organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1168

1-(Thio­phen-2-yl)ethanone thio­semi­carbazone

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bLaboratoire de Cristallochimie, Ecole de Physique, 24 Quai Ernest-Ansermet, 1211 Gebeve, Switzerland
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 17 March 2011; accepted 31 March 2011; online 16 April 2011)

The title compound, C7H9N3S2, crystallizes with two unique mol­ecules in the unit cell, both present as thio­semicarbazide tautomers. The mol­ecules differ principally in the dihedral angles between the thio­phene ring planes and the planes through the non-H atoms of the hydrazinecarbothio­amide units, viz. 9.80 (8)° for one mol­ecule and 19.37 (7)° for the other. The hydrazinecarbothio­amide units are reasonably planar, with r.m.s. deviations of 0.001Å for each of the mol­ecules. In the crystal, N—H⋯S hydrogen bonds link like mol­ecules into R22(8) inversion dimers. A three-dimensional network structure is generated by additional N—H⋯S hydrogen bonds and weak C—H⋯S contacts between the unique mol­ecules.

Related literature

For related structures, see: Avsar et al. (2003[Avsar, G., Arslan, H., Haupt, H.-J. & Külcü, N. (2003). Turk. J. Chem. 27, 281-285.]); Arslan et al. (2004[Arslan, H., Flörke, U. & Külcü, N. (2004). Acta Chim. Slov. 51, 787-792.]); Kusaï et al. (2009[Kusaï, A., Mustayeen, A. K., Magali, A. & Gilles, B. (2009). Polyhedron, 29, 1273-1280.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573]). For the weighting scheme, see: Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Scienc. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N3S2

  • Mr = 199.31

  • Triclinic, [P \overline 1]

  • a = 9.0037 (9) Å

  • b = 9.7800 (9) Å

  • c = 12.1428 (12) Å

  • α = 104.575 (8)°

  • β = 103.345 (8)°

  • γ = 108.227 (8)°

  • V = 925.52 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 140 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Stoe IPDS diffractometer

  • 13175 measured reflections

  • 5386 independent reflections

  • 4634 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.053

  • S = 1.00

  • 5373 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯S3i 0.83 2.56 3.3609 (16) 162
N21—H212⋯S3ii 0.83 2.66 3.4691 (16) 167
N24—H241⋯S23iii 0.85 2.77 3.6128 (14) 174
C7—H72⋯S23ii 0.98 2.83 3.7236 (16) 153
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) -x, -y+2, -z.

Data collection: IPDS (Stoe & Cie, 1996[Stoe & Cie (1996). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS; data reduction: X-RED (Stoe & Cie 1996[Stoe & Cie (1996). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

NMR analysis of the title compound, (C7H9N3S2)2, (see experimental) shows that two forms are present in solution with the thiosemicarbazide moiety being partially transformed into the thioenolsemicarbazide. The X-ray structure determination reveals that the compound crystallizes in the triclinic space group P-1 with two molecules in the asymmetric unit, both of which are present as the thiosemicarbazide tautomer. The molecular geometry is illustrated in Fig. 1. The C—S bond lengths 1.6921 (15) Å and 1.6884 (15) Å confirm the double bond character and are comparable to those observed for 1-(biphenyl-4-carbonyl)-3-p-tolyl-thiourea [1.647 (3) Å for C—S, 1.217 (3) and 1.224 (3) Å] (Avsar et al., 2003). The C—N bond lengths are in the range [1.2920 (17) - 1.4122 (16) Å] which are shorter than normal single C—N bond lengths (Arslan et al., 2004).

Both unique molecules form inversion related dimers with R22(8) graph-set motifs (Bernstein et al., 1995) through N1—H11···S3 and N24—H241···S23 hydrogen bonds. Unique molecules are further linked by N21—H212···S3 bonds supported by a weak C7—H72···S3 contacts which generate additional centrosymmetric R22(11) motifs and a three dimensional network (Fig. 2).

Related literature top

For related structures, see: Avsar et al. (2003); Arslan et al. (2004); Kusaï et al. (2009). For graph-set motifs, see: Bernstein et al. (1995). For the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

2-Acetyl thiophene (1,2618 g, 10 mmol) was reacted with thiosemicarbazide (0.9114 g, 10 mmol) in CH3OH (50 ml) solution, to give the corresponding compound after one hour under reflux. After cooling to room temperature, a yellow solid was isolated and washed twice with diethyl ether. Yield: 79.5%. m.p. 142–146 °C. Anal. Calc. for C7H9N3S2 (%): C, 42.19; H, 4.55; N, 21.08. Found: C, 42.22; H, 4.53; N, 21.01. Selected IR data (cm-1, KBr pellet): 3450, 3250 (ν NH), 1630 (ν C=N), 1160 (ν C=S). 1H NMR (200 MHz, CD6Cl, δ, p.p.m.): 2.32 (s, 3H, –CH3); 7.42 (s, 2H, –NH2); 8.32 (s, 1H, –NH); 7.07–7.58 (m, 3H, C4H3S); 10.36 (s, 1H, SH);. 13C NMR (200 MHz, CD3Cl, δ, p.p.m.): 14.01 (–CH3); 68.09 (O—CH~2~); 70.12 (O– CH~2~); 127.12–143.152 (C4H3S); 145.30 (C=N); 178.02 (C=S). A CH3Cl solution of the title compound was mixed with ethanol (1/1). After several days, colorless block-shaped single crystals suitable for X-ray crystallographic analysis were obtained.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie 1996); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of 1 viewed down the b axis. Hydrogen bonds are drawn as dashed lines.
1-(Thiophen-2-yl)ethanone thiosemicarbazone top
Crystal data top
C7H9N3S2Z = 4
Mr = 199.31F(000) = 416
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0037 (9) ÅCell parameters from 0 reflections
b = 9.7800 (9) Åθ = 0–0°
c = 12.1428 (12) ŵ = 0.52 mm1
α = 104.575 (8)°T = 140 K
β = 103.345 (8)°Parallelepiped, yellow
γ = 108.227 (8)°0.50 × 0.40 × 0.30 mm
V = 925.52 (18) Å3
Data collection top
Stoe IPDS
diffractometer
Rint = 0.033
Graphite monochromatorθmax = 30.9°, θmin = 2.3°
ω scansh = 1212
13175 measured reflectionsk = 1213
5386 independent reflectionsl = 1717
4634 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.053 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 17.0 19.0 6.62
S = 1.00(Δ/σ)max = 0.001
5373 reflectionsΔρmax = 0.40 e Å3
217 parametersΔρmin = 0.39 e Å3
0 restraints
Crystal data top
C7H9N3S2γ = 108.227 (8)°
Mr = 199.31V = 925.52 (18) Å3
Triclinic, P1Z = 4
a = 9.0037 (9) ÅMo Kα radiation
b = 9.7800 (9) ŵ = 0.52 mm1
c = 12.1428 (12) ÅT = 140 K
α = 104.575 (8)°0.50 × 0.40 × 0.30 mm
β = 103.345 (8)°
Data collection top
Stoe IPDS
diffractometer
4634 reflections with I > 2σ(I)
13175 measured reflectionsRint = 0.033
5386 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
5373 reflectionsΔρmin = 0.39 e Å3
217 parameters
Special details top

Experimental. Reflections affected by the beam-stop were not included in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.26295 (15)0.85450 (15)0.42449 (11)0.0287
C20.23744 (17)0.93285 (17)0.51896 (12)0.0224
S30.37191 (5)1.11020 (4)0.61614 (4)0.0264
N40.09273 (14)0.86531 (14)0.53590 (11)0.0255
N50.00908 (14)0.71581 (14)0.46373 (11)0.0234
C60.13491 (16)0.65062 (17)0.49325 (12)0.0217
C70.17662 (18)0.72896 (18)0.59706 (13)0.0276
C80.23815 (16)0.49066 (17)0.41921 (13)0.0222
S90.19349 (5)0.39888 (5)0.29754 (4)0.0286
C100.35441 (19)0.22919 (18)0.26747 (15)0.0313
C110.43840 (19)0.24169 (18)0.34678 (15)0.0295
C120.37117 (18)0.39098 (17)0.43411 (14)0.0260
N210.13026 (16)0.79416 (16)0.21760 (12)0.0317
C220.07537 (17)0.87345 (17)0.15117 (12)0.0240
S230.15386 (5)0.99727 (5)0.11278 (4)0.0283
N240.05087 (15)0.85422 (14)0.11585 (11)0.0245
N250.10126 (15)0.74112 (14)0.13786 (10)0.0233
C260.22938 (17)0.73180 (16)0.11099 (12)0.0213
C270.33339 (19)0.83708 (19)0.06322 (15)0.0311
C280.27075 (17)0.60356 (16)0.12664 (12)0.0210
S290.14366 (5)0.46442 (5)0.16514 (4)0.0294
C300.2690 (2)0.36424 (19)0.15960 (14)0.0324
C310.4021 (2)0.43291 (19)0.13032 (15)0.0314
C320.40373 (19)0.57103 (18)0.11115 (14)0.0282
H710.27000.66500.60640.0418*
H730.19620.81650.58990.0414*
H720.08190.76800.67140.0395*
H1010.37810.13980.20280.0387*
H1110.52750.16090.34560.0342*
H1210.41310.41870.49730.0309*
H2710.44740.84800.08690.0485*
H2730.33330.93900.09040.0470*
H2720.28940.80010.02500.0484*
H3010.24230.27270.17350.0391*
H3110.48490.39580.12440.0388*
H3210.48480.63640.09040.0338*
H410.08150.90260.60190.0329*
H2410.07870.89670.06670.0309*
H120.19360.76410.38210.0374*
H2110.08890.73440.23660.0407*
H110.35610.88470.41740.0369*
H2120.20110.80900.24640.0402*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0205 (6)0.0368 (7)0.0220 (6)0.0057 (5)0.0103 (5)0.0038 (5)
C20.0188 (6)0.0292 (7)0.0221 (6)0.0107 (5)0.0084 (5)0.0108 (6)
S30.02314 (17)0.02531 (17)0.03061 (19)0.00811 (14)0.01403 (15)0.00688 (15)
N40.0206 (6)0.0279 (6)0.0274 (6)0.0080 (5)0.0136 (5)0.0058 (5)
N50.0191 (5)0.0264 (6)0.0245 (6)0.0089 (5)0.0085 (5)0.0075 (5)
C60.0174 (6)0.0298 (7)0.0221 (6)0.0116 (5)0.0084 (5)0.0114 (6)
C70.0236 (7)0.0346 (8)0.0257 (7)0.0107 (6)0.0129 (6)0.0086 (6)
C80.0185 (6)0.0293 (7)0.0238 (7)0.0125 (5)0.0093 (5)0.0115 (6)
S90.02536 (18)0.03112 (19)0.03085 (19)0.01106 (15)0.01547 (15)0.00804 (15)
C100.0276 (7)0.0267 (7)0.0396 (9)0.0120 (6)0.0135 (7)0.0079 (7)
C110.0253 (7)0.0270 (7)0.0417 (9)0.0122 (6)0.0152 (7)0.0148 (7)
C120.0225 (7)0.0309 (7)0.0327 (8)0.0136 (6)0.0150 (6)0.0152 (6)
N210.0333 (7)0.0477 (8)0.0356 (7)0.0287 (6)0.0220 (6)0.0234 (6)
C220.0235 (7)0.0300 (7)0.0188 (6)0.0144 (6)0.0068 (5)0.0044 (5)
S230.03127 (19)0.0329 (2)0.03109 (19)0.02194 (16)0.01527 (16)0.01188 (16)
N240.0271 (6)0.0323 (6)0.0242 (6)0.0197 (5)0.0130 (5)0.0119 (5)
N250.0249 (6)0.0293 (6)0.0210 (6)0.0165 (5)0.0091 (5)0.0088 (5)
C260.0201 (6)0.0269 (7)0.0170 (6)0.0114 (5)0.0052 (5)0.0059 (5)
C270.0293 (8)0.0347 (8)0.0405 (9)0.0175 (7)0.0173 (7)0.0198 (7)
C280.0209 (6)0.0259 (7)0.0173 (6)0.0109 (5)0.0071 (5)0.0066 (5)
S290.03128 (19)0.0318 (2)0.0328 (2)0.01480 (16)0.01744 (16)0.01445 (16)
C300.0462 (9)0.0327 (8)0.0278 (7)0.0228 (7)0.0162 (7)0.0134 (6)
C310.0376 (8)0.0386 (9)0.0317 (8)0.0266 (7)0.0163 (7)0.0154 (7)
C320.0264 (7)0.0351 (8)0.0305 (8)0.0177 (6)0.0134 (6)0.0128 (6)
Geometric parameters (Å, º) top
N1—C21.3210 (17)N21—C221.3249 (19)
N1—H120.845N21—H2110.836
N1—H110.831N21—H2120.828
C2—S31.6921 (15)C22—S231.6884 (15)
C2—N41.3528 (17)C22—N241.3525 (17)
N4—N51.3754 (17)N24—N251.3811 (16)
N4—H410.836N24—H2410.849
N5—C61.2920 (17)N25—C261.2923 (17)
C6—C71.4931 (19)C26—C271.491 (2)
C6—C81.455 (2)C26—C281.4586 (19)
C7—H710.928C27—H2710.963
C7—H730.947C27—H2730.969
C7—H720.978C27—H2720.977
C8—S91.7270 (14)C28—S291.7243 (14)
C8—C121.3696 (19)C28—C321.3719 (18)
S9—C101.7127 (16)S29—C301.7122 (16)
C10—C111.360 (2)C30—C311.351 (2)
C10—H1010.941C30—H3010.921
C11—C121.412 (2)C31—C321.424 (2)
C11—H1110.927C31—H3110.935
C12—H1210.948C32—H3210.938
C2—N1—H12119.3C22—N21—H211121.3
C2—N1—H11119.5C22—N21—H212120.1
H12—N1—H11119.4H211—N21—H212118.3
N1—C2—S3124.09 (11)N21—C22—S23122.70 (11)
N1—C2—N4116.62 (13)N21—C22—N24117.28 (13)
S3—C2—N4119.28 (10)S23—C22—N24120.01 (11)
C2—N4—N5119.09 (12)C22—N24—N25118.70 (12)
C2—N4—H41118.7C22—N24—H241117.3
N5—N4—H41119.2N25—N24—H241122.2
N4—N5—C6116.53 (12)N24—N25—C26117.62 (12)
N5—C6—C7124.02 (13)N25—C26—C27125.81 (13)
N5—C6—C8116.11 (12)N25—C26—C28115.93 (13)
C7—C6—C8119.87 (12)C27—C26—C28118.24 (12)
C6—C7—H71112.8C26—C27—H271112.9
C6—C7—H73112.7C26—C27—H273111.6
H71—C7—H73107.0H271—C27—H273107.4
C6—C7—H72109.4C26—C27—H272110.7
H71—C7—H72109.4H271—C27—H272107.9
H73—C7—H72105.1H273—C27—H272106.0
C6—C8—S9120.53 (10)C26—C28—S29121.16 (10)
C6—C8—C12128.75 (13)C26—C28—C32128.13 (13)
S9—C8—C12110.66 (11)S29—C28—C32110.68 (11)
C8—S9—C1091.72 (8)C28—S29—C3091.80 (8)
S9—C10—C11112.09 (12)S29—C30—C31112.44 (12)
S9—C10—H101121.9S29—C30—H301121.1
C11—C10—H101126.1C31—C30—H301126.4
C10—C11—C12112.29 (14)C30—C31—C32112.12 (14)
C10—C11—H111124.1C30—C31—H311124.5
C12—C11—H111123.6C32—C31—H311123.4
C11—C12—C8113.24 (13)C31—C32—C28112.97 (14)
C11—C12—H121123.2C31—C32—H321126.0
C8—C12—H121123.5C28—C32—H321121.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···S3i0.832.563.3609 (16)162
N21—H212···S3ii0.832.663.4691 (16)167
N24—H241···S23iii0.852.773.6128 (14)174
C7—H72···S23ii0.982.833.7236 (16)153
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC7H9N3S2
Mr199.31
Crystal system, space groupTriclinic, P1
Temperature (K)140
a, b, c (Å)9.0037 (9), 9.7800 (9), 12.1428 (12)
α, β, γ (°)104.575 (8), 103.345 (8), 108.227 (8)
V3)925.52 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13175, 5386, 4634
Rint0.033
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.053, 1.00
No. of reflections5373
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.39

Computer programs: IPDS (Stoe & Cie, 1996), X-RED (Stoe & Cie 1996), SUPERFLIP (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···S3i0.832.563.3609 (16)162
N21—H212···S3ii0.832.663.4691 (16)167
N24—H241···S23iii0.852.773.6128 (14)174
C7—H72···S23ii0.982.833.7236 (16)153
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x, y+2, z.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

References

First citationArslan, H., Flörke, U. & Külcü, N. (2004). Acta Chim. Slov. 51, 787–792.  CAS Google Scholar
First citationAvsar, G., Arslan, H., Haupt, H.-J. & Külcü, N. (2003). Turk. J. Chem. 27, 281–285.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKusaï, A., Mustayeen, A. K., Magali, A. & Gilles, B. (2009). Polyhedron, 29, 1273–1280.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Scienc. New York: Springer-Verlag.  Google Scholar
First citationStoe & Cie (1996). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1168
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds