organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1280-o1281

Ethyl 4-hy­dr­oxy-6-(4-hy­dr­oxy­phen­yl)-4-tri­fluoro­methyl-2-sulfanyl­­idene-1,3-diazinane-5-carboxyl­ate ethanol monosolvate

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan Province 467000, People's Republic of China, and bInstitute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: actaeli@gmail.com

(Received 18 April 2011; accepted 23 April 2011; online 29 April 2011)

The title compound, C14H15F3N2O4S·C2H5OH, was prepared by reaction of 4-hy­droxy­benzaldehyde, ethyl 4,4,4-trifluoro-3-oxobutano­ate and thio­urea. The hexa­hydro­pyrimidine ring adopts a half-chair conformation, the mean plane formed by the ring atoms excluding the C atom bonded to the eth­oxy­carbonyl group has an r.m.s. deviation of 0.0333 Å, and the dihedral angle between this plane and the benzene ring is 56.76 (5)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) ring. The crystal structure is stabilized by inter­molecular O—H⋯O, O—H⋯S, N—H⋯O and N—H⋯S hydrogen bonds. The ethyl group of the ester unit is disordered over two positions, with an occupancy ratio of 0.757 (10):0.243 (10).

Related literature

For the bioactivity of dihydro­pyrimidines, see: Brier et al. (2004[Brier, S., Lemaire, D., Debonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072-13082.]); Cochran et al. (2005[Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658-12667.]); Moran et al. (2007[Moran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.]); Zorkun et al. (2006[Zorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582-8589.]). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003[Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.]); Ulrich (2004[Ulrich, H. (2004). US Patent No. 2 004 033 897.]). For a related structure, see: Song et al. (2010[Song, X.-P., Li, G.-C., Wu, C.-Z. & Yang, F.-L. (2010). Acta Cryst. E66, o1083.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15F3N2O4S·C2H6O

  • Mr = 410.41

  • Monoclinic, P 21 /c

  • a = 14.7204 (14) Å

  • b = 9.9772 (12) Å

  • c = 14.7357 (15) Å

  • β = 119.716 (11)°

  • V = 1879.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.955, Tmax = 0.977

  • 23471 measured reflections

  • 4486 independent reflections

  • 3815 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.03

  • 4486 reflections

  • 280 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.853 (19) 1.987 (19) 2.7383 (13) 146.3 (17)
O1—H1⋯S1i 0.853 (19) 3.029 (19) 3.4858 (11) 115.8 (15)
O4—H4⋯O5ii 0.835 (18) 1.873 (19) 2.7066 (14) 175.6 (19)
O5—H5⋯S1iii 0.84 2.36 3.1970 (11) 175
N1—H1A⋯S1iii 0.855 (17) 2.583 (18) 3.4307 (12) 171.5 (14)
N2—H2A⋯O1iv 0.814 (14) 2.368 (15) 3.1701 (15) 168.7 (14)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun et al., 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005; Brier et al., 2004) and as TRPA1 modulators for treating pain (Moran et al., 2007). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C14H15F3N2O4S.C2H5OH was isolated and the structure confirmed by X-ray diffraction.

In the structure of the title molecule, the 1,3-diazinane ring adopts a half-chair conformation, the mean plane formed by the ring atoms excluding the C atom bonded to the ethoxy carbonyl group has an r.m.s. deviation of 0.0333 Å, the dihedral angle between the mean plane and benzene ring is 56.76 (5)°. The molecular conformation is stabilized by intramolecular O—H···O hydrogen bond, generating an S(6) ring. The crystal structure is stabilized by intermolecular hydrogen bonds (O—H···O, O—H···S, N—H···O and N—H···S). The ethyl group of the ester unit is disordered over two positions, with a site-occupancy ratio of 0.757 (10):0.243 (10). For a crystal structure related to the title compound, see: Song et al., 2010.

Related literature top

For the bioactivity of dihydropyrimidines, see: Brier et al. (2004); Cochran et al. (2005); Moran et al. (2007); Zorkun et al. (2006). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For a related structure, see: Song et al. (2010).

Experimental top

The title compound was synthesized by refluxing for 3 h a stirred solution of 4-hydroxybenzaldehyde (2.45 g, 20 mmol), ethyl 4,4,4-trifluoro-3-oxobutanoate (4.42 g, 24 mmol) and thiourea (2.28 g, 30 mmol) in 20 ml of anhydrous ethanol. The reaction was catalyzed by sulfamic acid (0.6 g). The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized by slow evaporation of a 50% aqueous ethanol solution.

Refinement top

H atoms involved in hydrogen-bonding inetractions were located by difference Fourier methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.98 Å or 0.99 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme with displacement ellipsoids drawn at the 30% probability level.
Ethyl 4-hydroxy-6-(4-hydroxyphenyl)-4-trifluoromethyl-2-sulfanylidene- 1,3-diazinane-5-carboxylate ethanol monosolvate top
Crystal data top
C14H15F3N2O4S·C2H6OF(000) = 856
Mr = 410.41Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7204 (14) ÅCell parameters from 6768 reflections
b = 9.9772 (12) Åθ = 2.0–27.9°
c = 14.7357 (15) ŵ = 0.23 mm1
β = 119.716 (11)°T = 113 K
V = 1879.6 (3) Å3Prism, colorless
Z = 40.20 × 0.16 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4486 independent reflections
Radiation source: rotating anode3815 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.047
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω and ϕ scansh = 1819
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 1313
Tmin = 0.955, Tmax = 0.977l = 1919
23471 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max = 0.004
280 parametersΔρmax = 0.47 e Å3
24 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H15F3N2O4S·C2H6OV = 1879.6 (3) Å3
Mr = 410.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7204 (14) ŵ = 0.23 mm1
b = 9.9772 (12) ÅT = 113 K
c = 14.7357 (15) Å0.20 × 0.16 × 0.10 mm
β = 119.716 (11)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4486 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
3815 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.977Rint = 0.047
23471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03624 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.47 e Å3
4486 reflectionsΔρmin = 0.27 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.42068 (2)0.59475 (3)0.35546 (2)0.01745 (10)
F10.79908 (6)0.50693 (8)0.56642 (6)0.0289 (2)
F20.74838 (6)0.31639 (8)0.59449 (6)0.0272 (2)
F30.85429 (6)0.32318 (9)0.53355 (6)0.0293 (2)
O10.65426 (7)0.24640 (9)0.38459 (7)0.0190 (2)
H10.6926 (15)0.2229 (18)0.3589 (15)0.056 (6)*
O20.79221 (7)0.28215 (9)0.31283 (7)0.0234 (2)
O30.85300 (8)0.49263 (10)0.32835 (9)0.0356 (3)
O40.68310 (8)0.73637 (10)0.05667 (8)0.0264 (2)
H40.7053 (15)0.6801 (19)0.0829 (14)0.048 (6)*
N10.58962 (8)0.44198 (11)0.41833 (8)0.0161 (2)
N20.52429 (9)0.53998 (11)0.25624 (8)0.0171 (2)
C10.51772 (9)0.52182 (12)0.34218 (9)0.0154 (3)
C20.67753 (10)0.38150 (12)0.41637 (10)0.0156 (3)
C30.77017 (10)0.38279 (13)0.52882 (10)0.0199 (3)
C40.70305 (9)0.46428 (12)0.34352 (9)0.0153 (3)
H4A0.72550.55640.37300.018*
C50.78765 (10)0.40048 (13)0.32782 (10)0.0183 (3)
C60.9245 (3)0.4501 (3)0.2899 (4)0.0349 (8)0.757 (10)
H6A0.89250.37590.23910.042*0.757 (10)
H6B0.99140.41790.34900.042*0.757 (10)
C70.9440 (2)0.5681 (4)0.2384 (2)0.0371 (9)0.757 (10)
H7A0.99200.54180.21340.056*0.757 (10)
H7B0.97510.64130.28900.056*0.757 (10)
H7C0.87770.59810.17910.056*0.757 (10)
C6'0.9536 (7)0.4377 (10)0.3420 (11)0.034 (2)0.243 (10)
H6'A0.95680.33870.34620.041*0.243 (10)
H6'B1.01580.47700.40280.041*0.243 (10)
C7'0.9382 (8)0.4894 (18)0.2394 (9)0.056 (3)0.243 (10)
H7'A0.99870.46510.23200.083*0.243 (10)
H7'B0.93090.58720.23730.083*0.243 (10)
H7'C0.87480.44970.18200.083*0.243 (10)
C80.60150 (10)0.47359 (12)0.23647 (9)0.0157 (3)
H8A0.57650.38070.21070.019*
C90.61729 (10)0.54638 (12)0.15579 (9)0.0158 (3)
C100.63212 (10)0.47113 (13)0.08457 (9)0.0171 (3)
H10A0.62600.37630.08420.021*
C110.65560 (10)0.53228 (13)0.01436 (10)0.0179 (3)
H11A0.66750.47940.03230.021*
C120.66173 (10)0.67134 (13)0.01224 (10)0.0179 (3)
C130.64511 (11)0.74801 (13)0.08177 (10)0.0215 (3)
H13A0.64790.84300.07990.026*
C140.62449 (11)0.68552 (13)0.15354 (10)0.0194 (3)
H14A0.61510.73820.20200.023*
O50.74901 (7)0.56068 (11)0.84823 (8)0.0276 (2)
H50.70760.51580.79560.041*
C150.84625 (12)0.57515 (17)0.84999 (13)0.0359 (4)
H15A0.83510.62010.78540.043*
H15B0.87740.48590.85390.043*
C160.91849 (13)0.65741 (19)0.94378 (15)0.0484 (5)
H16A0.98570.66820.94600.073*
H16B0.92950.61201.00740.073*
H16C0.88730.74570.93910.073*
H1A0.5812 (12)0.4270 (16)0.4708 (13)0.037 (5)*
H2A0.4826 (11)0.5934 (14)0.2148 (11)0.018 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01884 (18)0.01825 (17)0.01816 (17)0.00402 (12)0.01138 (14)0.00283 (12)
F10.0287 (5)0.0258 (4)0.0222 (4)0.0028 (4)0.0051 (4)0.0062 (3)
F20.0265 (5)0.0362 (5)0.0191 (4)0.0057 (4)0.0116 (4)0.0094 (3)
F30.0191 (4)0.0438 (5)0.0235 (4)0.0123 (4)0.0093 (4)0.0032 (4)
O10.0237 (5)0.0137 (5)0.0235 (5)0.0001 (4)0.0147 (4)0.0010 (4)
O20.0242 (5)0.0206 (5)0.0291 (5)0.0010 (4)0.0160 (4)0.0031 (4)
O30.0276 (6)0.0282 (6)0.0643 (8)0.0086 (5)0.0330 (6)0.0118 (5)
O40.0427 (6)0.0200 (5)0.0283 (5)0.0029 (4)0.0267 (5)0.0046 (4)
N10.0176 (6)0.0183 (5)0.0151 (5)0.0028 (4)0.0100 (5)0.0027 (4)
N20.0167 (6)0.0204 (6)0.0145 (5)0.0046 (5)0.0080 (5)0.0033 (4)
C10.0169 (6)0.0133 (6)0.0158 (6)0.0025 (5)0.0080 (5)0.0010 (5)
C20.0159 (6)0.0148 (6)0.0165 (6)0.0006 (5)0.0084 (5)0.0000 (5)
C30.0199 (7)0.0216 (7)0.0195 (6)0.0037 (5)0.0108 (6)0.0014 (5)
C40.0167 (6)0.0143 (6)0.0161 (6)0.0005 (5)0.0090 (5)0.0008 (5)
C50.0145 (6)0.0229 (7)0.0159 (6)0.0009 (5)0.0063 (5)0.0011 (5)
C60.0241 (17)0.0424 (15)0.050 (2)0.0031 (12)0.0270 (17)0.0049 (16)
C70.0250 (12)0.062 (2)0.0300 (12)0.0070 (13)0.0177 (10)0.0034 (13)
C6'0.012 (4)0.041 (4)0.050 (6)0.001 (3)0.015 (4)0.002 (4)
C7'0.039 (5)0.081 (8)0.058 (5)0.005 (5)0.033 (4)0.002 (5)
C80.0175 (6)0.0158 (6)0.0154 (6)0.0005 (5)0.0095 (5)0.0012 (5)
C90.0155 (6)0.0167 (6)0.0147 (6)0.0008 (5)0.0072 (5)0.0009 (5)
C100.0196 (7)0.0142 (6)0.0179 (6)0.0006 (5)0.0096 (6)0.0004 (5)
C110.0209 (7)0.0184 (6)0.0160 (6)0.0000 (5)0.0105 (6)0.0023 (5)
C120.0193 (7)0.0190 (7)0.0173 (6)0.0018 (5)0.0106 (6)0.0034 (5)
C130.0292 (8)0.0137 (6)0.0251 (7)0.0012 (5)0.0161 (6)0.0002 (5)
C140.0253 (7)0.0172 (6)0.0196 (6)0.0010 (5)0.0140 (6)0.0018 (5)
O50.0236 (5)0.0372 (6)0.0255 (5)0.0044 (4)0.0149 (5)0.0081 (4)
C150.0264 (8)0.0492 (10)0.0368 (9)0.0002 (7)0.0193 (8)0.0010 (8)
C160.0275 (9)0.0468 (11)0.0586 (12)0.0065 (8)0.0120 (9)0.0034 (9)
Geometric parameters (Å, º) top
S1—C11.6987 (13)C7—H7C0.9800
F1—C31.3373 (15)C6'—C7'1.504 (14)
F2—C31.3364 (15)C6'—H6'A0.9900
F3—C31.3440 (15)C6'—H6'B0.9900
O1—C21.4123 (15)C7'—H7'A0.9800
O1—H10.853 (19)C7'—H7'B0.9800
O2—C51.2090 (15)C7'—H7'C0.9800
O3—C51.3279 (16)C8—C91.5063 (17)
O3—C61.483 (3)C8—H8A1.0000
O3—C6'1.497 (9)C9—C101.3927 (17)
O4—C121.3666 (15)C9—C141.3939 (17)
O4—H40.835 (18)C10—C111.3844 (17)
N1—C11.3551 (16)C10—H10A0.9500
N1—C21.4410 (16)C11—C121.3917 (18)
N1—H1A0.855 (17)C11—H11A0.9500
N2—C11.3294 (16)C12—C131.3940 (18)
N2—C81.4640 (16)C13—C141.3849 (18)
N2—H2A0.814 (14)C13—H13A0.9500
C2—C31.5380 (18)C14—H14A0.9500
C2—C41.5413 (17)O5—C151.4261 (16)
C4—C51.5149 (17)O5—H50.8400
C4—C81.5472 (17)C15—C161.503 (2)
C4—H4A1.0000C15—H15A0.9900
C6—C71.504 (4)C15—H15B0.9900
C6—H6A0.9900C16—H16A0.9800
C6—H6B0.9900C16—H16B0.9800
C7—H7A0.9800C16—H16C0.9800
C7—H7B0.9800
C2—O1—H1107.7 (13)O3—C6'—H6'A112.7
C5—O3—C6116.66 (15)C7'—C6'—H6'A112.7
C5—O3—C6'114.4 (4)O3—C6'—H6'B112.7
C6—O3—C6'26.4 (4)C7'—C6'—H6'B112.7
C12—O4—H4108.2 (13)H6'A—C6'—H6'B110.2
C1—N1—C2124.76 (11)C6'—C7'—H7'A109.5
C1—N1—H1A116.6 (11)C6'—C7'—H7'B109.5
C2—N1—H1A118.6 (11)H7'A—C7'—H7'B109.5
C1—N2—C8123.93 (11)C6'—C7'—H7'C109.5
C1—N2—H2A114.8 (10)H7'A—C7'—H7'C109.5
C8—N2—H2A121.3 (10)H7'B—C7'—H7'C109.5
N2—C1—N1118.24 (11)N2—C8—C9112.19 (10)
N2—C1—S1120.92 (10)N2—C8—C4106.10 (10)
N1—C1—S1120.84 (9)C9—C8—C4112.61 (10)
O1—C2—N1109.49 (10)N2—C8—H8A108.6
O1—C2—C3107.76 (10)C9—C8—H8A108.6
N1—C2—C3107.48 (10)C4—C8—H8A108.6
O1—C2—C4112.54 (10)C10—C9—C14118.48 (12)
N1—C2—C4108.72 (10)C10—C9—C8118.55 (11)
C3—C2—C4110.72 (10)C14—C9—C8122.83 (11)
F2—C3—F1107.49 (10)C11—C10—C9121.06 (12)
F2—C3—F3106.79 (10)C11—C10—H10A119.5
F1—C3—F3107.01 (11)C9—C10—H10A119.5
F2—C3—C2111.90 (11)C10—C11—C12119.94 (12)
F1—C3—C2112.59 (10)C10—C11—H11A120.0
F3—C3—C2110.75 (10)C12—C11—H11A120.0
C5—C4—C2112.57 (10)O4—C12—C11122.09 (12)
C5—C4—C8108.75 (10)O4—C12—C13118.32 (12)
C2—C4—C8107.24 (10)C11—C12—C13119.58 (12)
C5—C4—H4A109.4C14—C13—C12119.94 (12)
C2—C4—H4A109.4C14—C13—H13A120.0
C8—C4—H4A109.4C12—C13—H13A120.0
O2—C5—O3124.85 (12)C13—C14—C9120.96 (12)
O2—C5—C4124.23 (12)C13—C14—H14A119.5
O3—C5—C4110.86 (11)C9—C14—H14A119.5
O3—C6—C7108.6 (2)C15—O5—H5109.5
O3—C6—H6A110.0O5—C15—C16108.56 (13)
C7—C6—H6A110.0O5—C15—H15A110.0
O3—C6—H6B110.0C16—C15—H15A110.0
C7—C6—H6B110.0O5—C15—H15B110.0
H6A—C6—H6B108.4C16—C15—H15B110.0
C6—C7—H7A109.5H15A—C15—H15B108.4
C6—C7—H7B109.5C15—C16—H16A109.5
H7A—C7—H7B109.5C15—C16—H16B109.5
C6—C7—H7C109.5H16A—C16—H16B109.5
H7A—C7—H7C109.5C15—C16—H16C109.5
H7B—C7—H7C109.5H16A—C16—H16C109.5
O3—C6'—C7'95.3 (7)H16B—C16—H16C109.5
C8—N2—C1—N13.16 (18)C8—C4—C5—O275.56 (15)
C8—N2—C1—S1175.89 (9)C2—C4—C5—O3139.51 (11)
C2—N1—C1—N24.26 (18)C8—C4—C5—O3101.80 (12)
C2—N1—C1—S1176.69 (9)C5—O3—C6—C7147.6 (2)
C1—N1—C2—O1100.03 (14)C6'—O3—C6—C7120.7 (11)
C1—N1—C2—C3143.19 (12)C5—O3—C6'—C7'119.4 (7)
C1—N1—C2—C423.29 (16)C6—O3—C6'—C7'18.2 (10)
O1—C2—C3—F259.19 (13)C1—N2—C8—C9159.43 (11)
N1—C2—C3—F258.73 (13)C1—N2—C8—C436.07 (16)
C4—C2—C3—F2177.35 (10)C5—C4—C8—N2178.07 (10)
O1—C2—C3—F1179.61 (10)C2—C4—C8—N259.94 (12)
N1—C2—C3—F162.47 (13)C5—C4—C8—C954.97 (13)
C4—C2—C3—F156.15 (14)C2—C4—C8—C9176.96 (10)
O1—C2—C3—F359.84 (13)N2—C8—C9—C10141.94 (12)
N1—C2—C3—F3177.76 (10)C4—C8—C9—C1098.43 (13)
C4—C2—C3—F363.63 (14)N2—C8—C9—C1442.35 (16)
O1—C2—C4—C552.75 (14)C4—C8—C9—C1477.28 (15)
N1—C2—C4—C5174.22 (10)C14—C9—C10—C111.30 (18)
C3—C2—C4—C567.91 (13)C8—C9—C10—C11174.60 (11)
O1—C2—C4—C866.82 (13)C9—C10—C11—C121.85 (19)
N1—C2—C4—C854.65 (13)C10—C11—C12—O4178.99 (12)
C3—C2—C4—C8172.52 (10)C10—C11—C12—C130.62 (19)
C6—O3—C5—O211.0 (3)O4—C12—C13—C14179.24 (12)
C6'—O3—C5—O218.2 (6)C11—C12—C13—C141.14 (19)
C6—O3—C5—C4166.3 (2)C12—C13—C14—C91.7 (2)
C6'—O3—C5—C4164.5 (6)C10—C9—C14—C130.48 (19)
C2—C4—C5—O243.13 (17)C8—C9—C14—C13176.20 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.853 (19)1.987 (19)2.7383 (13)146.3 (17)
O1—H1···S1i0.853 (19)3.029 (19)3.4858 (11)115.8 (15)
O4—H4···O5ii0.835 (18)1.873 (19)2.7066 (14)175.6 (19)
O5—H5···S1iii0.842.363.1970 (11)175
N1—H1A···S1iii0.855 (17)2.583 (18)3.4307 (12)171.5 (14)
N2—H2A···O1iv0.814 (14)2.368 (15)3.1701 (15)168.7 (14)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15F3N2O4S·C2H6O
Mr410.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)14.7204 (14), 9.9772 (12), 14.7357 (15)
β (°) 119.716 (11)
V3)1879.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.955, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
23471, 4486, 3815
Rint0.047
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.03
No. of reflections4486
No. of parameters280
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.27

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.853 (19)1.987 (19)2.7383 (13)146.3 (17)
O1—H1···S1i0.853 (19)3.029 (19)3.4858 (11)115.8 (15)
O4—H4···O5ii0.835 (18)1.873 (19)2.7066 (14)175.6 (19)
O5—H5···S1iii0.842.363.1970 (11)175
N1—H1A···S1iii0.855 (17)2.583 (18)3.4307 (12)171.5 (14)
N2—H2A···O1iv0.814 (14)2.368 (15)3.1701 (15)168.7 (14)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationBrier, S., Lemaire, D., Debonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072–13082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.  Google Scholar
First citationMoran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.  Google Scholar
First citationRigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-P., Li, G.-C., Wu, C.-Z. & Yang, F.-L. (2010). Acta Cryst. E66, o1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUlrich, H. (2004). US Patent No. 2 004 033 897.  Google Scholar
First citationZorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582–8589.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1280-o1281
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds