organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1048

4,4′-[4,4′-Sulfonyl­bis­­(p-phenyl­ene­­oxy)]di­butanoic acid

aShaoyang Medical College Level Specialty School, Department of Pharmacy, Shaoyang, Hunan 422000, People's Republic of China, bRed Cross Hospital at Xinshao County of Hunan Province, Shaoyang, Hunan 422000, People's Republic of China, and cChemistry Science and Technology School, Zhanjiang Normal University, Zhanjiang, Guangdong 524048, People's Republic of China
*Correspondence e-mail: chunyanfu@tom.com

(Received 16 March 2011; accepted 30 March 2011; online 7 April 2011)

In the title compound, C20H22O8S, the dihedral angle between the two benzene rings is 81.6 (3)°. The benzene-connected portions of the alk­oxy substituents are almost coplanar with their respective rings [C—C—O—C torsion angles of 174.77 (17) and −178.5 (4)°]. One of the butanoic acid groups is disordered over two conformations with a site-occupancy ratio 0.719 (6):0.281 (6). In the crystal, pairs of O—H⋯O hydrogen bonds link the mol­ecules into infinite zigzag chains along [130].

Related literature

For bis­phenol S (systematic name 4,4′-sulfonyl­diphenol) as a reactant in ep­oxy reactions and its use in fast-curing ep­oxy resin glues, see: Askarinejad & Morsali (2006[Askarinejad, A. & Morsali, A. (2006). Inorg. Chem. Commun., 9, 143-146.]); Danzl et al. (2009[Danzl, E., Sei, K., Soda, S., Ike, M. & Fujita, M. (2009). Int. J. Environ. Res. Public Health, 6, 1472-1484.]); Bashiri et al. (2009[Bashiri, R., Akhbari, K. & Morsali, A. (2009). Inorg. Chim.Acta, 362, 1035-1041.]). For its use in the manufacture of pharmaceuticals, adhesives, biocides and agricultural products, see: Howard & David (2002[Howard, M. C. & David, F. L. (2002). Macromolecules, 35, 6875-6882.]); Howard et al. (2005[Howard, M. C., Zhu, Z. X., Christopher, C. D., Caroline, A. O., David, J. W. & Michael, G. B. D. (2005). Macromolecules, 38, 10413-10420.]); Yasue et al. (2009[Yasue, S., Maeda, K. & Uchida, F. (2009). Inorg. Chem. Commun. 12, 336-339.]). For synthesis details and a related structure, see: Zheng et al. (2007[Zheng, Z.-B., Wu, R.-T., Ji, N.-N. & Sun, Y.-F. (2007). Acta Cryst. E63, o3936.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22O8S

  • Mr = 422.45

  • Monoclinic, C 2/c

  • a = 30.945 (7) Å

  • b = 8.0964 (18) Å

  • c = 16.032 (3) Å

  • β = 94.711 (5)°

  • V = 4003.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.975

  • 12299 measured reflections

  • 4362 independent reflections

  • 2927 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.139

  • S = 1.00

  • 4362 reflections

  • 327 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8B—H8B⋯O2i 0.82 2.07 2.890 (11) 180
O8—H8A⋯O2i 0.82 1.77 2.587 (4) 178
O3—H3⋯O7Bii 0.82 1.84 2.623 (13) 159
O3—H3⋯O7ii 0.82 1.85 2.668 (5) 177
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y-{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bisphenol S (BPS) is an organic compound with the formula (C6H4OH)2SO2. It has two phenol functional groups on either side of a sulfonyl group. It is commonly used as a reactant in epoxy reactions, and is used in fast-curing epoxy resin glues (Askarinejad & Morsali, 2006; Bashiri et al., 2009; Danzl et al., 2009; Yasue et al., 2009). Bisphenol S is also used in organic synthesis as an organosulfur source in the manufacture of pharmaceuticals, adhesives, biocides and agricultural products (Howard & David, 2002; Howard et al., 2005). In this article, we present the synthesis and crystal structure of a new potential ligand derived from bisphenol S, which contains multiple oxygen donors and flexible aliphatic spacers.

As shown in Figure 1, the benzene-connected portions of the alkoxy substituents lie almost coplanar with the ring [C–C–O–C torsion angle = 174.77 (17) and -178.5 (4)°, respectively]. The two benzene rings make a dihedral angle of 81.6 (3)°. It is noteworthy that one of the butanoic acid groups is disordered over two components with site occupancy ratio 0.719 (6):0.281 (6). In the crystal, O—H···O hydrogen bonds link the molecules into a zigzag 1-D infinite chain that propagates along the [1 3 0] direction. These chains are further interwoven by C—H···O and C—H···π contacts that stabilize the packing.

Related literature top

For bisphenol S (systematic name 4,4'-sulfonyldiphenol) as a reactant in epoxy reactions and its use in fast-curing epoxy resin glues, see: Askarinejad & Morsali (2006); Danzl et al. (2009); Bashiri et al. (2009). For its use in the manufacture of pharmaceuticals, adhesives, biocides and agricultural products, see: Howard & David (2002); Howard et al. (2005); Yasue et al. (2009). For synthesis details and a related structure, see: Zheng et al. (2007).

Experimental top

Reagents and solvents were of commercially available quality. The title complex was synthesized according to the method of Zheng et al., 2007. To a solution of bisphenol S (0.01 mol) in acetonitrile (50 ml), anhydrous potassium carbonate (0.02 mol) and ethyl 4-bromobutanoate (0.01 mol) were mixed. The mixture solution was refluxed for 6 h and filtered. The filtrate was evaporated under reduced pressure and the solid product was dissolved in water/ethanol (1:2 v/v), then sodium hydroxide (0.02 mol) was added. The solution was refluxed for another 24 h, then acidified with dilute HCl. The crude product was separated by filtration and crystals of the title compound were prepared by recrystallization from a mixture of water and ethanol (1:1).

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, O—H = 0.82 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C) and with Uiso(H) = 1.5Ueq(O). One of the butanoic acid groups is disordered over two conformations with site occupancy ratio 0.719 (6):0.281 (6). All distances in the minor component were restrained to within 0.01 Å of their equivalents in the major component.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level. The disorder in the minor component has been omitted to enhance clarity.
4,4'-[4,4'-Sulfonylbis(p-phenyleneoxy)]dibutanoic acid top
Crystal data top
C20H22O8SF(000) = 1776
Mr = 422.45Dx = 1.402 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2472 reflections
a = 30.945 (7) Åθ = 2.6–23.6°
b = 8.0964 (18) ŵ = 0.21 mm1
c = 16.032 (3) ÅT = 296 K
β = 94.711 (5)°Block, colorless
V = 4003.1 (15) Å30.20 × 0.18 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube2927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3935
Tmin = 0.959, Tmax = 0.975k = 108
12299 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
4362 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.30 e Å3
19 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H22O8SV = 4003.1 (15) Å3
Mr = 422.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.945 (7) ŵ = 0.21 mm1
b = 8.0964 (18) ÅT = 296 K
c = 16.032 (3) Å0.20 × 0.18 × 0.12 mm
β = 94.711 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4362 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2927 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.975Rint = 0.041
12299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04519 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
4362 reflectionsΔρmin = 0.21 e Å3
327 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.340925 (17)0.09320 (6)0.19395 (3)0.04130 (18)
O10.21477 (5)0.09741 (18)0.44895 (9)0.0480 (4)
O20.13002 (5)0.23795 (19)0.54170 (11)0.0623 (5)
O30.08084 (6)0.0961 (2)0.46295 (12)0.0643 (5)
H30.07080.18870.45370.096*
O40.31868 (5)0.1453 (2)0.11609 (9)0.0593 (5)
O50.36503 (5)0.05895 (19)0.19703 (11)0.0557 (4)
C10.21744 (7)0.0104 (3)0.52061 (13)0.0467 (5)
H1A0.24590.00250.55070.056*
H1B0.21260.12400.50310.056*
C20.18298 (7)0.0436 (3)0.57577 (14)0.0512 (6)
H2A0.19090.15110.59900.061*
H2B0.18260.03330.62210.061*
C30.13776 (7)0.0545 (3)0.53276 (15)0.0462 (5)
H3A0.11980.11730.56820.055*
H3B0.13910.11580.48110.055*
C40.11608 (7)0.1071 (3)0.51281 (13)0.0425 (5)
C50.24467 (6)0.0837 (2)0.39240 (13)0.0374 (5)
C60.28269 (6)0.0081 (2)0.40364 (13)0.0404 (5)
H60.28880.06940.45220.049*
C70.31147 (6)0.0073 (2)0.34153 (13)0.0401 (5)
H70.33690.06870.34860.048*
C80.30262 (6)0.0842 (2)0.26918 (12)0.0354 (4)
C90.26422 (6)0.1752 (3)0.25765 (13)0.0419 (5)
H90.25810.23610.20890.050*
C100.23556 (7)0.1743 (3)0.31866 (13)0.0431 (5)
H100.20990.23420.31090.052*
O60.45017 (16)0.6539 (4)0.3091 (3)0.0555 (9)0.719 (6)
O70.54917 (16)1.1033 (5)0.4276 (4)0.0632 (11)0.719 (6)
O80.59897 (13)0.9699 (5)0.5104 (3)0.0758 (11)0.719 (6)
H8A0.60811.06360.52010.114*0.719 (6)
C110.48910 (17)0.6369 (5)0.3610 (3)0.0527 (11)0.719 (6)
H11A0.51000.57200.33320.063*0.719 (6)
H11B0.48360.58240.41300.063*0.719 (6)
C120.50608 (12)0.8096 (5)0.3780 (2)0.0552 (11)0.719 (6)
H12A0.51160.86190.32550.066*0.719 (6)
H12B0.48430.87420.40350.066*0.719 (6)
C130.54702 (12)0.8074 (4)0.4348 (3)0.0611 (12)0.719 (6)
H13A0.54150.75170.48640.073*0.719 (6)
H13B0.56880.74420.40840.073*0.719 (6)
C140.5647 (2)0.9760 (8)0.4554 (5)0.0500 (13)0.719 (6)
O6B0.4601 (3)0.6099 (11)0.3342 (8)0.056 (3)0.281 (6)
O7B0.5371 (4)1.1472 (15)0.4022 (10)0.079 (3)0.281 (6)
O8B0.5816 (5)0.9780 (14)0.4772 (8)0.077 (5)0.281 (6)
H8B0.59541.05830.49580.115*0.281 (6)
C11B0.4986 (3)0.5743 (13)0.3876 (7)0.052 (3)0.281 (6)
H11C0.52040.52810.35440.063*0.281 (6)
H11D0.49190.49250.42890.063*0.281 (6)
C12B0.5164 (3)0.7285 (11)0.4321 (6)0.064 (3)0.281 (6)
H12C0.49380.77720.46270.076*0.281 (6)
H12D0.54000.69690.47250.076*0.281 (6)
C13B0.5326 (5)0.8560 (13)0.3745 (7)0.086 (4)0.281 (6)
H13C0.50880.88780.33450.103*0.281 (6)
H13D0.55480.80610.34340.103*0.281 (6)
C14B0.5511 (5)1.0101 (16)0.4168 (9)0.070 (5)0.281 (6)
C150.42950 (8)0.5072 (3)0.28884 (15)0.0543 (6)
C160.39020 (8)0.5418 (3)0.24433 (16)0.0583 (7)
H160.38180.65080.23450.070*
C170.36394 (7)0.4158 (3)0.21499 (14)0.0481 (5)
H170.33760.43890.18500.058*
C180.37640 (6)0.2527 (2)0.22985 (12)0.0373 (4)
C190.41573 (7)0.2172 (3)0.27360 (13)0.0452 (5)
H190.42410.10800.28310.054*
C200.44257 (7)0.3452 (3)0.30315 (14)0.0530 (6)
H200.46910.32250.33230.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0421 (3)0.0388 (3)0.0425 (3)0.0041 (2)0.0004 (2)0.0036 (2)
O10.0396 (8)0.0491 (9)0.0560 (9)0.0045 (7)0.0085 (7)0.0140 (7)
O20.0677 (11)0.0382 (9)0.0787 (12)0.0006 (8)0.0076 (9)0.0096 (8)
O30.0564 (10)0.0474 (10)0.0850 (12)0.0063 (8)0.0190 (9)0.0033 (9)
O40.0603 (10)0.0783 (12)0.0377 (8)0.0082 (9)0.0060 (7)0.0012 (8)
O50.0559 (10)0.0374 (9)0.0750 (11)0.0022 (7)0.0126 (8)0.0089 (8)
C10.0389 (11)0.0539 (14)0.0462 (12)0.0021 (10)0.0034 (9)0.0087 (10)
C20.0507 (13)0.0572 (14)0.0459 (12)0.0099 (11)0.0050 (10)0.0076 (11)
C30.0445 (12)0.0394 (12)0.0558 (13)0.0019 (9)0.0106 (10)0.0012 (10)
C40.0415 (12)0.0422 (12)0.0444 (12)0.0025 (10)0.0066 (9)0.0025 (10)
C50.0324 (10)0.0319 (11)0.0474 (11)0.0065 (8)0.0010 (9)0.0031 (9)
C60.0397 (11)0.0354 (11)0.0447 (11)0.0013 (9)0.0058 (9)0.0095 (9)
C70.0332 (10)0.0347 (11)0.0508 (12)0.0021 (9)0.0057 (9)0.0044 (9)
C80.0331 (10)0.0315 (10)0.0405 (10)0.0057 (8)0.0032 (8)0.0007 (8)
C90.0394 (11)0.0386 (11)0.0457 (12)0.0025 (9)0.0084 (9)0.0092 (9)
C100.0334 (11)0.0372 (11)0.0571 (13)0.0022 (9)0.0050 (9)0.0101 (10)
O60.051 (2)0.0397 (19)0.073 (3)0.0119 (16)0.0064 (15)0.0036 (16)
O70.056 (3)0.048 (3)0.081 (3)0.006 (2)0.0220 (18)0.000 (2)
O80.082 (3)0.0502 (15)0.087 (3)0.0161 (15)0.0477 (19)0.0065 (18)
C110.057 (3)0.053 (3)0.049 (3)0.012 (2)0.008 (2)0.001 (2)
C120.052 (2)0.053 (2)0.059 (2)0.0150 (18)0.0059 (18)0.0000 (19)
C130.061 (3)0.044 (2)0.075 (3)0.0112 (18)0.0126 (19)0.0000 (19)
C140.058 (4)0.048 (2)0.042 (4)0.011 (3)0.009 (3)0.004 (3)
O6B0.054 (6)0.028 (4)0.084 (8)0.009 (4)0.009 (5)0.004 (4)
O7B0.069 (8)0.061 (7)0.105 (10)0.006 (5)0.011 (6)0.003 (6)
O8B0.107 (14)0.047 (5)0.069 (9)0.023 (8)0.042 (6)0.001 (5)
C11B0.049 (6)0.044 (6)0.061 (7)0.022 (5)0.013 (5)0.001 (5)
C12B0.048 (6)0.073 (7)0.070 (7)0.009 (5)0.005 (5)0.007 (6)
C13B0.100 (11)0.084 (8)0.074 (8)0.035 (8)0.015 (8)0.011 (7)
C14B0.079 (10)0.092 (13)0.036 (7)0.024 (10)0.005 (6)0.002 (8)
C150.0582 (14)0.0433 (14)0.0644 (15)0.0223 (12)0.0231 (12)0.0135 (11)
C160.0601 (16)0.0348 (12)0.0825 (18)0.0020 (11)0.0216 (14)0.0016 (12)
C170.0453 (12)0.0410 (12)0.0583 (14)0.0002 (10)0.0056 (11)0.0098 (10)
C180.0347 (10)0.0362 (11)0.0413 (11)0.0035 (9)0.0058 (8)0.0018 (9)
C190.0405 (12)0.0384 (12)0.0557 (13)0.0010 (9)0.0008 (10)0.0024 (10)
C200.0394 (12)0.0610 (15)0.0581 (14)0.0110 (11)0.0003 (10)0.0038 (12)
Geometric parameters (Å, º) top
S1—O41.4383 (15)C11—H11A0.9700
S1—O51.4389 (17)C11—H11B0.9700
S1—C81.761 (2)C12—C131.498 (4)
S1—C181.761 (2)C12—H12A0.9700
O1—C51.352 (2)C12—H12B0.9700
O1—C11.440 (2)C13—C141.497 (6)
O2—C41.221 (3)C13—H13A0.9700
O3—C41.301 (3)C13—H13B0.9700
O3—H30.8200C14—H8B1.2897
C1—C21.505 (3)O6B—C151.416 (7)
C1—H1A0.9700O6B—C11B1.436 (8)
C1—H1B0.9700O7B—C14B1.208 (12)
C2—C31.511 (3)O8B—C14B1.321 (11)
C2—H2A0.9700O8B—H8A1.2384
C2—H2B0.9700O8B—H8B0.8200
C3—C41.493 (3)C11B—C12B1.519 (7)
C3—H3A0.9700C11B—H11C0.9700
C3—H3B0.9700C11B—H11D0.9700
C5—C61.391 (3)C12B—C13B1.498 (7)
C5—C101.400 (3)C12B—H12C0.9700
C6—C71.390 (3)C12B—H12D0.9700
C6—H60.9300C13B—C14B1.510 (8)
C7—C81.384 (3)C13B—H13C0.9700
C7—H70.9300C13B—H13D0.9700
C8—C91.398 (3)C15—C201.386 (4)
C9—C101.373 (3)C15—C161.387 (4)
C9—H90.9300C16—C171.364 (3)
C10—H100.9300C16—H160.9300
O6—C151.375 (4)C17—C181.390 (3)
O6—C111.413 (5)C17—H170.9300
O7—C141.207 (8)C18—C191.384 (3)
O8—C141.323 (7)C19—C201.387 (3)
O8—H8A0.8199C19—H190.9300
O8—H8B0.7586C20—H200.9300
C11—C121.510 (5)
O4—S1—O5119.39 (10)C13—C12—H12B109.4
O4—S1—C8107.79 (9)C11—C12—H12B109.4
O5—S1—C8108.49 (10)H12A—C12—H12B108.0
O4—S1—C18108.03 (10)C14—C13—C12113.5 (4)
O5—S1—C18108.01 (10)C14—C13—H13A108.9
C8—S1—C18104.08 (9)C12—C13—H13A108.9
C5—O1—C1119.19 (15)C14—C13—H13B108.9
C4—O3—H3109.5C12—C13—H13B108.9
O1—C1—C2107.20 (18)H13A—C13—H13B107.7
O1—C1—H1A110.3O7—C14—O8123.4 (5)
C2—C1—H1A110.3O7—C14—C13124.7 (6)
O1—C1—H1B110.3O8—C14—C13111.8 (6)
C2—C1—H1B110.3O7—C14—H8B89.9
H1A—C1—H1B108.5C13—C14—H8B145.3
C1—C2—C3115.04 (18)C15—O6B—C11B132.5 (7)
C1—C2—H2A108.5C14B—O8B—H8A134.2
C3—C2—H2A108.5C14B—O8B—H8B115.4
C1—C2—H2B108.5O6B—C11B—C12B111.5 (8)
C3—C2—H2B108.5O6B—C11B—H11C109.3
H2A—C2—H2B107.5C12B—C11B—H11C109.3
C4—C3—C2115.44 (19)O6B—C11B—H11D109.3
C4—C3—H3A108.4C12B—C11B—H11D109.3
C2—C3—H3A108.4H11C—C11B—H11D108.0
C4—C3—H3B108.4C13B—C12B—C11B113.9 (8)
C2—C3—H3B108.4C13B—C12B—H12C108.8
H3A—C3—H3B107.5C11B—C12B—H12C108.8
O2—C4—O3123.0 (2)C13B—C12B—H12D108.8
O2—C4—C3122.7 (2)C11B—C12B—H12D108.8
O3—C4—C3114.26 (19)H12C—C12B—H12D107.7
O1—C5—C6125.11 (18)C12B—C13B—C14B115.3 (10)
O1—C5—C10114.95 (17)C12B—C13B—H13C108.5
C6—C5—C10119.93 (19)C14B—C13B—H13C108.5
C7—C6—C5119.33 (18)C12B—C13B—H13D108.5
C7—C6—H6120.3C14B—C13B—H13D108.5
C5—C6—H6120.3H13C—C13B—H13D107.5
C8—C7—C6120.56 (18)O7B—C14B—O8B123.1 (12)
C8—C7—H7119.7O7B—C14B—C13B123.7 (13)
C6—C7—H7119.7O8B—C14B—C13B112.9 (13)
C7—C8—C9120.04 (19)O6—C15—C20130.9 (3)
C7—C8—S1119.87 (15)O6—C15—C16108.6 (3)
C9—C8—S1120.02 (15)C20—C15—C16120.5 (2)
C10—C9—C8119.64 (18)C20—C15—O6B107.2 (4)
C10—C9—H9120.2C16—C15—O6B131.9 (5)
C8—C9—H9120.2C17—C16—C15119.9 (2)
C9—C10—C5120.49 (19)C17—C16—H16120.0
C9—C10—H10119.8C15—C16—H16120.0
C5—C10—H10119.8C16—C17—C18120.2 (2)
C15—O6—C11114.4 (3)C16—C17—H17119.9
C14—O8—H8A109.7C18—C17—H17119.9
C14—O8—H8B70.7C19—C18—C17120.29 (19)
O6—C11—C12106.4 (4)C19—C18—S1120.77 (16)
O6—C11—H11A110.4C17—C18—S1118.93 (16)
C12—C11—H11A110.4C18—C19—C20119.6 (2)
O6—C11—H11B110.4C18—C19—H19120.2
C12—C11—H11B110.4C20—C19—H19120.2
H11A—C11—H11B108.6C15—C20—C19119.5 (2)
C13—C12—C11111.3 (4)C15—C20—H20120.3
C13—C12—H12A109.4C19—C20—H20120.3
C11—C12—H12A109.4
C5—O1—C1—C2174.77 (17)O6B—C11B—C12B—C13B65.6 (15)
O1—C1—C2—C353.5 (3)C11B—C12B—C13B—C14B179.2 (11)
C1—C2—C3—C473.3 (3)C12B—C13B—C14B—O7B120.5 (19)
C2—C3—C4—O212.6 (3)C12B—C13B—C14B—O8B53.2 (19)
C2—C3—C4—O3168.2 (2)C11—O6—C15—C207.8 (7)
C1—O1—C5—C611.3 (3)C11—O6—C15—C16174.8 (4)
C1—O1—C5—C10170.19 (18)C11—O6—C15—O6B13.3 (16)
O1—C5—C6—C7177.81 (18)C11B—O6B—C15—O6164 (3)
C10—C5—C6—C70.6 (3)C11B—O6B—C15—C200.3 (17)
C5—C6—C7—C80.2 (3)C11B—O6B—C15—C16172.4 (11)
C6—C7—C8—C90.8 (3)O6—C15—C16—C17178.3 (3)
C6—C7—C8—S1176.31 (15)C20—C15—C16—C170.6 (4)
O4—S1—C8—C7160.76 (16)O6B—C15—C16—C17171.4 (8)
O5—S1—C8—C730.16 (18)C15—C16—C17—C180.2 (4)
C18—S1—C8—C784.68 (17)C16—C17—C18—C190.8 (3)
O4—S1—C8—C922.18 (19)C16—C17—C18—S1177.98 (17)
O5—S1—C8—C9152.77 (16)O4—S1—C18—C19146.43 (17)
C18—S1—C8—C992.39 (17)O5—S1—C18—C1916.0 (2)
C7—C8—C9—C100.4 (3)C8—S1—C18—C1999.18 (18)
S1—C8—C9—C10176.62 (15)O4—S1—C18—C1734.8 (2)
C8—C9—C10—C50.4 (3)O5—S1—C18—C17165.25 (17)
O1—C5—C10—C9177.64 (18)C8—S1—C18—C1779.57 (19)
C6—C5—C10—C91.0 (3)C17—C18—C19—C200.5 (3)
C15—O6—C11—C12178.5 (4)S1—C18—C19—C20178.27 (16)
O6—C11—C12—C13178.5 (4)O6—C15—C20—C19178.0 (4)
C11—C12—C13—C14178.6 (4)C16—C15—C20—C190.9 (4)
C12—C13—C14—O72.6 (9)O6B—C15—C20—C19172.8 (6)
C12—C13—C14—O8175.4 (5)C18—C19—C20—C150.4 (3)
C15—O6B—C11B—C12B171.3 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8B—H8B···O2i0.822.072.890 (11)180
O8—H8A···O2i0.821.772.587 (4)178
O3—H3···O7Bii0.821.842.623 (13)159
O3—H3···O7ii0.821.852.668 (5)177
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y3/2, z.

Experimental details

Crystal data
Chemical formulaC20H22O8S
Mr422.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)30.945 (7), 8.0964 (18), 16.032 (3)
β (°) 94.711 (5)
V3)4003.1 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
12299, 4362, 2927
Rint0.041
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.00
No. of reflections4362
No. of parameters327
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8B—H8B···O2i0.822.072.890 (11)180
O8—H8A···O2i0.821.772.587 (4)178
O3—H3···O7Bii0.821.842.623 (13)159
O3—H3···O7ii0.821.852.668 (5)177
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y3/2, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Education Department of Hunan Province (grant No. 10C0294).

References

First citationAskarinejad, A. & Morsali, A. (2006). Inorg. Chem. Commun., 9, 143–146.  CrossRef CAS Google Scholar
First citationBashiri, R., Akhbari, K. & Morsali, A. (2009). Inorg. Chim.Acta, 362, 1035–1041.  CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanzl, E., Sei, K., Soda, S., Ike, M. & Fujita, M. (2009). Int. J. Environ. Res. Public Health, 6, 1472–1484.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHoward, M. C. & David, F. L. (2002). Macromolecules, 35, 6875–6882.  Google Scholar
First citationHoward, M. C., Zhu, Z. X., Christopher, C. D., Caroline, A. O., David, J. W. & Michael, G. B. D. (2005). Macromolecules, 38, 10413–10420.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYasue, S., Maeda, K. & Uchida, F. (2009). Inorg. Chem. Commun. 12, 336–339.  Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Ji, N.-N. & Sun, Y.-F. (2007). Acta Cryst. E63, o3936.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1048
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds