metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[bis­­(2-ethyl-5-methyl-1H-imidazol-4-yl-κN3)methane]­cobalt(II) monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 18 January 2011; accepted 24 March 2011; online 13 April 2011)

In the title compound, [CoCl2(C13H20N4)]·H2O, the CoII atom lies on a mirror plane and is four-coordinated by two N atoms of the imidazole ligand and two Cl atoms in a distorted tetra­hedral arrangement. The water mol­ecule participates in the formation of hydrogen bonds, resulting in a three dimensional network involving the Cl atoms and the NH groups. The terminal C atom of the ethyl group is disordered over two sites of equal occupancy.

Related literature

For background to the use of imidazole derivatives as catalyts and biocatalysts for di­oxy­gen transport and electron storage, see: Bouwman et al. (2000[Bouwman, E., Gutierrez-Soto, L. & Beretta, M. (2000). Inorg. Chim. Acta, 304, 250-259.]). For related structures, see: Beznischenko et al. (2007[Beznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325-1329.]); Pajunen (1981[Pajunen, A. (1981). Cryst. Struct. Commun. 10, 957-958.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C13H20N4)]·H2O

  • Mr = 380.18

  • Monoclinic, P 21 /m

  • a = 8.3927 (7) Å

  • b = 12.1388 (14) Å

  • c = 8.5860 (9) Å

  • β = 97.045 (1)°

  • V = 868.11 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.22 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.625, Tmax = 0.763

  • 4313 measured reflections

  • 1607 independent reflections

  • 1174 reflections with I > 2.0σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.03

  • 1607 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯Cl1 0.85 2.41 3.256 (4) 175
O1—H1D⋯Cl2i 0.85 2.29 3.139 (4) 175
N2—H2⋯O1ii 0.86 2.12 2.959 (3) 165
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazole derivatives are used as catalyts and biocatalysts for dioxygen transport and electron storage (Bouwman et al., 2000). As part of our interest in imidazole derivatives, we report here the crystal structure of a new cobalt complex of imidazole derivative.

In the title complex (Fig. 1), the CoII lies on a mirror plane and displays a tetrahedral coordination with two N atoms of the imidazole ligand and two Cl atoms. The asymmetric unit also contains a solvate water molecule. The distances and angles agree with related structures (Beznischenko et al., 2007; Pajunen, 1981). The terminal C-atom of the ethyl group was disordered over two sites C6 and C6' with equal site occopancy factors.

The water molecule participates in the formation of intricated hydrogen bonds resulting in a three dimensionnal network involving the Cl atoms and the NH groups (Table 1).

Related literature top

For background to the use of imidazole derivatives as catalyts and biocatalysts for dioxygen transport and electron storage, see: Bouwman et al. (2000). For related structures, see: Beznischenko et al. (2007); Pajunen (1981). Scheme - water moleculae better shown as H2O

Experimental top

The ligand and the title complex were prepared by following the procedures reported in the literature (Bouwman, et al., 2000). Single crystals of the title compound as purule prisms were grown from a solution of ethanol by slow evaporation at room temperature within a few days.

Refinement top

Although the atoms were visible in difference Fourier maps, they were included in the subsequent refinement using restraints. The hydrogen atoms were placed geometrically and treated as riding, with O–H = 0.85 Å, N–H = 0.86 Å, and C–H = 0.96 (methyl) or 0.97 Å (methylene) with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq (the rest of the parent atoms).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The terminal C-atom of the ethyl group was disordered over sites C6 and C6'. Symmetry code "A" in the labels: x, -y+1/2, z.
Dichlorido[bis(2-ethyl-5-methyl-1H-imidazol-4-yl- κN3)methane]cobalt(II) monohydrate top
Crystal data top
[CoCl2(C13H20N4)]·H2OF(000) = 394
Mr = 380.18Dx = 1.454 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1482 reflections
a = 8.3927 (7) Åθ = 2.4–25.0°
b = 12.1388 (14) ŵ = 1.30 mm1
c = 8.5860 (9) ÅT = 298 K
β = 97.045 (1)°Prism, violet
V = 868.11 (15) Å30.40 × 0.30 × 0.22 mm
Z = 2
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1607 independent reflections
Radiation source: fine-focus sealed tube1174 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1413
Tmin = 0.625, Tmax = 0.763l = 510
4313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.6331P]
where P = (Fo2 + 2Fc2)/3
1607 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[CoCl2(C13H20N4)]·H2OV = 868.11 (15) Å3
Mr = 380.18Z = 2
Monoclinic, P21/mMo Kα radiation
a = 8.3927 (7) ŵ = 1.30 mm1
b = 12.1388 (14) ÅT = 298 K
c = 8.5860 (9) Å0.40 × 0.30 × 0.22 mm
β = 97.045 (1)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1607 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1174 reflections with I > 2.0σ(I)
Tmin = 0.625, Tmax = 0.763Rint = 0.039
4313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
1607 reflectionsΔρmin = 0.25 e Å3
109 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.75499 (7)0.25000.32643 (8)0.0443 (3)
Cl10.93574 (14)0.25000.54316 (16)0.0521 (4)
Cl20.88551 (17)0.25000.11144 (17)0.0656 (4)
O10.6677 (4)0.25000.7871 (4)0.0547 (9)
H1C0.73310.25000.71900.066*
H1D0.72150.25000.87760.066*
N10.5936 (3)0.1271 (2)0.3223 (4)0.0461 (7)
N20.4566 (3)0.0235 (3)0.2690 (4)0.0525 (8)
H20.43440.09040.24130.063*
C10.6018 (4)0.0241 (3)0.2763 (5)0.0503 (10)
C20.3496 (4)0.0527 (3)0.3131 (4)0.0446 (9)
C30.4343 (4)0.1455 (3)0.3473 (4)0.0423 (8)
C40.3821 (6)0.25000.4156 (7)0.0504 (13)
H4A0.42090.25000.52680.060*
H4B0.26580.25000.40610.060*
C50.7486 (4)0.0350 (4)0.2383 (7)0.0751 (14)
H5A0.84160.00990.27400.090*0.50
H5B0.75850.10320.29760.090*0.50
H5'A0.80730.06160.33530.090*0.50
H5'B0.81710.01800.19410.090*0.50
C60.7529 (13)0.0595 (9)0.0839 (15)0.079 (2)0.50
H6A0.66250.10490.04690.118*0.50
H6B0.85040.09820.07220.118*0.50
H6C0.74880.00750.02400.118*0.50
C6'0.7231 (13)0.1306 (9)0.1225 (14)0.079 (2)0.50
H6'10.65920.10620.02840.118*0.50
H6'20.66880.18950.16870.118*0.50
H6'30.82520.15620.09750.118*0.50
C70.1749 (4)0.0265 (4)0.3136 (6)0.0614 (11)
H7A0.12110.08910.35120.092*
H7B0.16400.03540.38090.092*
H7C0.12790.00910.20880.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0267 (4)0.0526 (5)0.0533 (5)0.0000.0037 (3)0.000
Cl10.0388 (7)0.0628 (8)0.0534 (8)0.0000.0002 (6)0.000
Cl20.0543 (8)0.0925 (11)0.0515 (8)0.0000.0126 (7)0.000
O10.051 (2)0.060 (2)0.053 (2)0.0000.0044 (17)0.000
N10.0271 (14)0.0473 (18)0.064 (2)0.0015 (12)0.0038 (13)0.0029 (16)
N20.0347 (15)0.0457 (18)0.076 (2)0.0011 (14)0.0010 (15)0.0062 (17)
C10.0285 (17)0.053 (2)0.068 (3)0.0012 (16)0.0006 (16)0.003 (2)
C20.0331 (17)0.047 (2)0.054 (2)0.0014 (15)0.0033 (15)0.0048 (19)
C30.0319 (17)0.046 (2)0.049 (2)0.0011 (15)0.0066 (15)0.0069 (18)
C40.041 (3)0.052 (3)0.061 (4)0.0000.016 (3)0.000
C50.038 (2)0.061 (3)0.126 (4)0.0039 (19)0.012 (2)0.018 (3)
C60.069 (4)0.083 (7)0.089 (6)0.009 (5)0.030 (4)0.008 (6)
C6'0.069 (4)0.083 (7)0.089 (6)0.009 (5)0.030 (4)0.008 (6)
C70.036 (2)0.062 (3)0.087 (3)0.0042 (18)0.011 (2)0.007 (2)
Geometric parameters (Å, º) top
Co1—N12.012 (3)C4—H4B0.9700
Co1—N1i2.012 (3)C5—C61.363 (13)
Co1—Cl12.2520 (14)C5—C6'1.526 (12)
Co1—Cl22.2590 (16)C5—H5A0.9700
O1—H1C0.8500C5—H5B0.9700
O1—H1D0.8500C5—H5'A0.9700
N1—C11.316 (5)C5—H5'B0.9700
N1—C31.398 (4)C6—H5'B1.3943
N2—C11.343 (4)C6—H6A0.9600
N2—C21.374 (4)C6—H6B0.9600
N2—H20.8600C6—H6C0.9600
C1—C51.496 (5)C6'—H6'10.9600
C2—C31.345 (5)C6'—H6'20.9600
C2—C71.500 (5)C6'—H6'30.9600
C3—C41.486 (4)C7—H7A0.9600
C4—C3i1.486 (4)C7—H7B0.9600
C4—H4A0.9700C7—H7C0.9600
N1—Co1—N1i95.69 (16)C6—C5—C1116.0 (6)
N1—Co1—Cl1113.48 (9)C1—C5—C6'117.0 (5)
N1i—Co1—Cl1113.48 (9)C6—C5—H5A108.3
N1—Co1—Cl2112.23 (9)C1—C5—H5A108.3
N1i—Co1—Cl2112.23 (9)C6—C5—H5B108.3
Cl1—Co1—Cl2109.28 (5)C1—C5—H5B108.3
H1C—O1—H1D108.3H5A—C5—H5B107.4
C1—N1—C3106.5 (3)C1—C5—H5'A108.5
C1—N1—Co1130.5 (2)C6'—C5—H5'A108.8
C3—N1—Co1122.3 (2)C1—C5—H5'B108.1
C1—N2—C2108.5 (3)C6'—C5—H5'B107.0
C1—N2—H2125.7H5'A—C5—H5'B107.1
C2—N2—H2125.7C5—C6—H6A109.5
N1—C1—N2110.0 (3)C5—C6—H6B109.5
N1—C1—C5126.6 (3)C5—C6—H6C109.5
N2—C1—C5123.4 (3)C5—C6'—H6'1109.5
C3—C2—N2106.1 (3)C5—C6'—H6'2109.5
C3—C2—C7131.8 (3)H6'1—C6'—H6'2109.5
N2—C2—C7122.0 (3)C5—C6'—H6'3109.5
C2—C3—N1108.8 (3)H6'1—C6'—H6'3109.5
C2—C3—C4128.9 (3)H6'2—C6'—H6'3109.5
N1—C3—C4122.0 (3)C2—C7—H7A109.5
C3—C4—C3i117.3 (4)C2—C7—H7B109.5
C3—C4—H4A108.0H7A—C7—H7B109.5
C3i—C4—H4A108.0C2—C7—H7C109.5
C3—C4—H4B108.0H7A—C7—H7C109.5
C3i—C4—H4B108.0H7B—C7—H7C109.5
H4A—C4—H4B107.2
N1i—Co1—N1—C1156.8 (3)N2—C2—C3—N10.8 (4)
Cl1—Co1—N1—C184.6 (4)C7—C2—C3—N1177.8 (4)
Cl2—Co1—N1—C139.9 (4)N2—C2—C3—C4173.5 (4)
N1i—Co1—N1—C312.2 (4)C7—C2—C3—C48.0 (7)
Cl1—Co1—N1—C3106.5 (3)C1—N1—C3—C21.0 (4)
Cl2—Co1—N1—C3129.0 (3)Co1—N1—C3—C2170.3 (2)
C3—N1—C1—N20.7 (4)C1—N1—C3—C4173.8 (4)
Co1—N1—C1—N2169.5 (2)Co1—N1—C3—C415.0 (5)
C3—N1—C1—C5178.7 (4)C2—C3—C4—C3i138.0 (4)
Co1—N1—C1—C511.1 (7)N1—C3—C4—C3i48.3 (7)
C2—N2—C1—N10.3 (5)N1—C1—C5—C6110.0 (7)
C2—N2—C1—C5179.2 (4)N2—C1—C5—C670.7 (8)
C1—N2—C2—C30.3 (4)N1—C1—C5—C6'153.4 (6)
C1—N2—C2—C7178.4 (4)N2—C1—C5—C6'27.3 (8)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···Cl10.852.413.256 (4)175
O1—H1D···Cl2ii0.852.293.139 (4)175
N2—H2···O1iii0.862.122.959 (3)165
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CoCl2(C13H20N4)]·H2O
Mr380.18
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)8.3927 (7), 12.1388 (14), 8.5860 (9)
β (°) 97.045 (1)
V3)868.11 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.40 × 0.30 × 0.22
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.625, 0.763
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
4313, 1607, 1174
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.03
No. of reflections1607
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···Cl10.852.413.256 (4)175
O1—H1D···Cl2i0.852.293.139 (4)175
N2—H2···O1ii0.862.122.959 (3)165
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
 

References

First citationBeznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325–1329.  CAS Google Scholar
First citationBouwman, E., Gutierrez-Soto, L. & Beretta, M. (2000). Inorg. Chim. Acta, 304, 250–259.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPajunen, A. (1981). Cryst. Struct. Commun. 10, 957–958.  CAS Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds