metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis­(μ-3-meth­­oxy­benzoato-κ2O1:O1′)bis­[aceto­nitrilecopper(II)]

aSchool of Chemical Sciences, National Institute of Science Education and Research, Institute of Physics Campus, PO: Sainik School, Bhubaneswar, Orissa 751 005, India
*Correspondence e-mail: sanjib@niser.ac.in

(Received 13 March 2011; accepted 31 March 2011; online 7 April 2011)

The centrosymmetric binuclear CuII title complex, [Cu2(C8H7O3)4(CH3CN)2], has a paddle-wheel-type structure [Cu—Cu distance = 2.6433 (3) Å]. Each CuII ion is coordin­ated by four O atoms from two 3-meth­oxy­benzoate ligands and one acetonitrile N atom in a square-pyramidal geometry.

Related literature

For applications of binuclear copper(II) complexes bridged by four benzoic acid groups in a paddle-wheel arrangement in inorganic synthesis, catalysis, magnetism and medicinal chemistry, see: Ozarowski (2008[Ozarowski, A. (2008). Inorg. Chem. 47, 9760-62.]); Kirchner & Fernando (1980[Kirchner, S. J. & Fernando, Q. (1980). Inorg. Synth. 20, 53-55.]); Inoue et al. (1968[Inoue, M., Emori, S. & Kubo, M. (1968). Inorg. Chem. 7, 1427-1430.]); Bergant et al. (1994[Bergant, T., Petric, M., Pohleven, F., Rebersek, J. & Segedin, P. (1994). Acta Chim. Slov. 41, 393-404.]). For crystal structures of similar complexes, see: Lah et al. (2001[Lah, N., Giester, G., Šegedin, P., Murn, A., Podlipnik, K. & Leban, I. (2001). Acta Cryst. C57, 546-548.]). For the preparation of similar complexes, see: Bernard et al. (1989[Bernard, M. A., Busnot, A., Busnot, F. & Le Querler, J. F. (1989). Thermochim. Acta, 146, 39-52.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O3)4(C2H3N)2]

  • Mr = 813.73

  • Monoclinic, P 21 /n

  • a = 7.2117 (7) Å

  • b = 19.6502 (3) Å

  • c = 12.6186 (9) Å

  • β = 90.016 (9)°

  • V = 1788.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.620, Tmax = 0.746

  • 43230 measured reflections

  • 6872 independent reflections

  • 4883 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.01

  • 6872 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare, et al. 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Binuclear copper(II) complexes bridged by four benzoic acid groups in a paddle-wheel arrangement are very important from the perspectives of molecular magnetism (Inoue, et al., 1968). These materials have potential applications in inorganic synthesis, catalysis, magnetism, and in medicinal chemistry (Ozarowski, 2008; Kirchner & Fernando, 1980; Inoue et al., 1968; Bergant et al., 1994). Herein we report the structure of the title compound (Fig.1). The structure is a centrosymmetric dinuclear Cu(II) complex having square pyramidal arrangement around each copper ion. There is a lot of research interest for studying the effect of apical ligand (here the apical ligand is acetonitrile) in tuning the intramolecular magnetic exchange interaction between two Cu(II) ions in various paddle-wheel type dinuclear copper(II) benzoate complexes.

Related literature top

For applications of binuclear copper(II) complexes bridged by four benzoic acid groups in a paddle-wheel arrangement in inorganic synthesis, catalysis, magnetism and medicinal chemistry, see: Ozarowski (2008); Kirchner & Fernando (1980); Inoue et al. (1968); Bergant et al. (1994). For crystal structures of similar complexes, see: Lah et al. (2001). For the preparation of similar complexes, see: Bernard et al. (1989).

Experimental top

The title compound was obtained by addition of the solution of copper(II) acetate monohydrate (0.4 g, 2.0 mmol) in a 1:1 mixture of CH3CN + CH3OH (20 ml) to 3-methoxybenzoic acid (1.21 g, 8 mmol), and the mixture was stirred for 2 h. The green precipitate was filtered and washed thoroughly with diethyl ether (1.2 g, 80%). Recrystallization from acetonitrile gave green crystals suitable for X-ray diffraction.

Refinement top

All H atoms were placed geometrically at idealized positions with C–H = 0.93 Å (CarH) and 0.96 Å (RCH3), and were refined isotropically using a riding-model with Uiso(H) = 1.2Ueq or 1.5Ueq (CH3 only).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare, et al. 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small arbitrary spheres. Unlabelled atoms are related to their labelled counterparts by inversion [(x,y,z) to (2-x,2-y,-z)].
[Figure 2] Fig. 2. A packing diagram viewed along the crystallographic a axis.
Tetrakis(µ-3-methoxybenzoato- κ2O1:O1')bis[acetonitrilecopper(II)] top
Crystal data top
[Cu2(C8H7O3)4(C2H3N)2]F(000) = 836
Mr = 813.73Dx = 1.512 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9972 reflections
a = 7.2117 (7) Åθ = 2.6–27.4°
b = 19.6502 (3) ŵ = 1.26 mm1
c = 12.6186 (9) ÅT = 293 K
β = 90.016 (9)°Block, green
V = 1788.2 (3) Å30.25 × 0.22 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
6872 independent reflections
Radiation source: fine-focus sealed tube4883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 33.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1110
Tmin = 0.620, Tmax = 0.746k = 3029
43230 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.2391P]
where P = (Fo2 + 2Fc2)/3
6872 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu2(C8H7O3)4(C2H3N)2]V = 1788.2 (3) Å3
Mr = 813.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.2117 (7) ŵ = 1.26 mm1
b = 19.6502 (3) ÅT = 293 K
c = 12.6186 (9) Å0.25 × 0.22 × 0.08 mm
β = 90.016 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6872 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4883 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 0.746Rint = 0.036
43230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
6872 reflectionsΔρmin = 0.34 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85578 (2)0.959759 (8)0.015468 (13)0.03310 (6)
C10.7588 (2)1.14438 (8)0.17923 (12)0.0428 (3)
C20.5838 (2)1.13393 (8)0.22195 (12)0.0449 (3)
H20.52071.09350.20930.054*
C30.5037 (3)1.18455 (9)0.28383 (12)0.0484 (4)
C40.5971 (3)1.24540 (9)0.30041 (16)0.0588 (5)
H40.54421.27900.34260.071*
C50.7672 (3)1.25604 (9)0.25470 (16)0.0626 (5)
H50.82711.29750.26420.075*
C60.8508 (3)1.20571 (9)0.19449 (15)0.0547 (4)
H60.96711.21290.16460.066*
C70.8464 (2)1.08987 (8)0.11286 (11)0.0401 (3)
C80.2380 (3)1.11606 (12)0.32315 (18)0.0671 (5)
H8A0.21201.10650.25000.101*
H8B0.12371.11890.36190.101*
H8C0.31311.08030.35210.101*
C90.7489 (2)1.07841 (8)0.26044 (12)0.0428 (3)
C100.5683 (2)1.05961 (9)0.28718 (12)0.0461 (4)
H100.50421.02830.24580.055*
C110.4845 (3)1.08807 (10)0.37628 (14)0.0555 (4)
C120.5780 (3)1.13632 (12)0.43556 (16)0.0695 (6)
H120.52011.15680.49310.083*
C130.7561 (4)1.15386 (13)0.40930 (17)0.0787 (7)
H130.81921.18560.45030.094*
C140.8439 (3)1.12486 (10)0.32223 (15)0.0614 (5)
H140.96551.13660.30570.074*
C150.8413 (2)1.04876 (7)0.16352 (11)0.0389 (3)
C160.2271 (3)1.01287 (14)0.3747 (2)0.0789 (7)
H16A0.31090.97550.38520.118*
H16B0.11471.00470.41350.118*
H16C0.19911.01720.30070.118*
C170.5228 (3)0.84701 (10)0.04591 (16)0.0570 (4)
C180.3797 (3)0.79457 (13)0.0586 (2)0.0804 (7)
H18A0.38360.77700.12950.121*
H18B0.40190.75830.00920.121*
H18C0.25990.81410.04520.121*
N10.6281 (2)0.88878 (8)0.03641 (12)0.0559 (4)
O10.75919 (17)1.03482 (5)0.10169 (10)0.0476 (3)
O21.00189 (17)1.10313 (6)0.07340 (10)0.0503 (3)
O30.33498 (19)1.17917 (7)0.33120 (11)0.0611 (3)
O40.75562 (16)1.00329 (6)0.11367 (9)0.0458 (3)
O50.99825 (17)1.07201 (6)0.13874 (9)0.0492 (3)
O60.3093 (2)1.07285 (10)0.41088 (13)0.0801 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03442 (10)0.03078 (9)0.03410 (10)0.00225 (6)0.00097 (6)0.00015 (6)
C10.0519 (9)0.0379 (7)0.0386 (7)0.0095 (6)0.0042 (6)0.0037 (6)
C20.0551 (10)0.0401 (7)0.0394 (7)0.0106 (7)0.0036 (7)0.0036 (6)
C30.0580 (10)0.0463 (8)0.0410 (8)0.0182 (7)0.0024 (7)0.0031 (6)
C40.0748 (13)0.0453 (9)0.0561 (10)0.0156 (9)0.0011 (9)0.0123 (7)
C50.0797 (14)0.0404 (9)0.0677 (12)0.0021 (9)0.0052 (10)0.0142 (8)
C60.0595 (11)0.0454 (9)0.0593 (10)0.0022 (8)0.0016 (8)0.0082 (7)
C70.0459 (8)0.0380 (7)0.0365 (7)0.0056 (6)0.0040 (6)0.0017 (5)
C80.0561 (12)0.0765 (14)0.0687 (12)0.0080 (10)0.0022 (9)0.0186 (10)
C90.0523 (9)0.0392 (7)0.0367 (7)0.0038 (6)0.0064 (6)0.0014 (6)
C100.0530 (10)0.0461 (8)0.0390 (7)0.0048 (7)0.0053 (7)0.0040 (6)
C110.0599 (11)0.0621 (11)0.0444 (8)0.0071 (8)0.0117 (8)0.0039 (7)
C120.0854 (16)0.0740 (13)0.0492 (10)0.0003 (11)0.0182 (10)0.0206 (9)
C130.0931 (17)0.0831 (15)0.0598 (12)0.0198 (13)0.0127 (11)0.0347 (11)
C140.0682 (13)0.0629 (11)0.0531 (10)0.0130 (9)0.0114 (9)0.0144 (8)
C150.0466 (9)0.0356 (7)0.0347 (7)0.0044 (6)0.0036 (6)0.0012 (5)
C160.0613 (14)0.1005 (19)0.0749 (15)0.0078 (13)0.0137 (11)0.0090 (13)
C170.0519 (10)0.0576 (10)0.0615 (11)0.0063 (8)0.0024 (8)0.0131 (8)
C180.0665 (14)0.0763 (15)0.0984 (17)0.0306 (11)0.0125 (12)0.0349 (13)
N10.0525 (9)0.0597 (9)0.0553 (9)0.0205 (7)0.0018 (7)0.0092 (7)
O10.0501 (7)0.0416 (6)0.0511 (6)0.0006 (5)0.0081 (5)0.0104 (5)
O20.0510 (7)0.0418 (6)0.0581 (7)0.0008 (5)0.0076 (5)0.0112 (5)
O30.0631 (8)0.0580 (8)0.0623 (8)0.0173 (6)0.0086 (6)0.0118 (6)
O40.0477 (6)0.0489 (6)0.0408 (5)0.0043 (5)0.0083 (5)0.0093 (5)
O50.0511 (7)0.0499 (6)0.0465 (6)0.0077 (5)0.0123 (5)0.0122 (5)
O60.0659 (10)0.1017 (12)0.0726 (10)0.0032 (9)0.0282 (8)0.0271 (9)
Geometric parameters (Å, º) top
Cu1—O2i1.9591 (11)C9—C101.395 (2)
Cu1—O11.9606 (11)C9—C151.510 (2)
Cu1—O41.9769 (11)C10—C111.394 (2)
Cu1—O5i1.9791 (11)C10—H100.9300
Cu1—N12.1703 (14)C11—O61.369 (2)
Cu1—Cu1i2.6416 (3)C11—C121.383 (3)
C1—C21.388 (2)C12—C131.370 (3)
C1—C61.389 (2)C12—H120.9300
C1—C71.499 (2)C13—C141.390 (3)
C2—C31.390 (2)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—O31.360 (2)C15—O41.2554 (19)
C3—C41.388 (3)C15—O51.2594 (19)
C4—C51.371 (3)C16—O61.396 (3)
C4—H40.9300C16—H16A0.9600
C5—C61.385 (3)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—H60.9300C17—N11.124 (2)
C7—O21.254 (2)C17—C181.467 (3)
C7—O11.2588 (19)C18—H18A0.9600
C8—O31.427 (3)C18—H18B0.9600
C8—H8A0.9600C18—H18C0.9600
C8—H8B0.9600O2—Cu1i1.9591 (11)
C8—H8C0.9600O5—Cu1i1.9791 (11)
C9—C141.382 (3)
O2i—Cu1—O1168.03 (5)C14—C9—C10120.08 (15)
O2i—Cu1—O489.55 (5)C14—C9—C15119.54 (15)
O1—Cu1—O490.13 (5)C10—C9—C15120.38 (14)
O2i—Cu1—O5i88.43 (6)C11—C10—C9119.58 (17)
O1—Cu1—O5i89.42 (5)C11—C10—H10120.2
O4—Cu1—O5i168.11 (5)C9—C10—H10120.2
O2i—Cu1—N193.49 (6)O6—C11—C12115.27 (16)
O1—Cu1—N198.44 (6)O6—C11—C10124.71 (18)
O4—Cu1—N195.86 (5)C12—C11—C10120.00 (18)
O5i—Cu1—N195.96 (5)C13—C12—C11119.90 (17)
O2i—Cu1—Cu1i83.13 (4)C13—C12—H12120.0
O1—Cu1—Cu1i84.93 (4)C11—C12—H12120.0
O4—Cu1—Cu1i84.64 (3)C12—C13—C14120.98 (19)
O5i—Cu1—Cu1i83.48 (4)C12—C13—H13119.5
N1—Cu1—Cu1i176.58 (5)C14—C13—H13119.5
C2—C1—C6120.59 (15)C9—C14—C13119.39 (19)
C2—C1—C7119.64 (14)C9—C14—H14120.3
C6—C1—C7119.74 (16)C13—C14—H14120.3
C1—C2—C3119.36 (16)O4—C15—O5125.17 (14)
C1—C2—H2120.3O4—C15—C9117.60 (14)
C3—C2—H2120.3O5—C15—C9117.23 (13)
O3—C3—C4115.76 (15)O6—C16—H16A109.5
O3—C3—C2124.28 (17)O6—C16—H16B109.5
C4—C3—C2119.96 (18)H16A—C16—H16B109.5
C5—C4—C3120.11 (16)O6—C16—H16C109.5
C5—C4—H4119.9H16A—C16—H16C109.5
C3—C4—H4119.9H16B—C16—H16C109.5
C4—C5—C6120.75 (18)N1—C17—C18177.7 (2)
C4—C5—H5119.6C17—C18—H18A109.5
C6—C5—H5119.6C17—C18—H18B109.5
C5—C6—C1119.18 (19)H18A—C18—H18B109.5
C5—C6—H6120.4C17—C18—H18C109.5
C1—C6—H6120.4H18A—C18—H18C109.5
O2—C7—O1125.48 (14)H18B—C18—H18C109.5
O2—C7—C1116.75 (14)C17—N1—Cu1173.08 (18)
O1—C7—C1117.77 (15)C7—O1—Cu1122.06 (11)
O3—C8—H8A109.5C7—O2—Cu1i124.38 (10)
O3—C8—H8B109.5C3—O3—C8118.32 (14)
H8A—C8—H8B109.5C15—O4—Cu1122.76 (10)
O3—C8—H8C109.5C15—O5—Cu1i123.93 (10)
H8A—C8—H8C109.5C11—O6—C16118.17 (16)
H8B—C8—H8C109.5
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O3)4(C2H3N)2]
Mr813.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.2117 (7), 19.6502 (3), 12.6186 (9)
β (°) 90.016 (9)
V3)1788.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.25 × 0.22 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.620, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
43230, 6872, 4883
Rint0.036
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.01
No. of reflections6872
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.34

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare, et al. 1993), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

 

Acknowledgements

Financial support received from the Department of Atomic Energy (India) is gratefully acknowledged. The X-ray structural studies were carried out at the National Institute of Science Education and Research, Bhubaneswar, India.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBergant, T., Petric, M., Pohleven, F., Rebersek, J. & Segedin, P. (1994). Acta Chim. Slov. 41, 393–404.  CAS Google Scholar
First citationBernard, M. A., Busnot, A., Busnot, F. & Le Querler, J. F. (1989). Thermochim. Acta, 146, 39–52.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationInoue, M., Emori, S. & Kubo, M. (1968). Inorg. Chem. 7, 1427–1430.  CrossRef CAS Google Scholar
First citationKirchner, S. J. & Fernando, Q. (1980). Inorg. Synth. 20, 53–55.  Google Scholar
First citationLah, N., Giester, G., Šegedin, P., Murn, A., Podlipnik, K. & Leban, I. (2001). Acta Cryst. C57, 546–548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOzarowski, A. (2008). Inorg. Chem. 47, 9760–62.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds