecutively numbered rings and alkyl chains, as well as C-bound hydrogen atoms have been omitted for clarity. Symmetry code: ' = -x+2, –y+1, -z+1.
[Figure 2] Fig. 2. Packing view looking down the crystallographic a axis.
Bis(µ-hexadecanoato-κ2O:O)bis[(2,2'-bipyridine- κ2N,N')(hexadecanoato-κO)copper(II)] methanol disolvate top
Crystal data top
[Cu2(C16H31O2)4(C10H8N2)2]·2CH4OZ = 1
Mr = 1525.16F(000) = 830
Triclinic, P1Dx = 1.146 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6064 (3) ÅCell parameters from 2321 reflections
b = 9.7506 (3) Åθ = 2.5–21.5°
c = 24.0234 (8) ŵ = 0.54 mm1
α = 92.559 (2)°T = 296 K
β = 98.681 (2)°Block, blue
γ = 95.516 (2)°0.40 × 0.27 × 0.09 mm
V = 2210.14 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8088 independent reflections
Radiation source: fine-focus sealed tube5498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.814, Tmax = 0.953k = 1111
13457 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
8088 reflections(Δ/σ)max = 0.011
466 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
[Cu2(C16H31O2)4(C10H8N2)2]·2CH4Oγ = 95.516 (2)°
Mr = 1525.16V = 2210.14 (12) Å3
Triclinic, P1Z = 1
a = 9.6064 (3) ÅMo Kα radiation
b = 9.7506 (3) ŵ = 0.54 mm1
c = 24.0234 (8) ÅT = 296 K
α = 92.559 (2)°0.40 × 0.27 × 0.09 mm
β = 98.681 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8088 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5498 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.953Rint = 0.034
13457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.31 e Å3
8088 reflectionsΔρmin = 0.24 e Å3
466 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.91189 (3)0.34121 (3)0.498126 (15)0.03823 (13)
O10.7446 (2)0.42240 (19)0.51491 (9)0.0475 (5)
O20.6702 (2)0.2457 (2)0.56137 (10)0.0619 (6)
O30.96731 (19)0.53048 (18)0.44537 (8)0.0426 (5)
O40.9778 (2)0.7002 (2)0.38786 (10)0.0602 (6)
N11.0740 (2)0.2359 (2)0.48224 (10)0.0378 (6)
N20.8058 (2)0.1916 (2)0.44362 (10)0.0394 (6)
C10.6751 (3)0.3687 (3)0.55073 (14)0.0452 (8)
C20.5984 (3)0.4670 (3)0.58304 (14)0.0542 (9)
H2A0.55580.53140.55770.065*
H2B0.52360.41540.59870.065*
C30.7025 (3)0.5457 (3)0.63028 (14)0.0556 (9)
H3A0.74960.47960.65340.067*
H3B0.77410.59980.61380.067*
C40.6373 (3)0.6407 (3)0.66775 (14)0.0606 (9)
H4A0.59320.70910.64500.073*
H4B0.56350.58740.68340.073*
C50.7410 (4)0.7138 (4)0.71538 (15)0.0671 (10)
H5A0.81280.76890.69930.081*
H5B0.78780.64480.73690.081*
C60.6812 (4)0.8064 (4)0.75564 (15)0.0641 (10)
H6A0.63780.87810.73470.077*
H6B0.60720.75250.77090.077*
C70.7877 (4)0.8737 (4)0.80388 (15)0.0657 (10)
H7A0.86210.92640.78840.079*
H7B0.83040.80170.82490.079*
C80.7305 (4)0.9680 (4)0.84449 (15)0.0666 (10)
H8A0.68611.03920.82350.080*
H8B0.65760.91500.86070.080*
C90.8383 (4)1.0361 (4)0.89138 (15)0.0695 (11)
H9A0.91041.08960.87490.083*
H9B0.88370.96450.91170.083*
C100.7853 (4)1.1292 (4)0.93316 (15)0.0681 (10)
H10A0.73871.20000.91270.082*
H10B0.71401.07530.95000.082*
C110.8932 (4)1.1989 (4)0.97973 (16)0.0720 (11)
H11A0.93891.12831.00060.086*
H11B0.96501.25220.96300.086*
C120.8389 (4)1.2925 (4)1.02059 (15)0.0724 (11)
H12A0.76821.23861.03770.087*
H12B0.79141.36170.99950.087*
C130.9456 (4)1.3652 (4)1.06694 (16)0.0772 (11)
H13A0.99271.29601.08820.093*
H13B1.01671.41881.04990.093*
C140.8910 (4)1.4587 (4)1.10716 (16)0.0781 (12)
H14A0.81961.40501.12400.094*
H14B0.84391.52771.08570.094*
C150.9958 (5)1.5325 (5)1.15394 (19)0.0965 (14)
H15A1.04221.46411.17600.116*
H15B1.06781.58611.13740.116*
C160.9367 (5)1.6263 (5)1.19290 (19)0.1150 (18)
H16A0.89611.69851.17220.172*
H16B1.01101.66591.22210.172*
H16C0.86491.57481.20950.172*
C170.9304 (3)0.5849 (3)0.39814 (13)0.0421 (7)
C180.8202 (3)0.4979 (3)0.35562 (13)0.0512 (8)
H18A0.74880.45380.37540.061*
H18B0.77390.55820.32930.061*
C190.8802 (3)0.3880 (3)0.32266 (13)0.0482 (8)
H19A0.95340.43150.30360.058*
H19B0.92380.32570.34870.058*
C200.7695 (3)0.3054 (3)0.27940 (14)0.0565 (9)
H20A0.69930.25840.29900.068*
H20B0.72190.36910.25510.068*
C210.8245 (3)0.1999 (3)0.24292 (14)0.0590 (9)
H21A0.86560.13180.26680.071*
H21B0.89940.24550.22530.071*
C220.7130 (4)0.1261 (4)0.19725 (15)0.0657 (10)
H22A0.64240.07430.21510.079*
H22B0.66600.19480.17560.079*
C230.7670 (4)0.0293 (4)0.15724 (15)0.0678 (10)
H23A0.80960.04220.17860.081*
H23B0.84100.08000.14080.081*
C240.6571 (4)0.0390 (4)0.10995 (15)0.0671 (10)
H24A0.58510.09300.12640.081*
H24B0.61170.03240.08950.081*
C250.7126 (4)0.1317 (4)0.06851 (15)0.0679 (10)
H25A0.78340.07720.05170.081*
H25B0.75980.20190.08910.081*
C260.6041 (4)0.2025 (4)0.02180 (15)0.0679 (10)
H26A0.53410.25840.03850.081*
H26B0.55580.13250.00150.081*
C270.6611 (4)0.2929 (4)0.01978 (15)0.0679 (10)
H27A0.71150.36110.00080.082*
H27B0.72950.23630.03700.082*
C280.5540 (4)0.3672 (4)0.06597 (15)0.0697 (10)
H28A0.48550.42390.04880.084*
H28B0.50370.29910.08670.084*
C290.6122 (4)0.4565 (4)0.10674 (15)0.0720 (11)
H29A0.66360.52340.08570.086*
H29B0.68020.39920.12390.086*
C300.5078 (4)0.5336 (4)0.15314 (16)0.0751 (11)
H30A0.44000.59100.13590.090*
H30B0.45610.46670.17410.090*
C310.5658 (5)0.6224 (4)0.19391 (17)0.0912 (14)
H31A0.61880.68840.17300.109*
H31B0.63220.56470.21170.109*
C320.4606 (5)0.7003 (5)0.23923 (18)0.1087 (17)
H32A0.40070.76590.22260.163*
H32B0.50960.74800.26490.163*
H32C0.40390.63700.25930.163*
C331.2115 (3)0.2658 (3)0.50422 (13)0.0452 (8)
H331.23890.34730.52640.054*
C341.3123 (3)0.1815 (3)0.49531 (14)0.0481 (8)
H341.40650.20640.51080.058*
C351.2743 (3)0.0604 (3)0.46349 (14)0.0495 (8)
H351.34150.00070.45790.059*
C361.1338 (3)0.0283 (3)0.43977 (13)0.0462 (8)
H361.10540.05290.41750.055*
C371.0366 (3)0.1174 (3)0.44938 (12)0.0374 (7)
C380.8836 (3)0.0946 (3)0.42662 (12)0.0367 (7)
C390.8228 (3)0.0172 (3)0.39013 (13)0.0497 (8)
H390.87780.08360.37870.060*
C400.6794 (4)0.0272 (3)0.37133 (14)0.0572 (9)
H400.63640.10090.34680.069*
C410.5997 (3)0.0712 (3)0.38858 (14)0.0539 (9)
H410.50270.06490.37610.065*
C420.6662 (3)0.1794 (3)0.42469 (13)0.0456 (8)
H420.61240.24640.43640.055*
O50.6666 (4)0.1341 (4)0.66351 (13)0.1153 (12)
H50.656 (7)0.175 (5)0.6327 (15)0.173*
C430.7910 (5)0.1699 (5)0.6985 (2)0.1218 (19)
H43A0.84720.09340.70000.183*
H43B0.77240.19400.73560.183*
H43C0.84150.24750.68450.183*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0363 (2)0.0308 (2)0.0444 (2)0.00502 (14)0.00033 (16)0.01253 (15)
O10.0442 (11)0.0392 (11)0.0593 (15)0.0086 (9)0.0092 (11)0.0083 (11)
O20.0750 (15)0.0396 (13)0.0710 (17)0.0061 (11)0.0141 (13)0.0066 (11)
O30.0505 (12)0.0330 (10)0.0406 (12)0.0066 (9)0.0032 (10)0.0084 (9)
O40.0753 (15)0.0399 (12)0.0614 (15)0.0001 (12)0.0018 (12)0.0020 (11)
N10.0379 (12)0.0287 (12)0.0446 (15)0.0048 (10)0.0013 (11)0.0066 (11)
N20.0396 (13)0.0326 (12)0.0444 (15)0.0048 (10)0.0029 (12)0.0072 (11)
C10.0363 (16)0.0461 (19)0.049 (2)0.0046 (14)0.0028 (15)0.0146 (16)
C20.0430 (17)0.0542 (19)0.063 (2)0.0080 (15)0.0056 (16)0.0197 (17)
C30.0507 (18)0.0547 (19)0.057 (2)0.0079 (16)0.0008 (17)0.0182 (17)
C40.059 (2)0.064 (2)0.055 (2)0.0191 (17)0.0021 (17)0.0208 (18)
C50.066 (2)0.070 (2)0.063 (2)0.0134 (19)0.0036 (19)0.0224 (19)
C60.063 (2)0.069 (2)0.058 (2)0.0150 (18)0.0021 (18)0.0217 (18)
C70.068 (2)0.068 (2)0.060 (2)0.0147 (19)0.0034 (19)0.0177 (19)
C80.069 (2)0.073 (2)0.055 (2)0.0106 (19)0.0043 (19)0.0191 (19)
C90.068 (2)0.075 (2)0.062 (2)0.009 (2)0.004 (2)0.021 (2)
C100.070 (2)0.075 (2)0.056 (2)0.008 (2)0.0067 (19)0.0178 (19)
C110.067 (2)0.078 (3)0.065 (3)0.003 (2)0.001 (2)0.021 (2)
C120.076 (2)0.075 (2)0.061 (2)0.010 (2)0.000 (2)0.024 (2)
C130.077 (3)0.079 (3)0.069 (3)0.003 (2)0.001 (2)0.020 (2)
C140.081 (3)0.082 (3)0.063 (3)0.008 (2)0.007 (2)0.019 (2)
C150.092 (3)0.106 (3)0.079 (3)0.002 (3)0.006 (3)0.028 (3)
C160.140 (4)0.109 (4)0.084 (3)0.004 (3)0.004 (3)0.039 (3)
C170.0434 (16)0.0392 (17)0.0420 (19)0.0115 (14)0.0002 (15)0.0090 (15)
C180.0495 (18)0.0500 (18)0.049 (2)0.0106 (15)0.0102 (15)0.0089 (15)
C190.0520 (18)0.0460 (17)0.0429 (19)0.0037 (15)0.0000 (15)0.0081 (15)
C200.059 (2)0.0553 (19)0.049 (2)0.0006 (16)0.0012 (17)0.0160 (16)
C210.0565 (19)0.061 (2)0.053 (2)0.0002 (17)0.0026 (17)0.0195 (17)
C220.064 (2)0.065 (2)0.062 (2)0.0002 (18)0.0034 (19)0.0245 (19)
C230.064 (2)0.072 (2)0.060 (2)0.0040 (19)0.0010 (19)0.0249 (19)
C240.066 (2)0.068 (2)0.061 (2)0.0003 (19)0.0018 (19)0.0249 (19)
C250.068 (2)0.071 (2)0.059 (2)0.0068 (19)0.0021 (19)0.0239 (19)
C260.070 (2)0.070 (2)0.057 (2)0.0007 (19)0.0009 (19)0.0244 (19)
C270.071 (2)0.071 (2)0.056 (2)0.0050 (19)0.0004 (19)0.0215 (19)
C280.074 (2)0.071 (2)0.057 (2)0.002 (2)0.0013 (19)0.0211 (19)
C290.075 (2)0.075 (2)0.059 (2)0.010 (2)0.005 (2)0.023 (2)
C300.082 (3)0.078 (3)0.058 (2)0.005 (2)0.004 (2)0.020 (2)
C310.102 (3)0.094 (3)0.069 (3)0.016 (3)0.006 (2)0.036 (2)
C320.115 (4)0.118 (4)0.080 (3)0.013 (3)0.015 (3)0.047 (3)
C330.0416 (16)0.0331 (15)0.058 (2)0.0040 (13)0.0018 (15)0.0085 (14)
C340.0368 (16)0.0427 (17)0.064 (2)0.0066 (14)0.0046 (16)0.0007 (16)
C350.0483 (18)0.0391 (17)0.065 (2)0.0141 (14)0.0161 (16)0.0040 (16)
C360.0509 (18)0.0346 (16)0.053 (2)0.0048 (14)0.0114 (16)0.0117 (14)
C370.0434 (16)0.0287 (14)0.0398 (17)0.0027 (12)0.0075 (14)0.0034 (13)
C380.0441 (16)0.0300 (14)0.0345 (16)0.0012 (12)0.0036 (13)0.0024 (12)
C390.0553 (19)0.0392 (17)0.050 (2)0.0023 (15)0.0021 (16)0.0167 (15)
C400.065 (2)0.0416 (18)0.055 (2)0.0066 (16)0.0075 (17)0.0188 (16)
C410.0457 (17)0.0539 (19)0.053 (2)0.0041 (16)0.0114 (16)0.0064 (16)
C420.0405 (16)0.0432 (17)0.051 (2)0.0041 (14)0.0019 (15)0.0063 (15)
O50.116 (2)0.135 (3)0.078 (2)0.052 (2)0.003 (2)0.003 (2)
C430.120 (4)0.148 (5)0.085 (4)0.033 (4)0.003 (3)0.012 (3)
Geometric parameters (Å, º) top
Cu1—O11.945 (2)C19—C201.512 (4)
Cu1—O3i1.9617 (17)C19—H19A0.9700
Cu1—N22.005 (2)C19—H19B0.9700
Cu1—N12.019 (2)C20—C211.507 (4)
Cu1—O32.349 (2)C20—H20A0.9700
O1—C11.268 (4)C20—H20B0.9700
O2—C11.235 (4)C21—C221.515 (4)
O3—C171.289 (3)C21—H21A0.9700
O3—Cu1i1.9617 (17)C21—H21B0.9700
O4—C171.222 (3)C22—C231.499 (4)
N1—C331.346 (3)C22—H22A0.9700
N1—C371.357 (3)C22—H22B0.9700
N2—C421.342 (3)C23—C241.511 (4)
N2—C381.347 (3)C23—H23A0.9700
C1—C21.519 (4)C23—H23B0.9700
C2—C31.519 (4)C24—C251.505 (4)
C2—H2A0.9700C24—H24A0.9700
C2—H2B0.9700C24—H24B0.9700
C3—C41.506 (4)C25—C261.504 (4)
C3—H3A0.9700C25—H25A0.9700
C3—H3B0.9700C25—H25B0.9700
C4—C51.502 (4)C26—C271.502 (4)
C4—H4A0.9700C26—H26A0.9700
C4—H4B0.9700C26—H26B0.9700
C5—C61.507 (4)C27—C281.502 (4)
C5—H5A0.9700C27—H27A0.9700
C5—H5B0.9700C27—H27B0.9700
C6—C71.505 (4)C28—C291.487 (5)
C6—H6A0.9700C28—H28A0.9700
C6—H6B0.9700C28—H28B0.9700
C7—C81.510 (4)C29—C301.502 (4)
C7—H7A0.9700C29—H29A0.9700
C7—H7B0.9700C29—H29B0.9700
C8—C91.493 (4)C30—C311.484 (5)
C8—H8A0.9700C30—H30A0.9700
C8—H8B0.9700C30—H30B0.9700
C9—C101.501 (4)C31—C321.493 (5)
C9—H9A0.9700C31—H31A0.9700
C9—H9B0.9700C31—H31B0.9700
C10—C111.495 (4)C32—H32A0.9600
C10—H10A0.9700C32—H32B0.9600
C10—H10B0.9700C32—H32C0.9600
C11—C121.494 (4)C33—C341.363 (4)
C11—H11A0.9700C33—H330.9300
C11—H11B0.9700C34—C351.365 (4)
C12—C131.496 (4)C34—H340.9300
C12—H12A0.9700C35—C361.384 (4)
C12—H12B0.9700C35—H350.9300
C13—C141.486 (5)C36—C371.372 (4)
C13—H13A0.9700C36—H360.9300
C13—H13B0.9700C37—C381.481 (4)
C14—C151.497 (5)C38—C391.391 (3)
C14—H14A0.9700C39—C401.377 (4)
C14—H14B0.9700C39—H390.9300
C15—C161.490 (5)C40—C411.371 (4)
C15—H15A0.9700C40—H400.9300
C15—H15B0.9700C41—C421.377 (4)
C16—H16A0.9600C41—H410.9300
C16—H16B0.9600C42—H420.9300
C16—H16C0.9600O5—C431.359 (5)
C17—C181.519 (4)O5—H50.86 (2)
C18—C191.513 (4)C43—H43A0.9600
C18—H18A0.9700C43—H43B0.9600
C18—H18B0.9700C43—H43C0.9600
O1—Cu1—O3i90.51 (8)C20—C19—C18113.0 (2)
O1—Cu1—N295.52 (9)C20—C19—H19A109.0
O3i—Cu1—N2172.47 (8)C18—C19—H19A109.0
O1—Cu1—N1173.45 (9)C20—C19—H19B109.0
O3i—Cu1—N193.43 (8)C18—C19—H19B109.0
N2—Cu1—N180.17 (9)H19A—C19—H19B107.8
O1—Cu1—O389.86 (8)C21—C20—C19115.3 (3)
O3i—Cu1—O377.36 (8)C21—C20—H20A108.4
N2—Cu1—O3107.08 (8)C19—C20—H20A108.4
N1—Cu1—O396.10 (8)C21—C20—H20B108.4
C1—O1—Cu1119.20 (19)C19—C20—H20B108.4
C17—O3—Cu1i113.34 (17)H20A—C20—H20B107.5
C17—O3—Cu1142.73 (18)C20—C21—C22114.1 (3)
Cu1i—O3—Cu1102.64 (8)C20—C21—H21A108.7
C33—N1—C37117.7 (2)C22—C21—H21A108.7
C33—N1—Cu1126.72 (18)C20—C21—H21B108.7
C37—N1—Cu1115.38 (17)C22—C21—H21B108.7
C42—N2—C38118.8 (2)H21A—C21—H21B107.6
C42—N2—Cu1125.58 (19)C23—C22—C21115.3 (3)
C38—N2—Cu1115.63 (17)C23—C22—H22A108.4
O2—C1—O1124.4 (3)C21—C22—H22A108.4
O2—C1—C2119.8 (3)C23—C22—H22B108.4
O1—C1—C2115.8 (3)C21—C22—H22B108.4
C3—C2—C1109.7 (2)H22A—C22—H22B107.5
C3—C2—H2A109.7C22—C23—C24115.4 (3)
C1—C2—H2A109.7C22—C23—H23A108.4
C3—C2—H2B109.7C24—C23—H23A108.4
C1—C2—H2B109.7C22—C23—H23B108.4
H2A—C2—H2B108.2C24—C23—H23B108.4
C4—C3—C2114.7 (3)H23A—C23—H23B107.5
C4—C3—H3A108.6C25—C24—C23115.2 (3)
C2—C3—H3A108.6C25—C24—H24A108.5
C4—C3—H3B108.6C23—C24—H24A108.5
C2—C3—H3B108.6C25—C24—H24B108.5
H3A—C3—H3B107.6C23—C24—H24B108.5
C5—C4—C3113.9 (3)H24A—C24—H24B107.5
C5—C4—H4A108.8C26—C25—C24115.9 (3)
C3—C4—H4A108.8C26—C25—H25A108.3
C5—C4—H4B108.8C24—C25—H25A108.3
C3—C4—H4B108.8C26—C25—H25B108.3
H4A—C4—H4B107.7C24—C25—H25B108.3
C4—C5—C6116.4 (3)H25A—C25—H25B107.4
C4—C5—H5A108.2C27—C26—C25115.3 (3)
C6—C5—H5A108.2C27—C26—H26A108.4
C4—C5—H5B108.2C25—C26—H26A108.4
C6—C5—H5B108.2C27—C26—H26B108.4
H5A—C5—H5B107.3C25—C26—H26B108.4
C7—C6—C5114.7 (3)H26A—C26—H26B107.5
C7—C6—H6A108.6C26—C27—C28116.2 (3)
C5—C6—H6A108.6C26—C27—H27A108.2
C7—C6—H6B108.6C28—C27—H27A108.2
C5—C6—H6B108.6C26—C27—H27B108.2
H6A—C6—H6B107.6C28—C27—H27B108.2
C6—C7—C8115.7 (3)H27A—C27—H27B107.4
C6—C7—H7A108.4C29—C28—C27115.5 (3)
C8—C7—H7A108.4C29—C28—H28A108.4
C6—C7—H7B108.4C27—C28—H28A108.4
C8—C7—H7B108.4C29—C28—H28B108.4
H7A—C7—H7B107.4C27—C28—H28B108.4
C9—C8—C7114.9 (3)H28A—C28—H28B107.5
C9—C8—H8A108.5C28—C29—C30116.9 (3)
C7—C8—H8A108.5C28—C29—H29A108.1
C9—C8—H8B108.5C30—C29—H29A108.1
C7—C8—H8B108.5C28—C29—H29B108.1
H8A—C8—H8B107.5C30—C29—H29B108.1
C8—C9—C10116.6 (3)H29A—C29—H29B107.3
C8—C9—H9A108.2C31—C30—C29116.9 (3)
C10—C9—H9A108.2C31—C30—H30A108.1
C8—C9—H9B108.2C29—C30—H30A108.1
C10—C9—H9B108.2C31—C30—H30B108.1
H9A—C9—H9B107.3C29—C30—H30B108.1
C11—C10—C9116.7 (3)H30A—C30—H30B107.3
C11—C10—H10A108.1C30—C31—C32116.4 (4)
C9—C10—H10A108.1C30—C31—H31A108.2
C11—C10—H10B108.1C32—C31—H31A108.2
C9—C10—H10B108.1C30—C31—H31B108.2
H10A—C10—H10B107.3C32—C31—H31B108.2
C12—C11—C10116.0 (3)H31A—C31—H31B107.3
C12—C11—H11A108.3C31—C32—H32A109.5
C10—C11—H11A108.3C31—C32—H32B109.5
C12—C11—H11B108.3H32A—C32—H32B109.5
C10—C11—H11B108.3C31—C32—H32C109.5
H11A—C11—H11B107.4H32A—C32—H32C109.5
C11—C12—C13116.9 (3)H32B—C32—H32C109.5
C11—C12—H12A108.1N1—C33—C34122.7 (3)
C13—C12—H12A108.1N1—C33—H33118.6
C11—C12—H12B108.1C34—C33—H33118.6
C13—C12—H12B108.1C33—C34—C35119.7 (3)
H12A—C12—H12B107.3C33—C34—H34120.2
C14—C13—C12116.5 (3)C35—C34—H34120.2
C14—C13—H13A108.2C34—C35—C36118.6 (3)
C12—C13—H13A108.2C34—C35—H35120.7
C14—C13—H13B108.2C36—C35—H35120.7
C12—C13—H13B108.2C37—C36—C35119.4 (3)
H13A—C13—H13B107.3C37—C36—H36120.3
C13—C14—C15117.5 (3)C35—C36—H36120.3
C13—C14—H14A107.9N1—C37—C36121.8 (2)
C15—C14—H14A107.9N1—C37—C38113.6 (2)
C13—C14—H14B107.9C36—C37—C38124.6 (2)
C15—C14—H14B107.9N2—C38—C39121.7 (3)
H14A—C14—H14B107.2N2—C38—C37114.8 (2)
C16—C15—C14115.7 (4)C39—C38—C37123.4 (3)
C16—C15—H15A108.4C40—C39—C38118.3 (3)
C14—C15—H15A108.4C40—C39—H39120.8
C16—C15—H15B108.4C38—C39—H39120.8
C14—C15—H15B108.4C41—C40—C39120.2 (3)
H15A—C15—H15B107.4C41—C40—H40119.9
C15—C16—H16A109.5C39—C40—H40119.9
C15—C16—H16B109.5C40—C41—C42118.6 (3)
H16A—C16—H16B109.5C40—C41—H41120.7
C15—C16—H16C109.5C42—C41—H41120.7
H16A—C16—H16C109.5N2—C42—C41122.4 (3)
H16B—C16—H16C109.5N2—C42—H42118.8
O4—C17—O3123.0 (3)C41—C42—H42118.8
O4—C17—C18121.1 (3)C43—O5—H5116 (4)
O3—C17—C18115.9 (3)O5—C43—H43A109.5
C19—C18—C17113.9 (2)O5—C43—H43B109.5
C19—C18—H18A108.8H43A—C43—H43B109.5
C17—C18—H18A108.8O5—C43—H43C109.5
C19—C18—H18B108.8H43A—C43—H43C109.5
C17—C18—H18B108.8H43B—C43—H43C109.5
H18A—C18—H18B107.7
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O1i0.932.503.093 (3)122
C33—H33···O3i0.932.573.071 (3)114
C35—H35···O2ii0.932.423.129 (3)134
C39—H39···O4iii0.932.413.258 (4)152
C41—H41···O5iv0.932.463.153 (4)131
C42—H42···O10.932.593.096 (3)115
O5—H5···O20.86 (2)1.89 (3)2.732 (4)166 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C16H31O2)4(C10H8N2)2]·2CH4O
Mr1525.16
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6064 (3), 9.7506 (3), 24.0234 (8)
α, β, γ (°)92.559 (2), 98.681 (2), 95.516 (2)
V3)2210.14 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.40 × 0.27 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.814, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
13457, 8088, 5498
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.127, 0.99
No. of reflections8088
No. of parameters466
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O1i0.932.503.093 (3)122
C33—H33···O3i0.932.573.071 (3)114
C35—H35···O2ii0.932.423.129 (3)134
C39—H39···O4iii0.932.413.258 (4)152
C41—H41···O5iv0.932.463.153 (4)131
C42—H42···O10.932.593.096 (3)115
O5—H5···O20.86 (2)1.89 (3)2.732 (4)166 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the Malaysian government for the Fundamental Research Grant Scheme (FRGS FP046/2008, FP017/2009), and the University of Malaya Grants (RG039/09SUS, PS339/2009 C).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAntolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219–1222.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGiroud-Godquin, A. M. (1998). Coord. Chem. Rev. 180, 1485–1499.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-G., Dong, X.-D., Li, Y.-P., Pu, X.-H., Huo, F.-J. & Zhu, M.-L. (2006). Acta Cryst. E62, m2326–m2327.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m599-m600
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds