organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1109

Bis[2-bromo-4-(2-hy­dr­oxy­eth­yl)phenol] monohydrate

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: chemywg@126.com

(Received 17 February 2011; accepted 22 March 2011; online 13 April 2011)

In the title compound, 2C8H9BrO2·H2O, the O—C—C—C torsion angles for the hy­droxy­ethyl group and the Br—C—C—O torsion angles involving bromo and phenol groups are 61.7 (11) and 0.7 (12)°, respectively, in one independent mol­ecule and 61.5 (11) and 0.2 (11)°, respectively, in the other. In the crystal, mol­ecules are linked through O—H⋯O and O—H⋯Br hydrogen bonds, forming a polymeric chain.

Related literature

For synthesis of the title compound and background information, see: Bovicelli et al. (2007[Bovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245-4252.]). For a related structure, see: Mewett et al. (2009[Mewett, K. N., Fernandez, S. P., Pasricha, A. K., Pong, A., Devenish, S. O., Hibbs, D. E., Chebib, M., Johnston, G. A. & Hanrahan, J. R. (2009). Bioorg. Med. Chem. 17, 7156-7173.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H9BrO2·H2O

  • Mr = 452.14

  • Monoclinic, C c

  • a = 5.9790 (12) Å

  • b = 18.396 (4) Å

  • c = 16.801 (3) Å

  • β = 98.83 (3)°

  • V = 1826.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.46 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (ψ-scans; North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.469, Tmax = 0.664

  • 3585 measured reflections

  • 1827 independent reflections

  • 1302 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.095

  • S = 1.01

  • 1827 reflections

  • 208 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 746 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯Br1 0.89 2.86 3.537 (8) 134
OW—HWA⋯O2 0.89 2.00 2.820 (10) 151
O1—H1A⋯O4 0.82 1.84 2.633 (9) 163
OW—HWB⋯O1i 0.88 2.07 2.745 (10) 133
O2—H2A⋯Br1 0.85 2.56 3.026 (6) 115
O2—H2A⋯OW 0.85 2.18 2.820 (9) 131
O3—H3A⋯O2ii 0.82 1.80 2.592 (9) 162
O4—H4B⋯Br2 0.85 2.57 3.039 (7) 116
O4—H4B⋯OWiii 0.85 2.21 2.804 (10) 127
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is used as the key intermediate in the synthesis of hydroxytyrosol (Bovicelli et al., 2007). As a part of our studies on the synthesis of hydroxytyrosol we report herein the crystal structure of the title compound.

In the molecules of the title compound, (Fig. 1), the bond lengths and angles agree very well with the corresponding bond lengths and angles reporeted in a structure containing the title compound as its fragment (Mewett et al., 2009).

In the crystal structure, O—H···O and O—H···Br type hydrogen bonding interactions (Table 1) link the molecules into ribbons extended along the a-axis (Fig. 2). The two molecules of the title compound in the asymmetric unit are identical. The torsion angles O1/C1/C2/C3 and C1/C2/C3/C8 are 61.7 (12) and -100.6 (11)°, respectively, in one molecule. The corresponding torion angles in the other molecule are 61.5 (11) and -101.5 (11)° (for O3/C9/C10/C11 and C9/C10/C11/C12, respectively).

Related literature top

For synthesis of the title compound and background information, see: Bovicelli et al. (2007). For a related structure, see: Mewett et al. (2009).

Experimental top

To a solution of 4-hydroxyphenethyl alcohol (217.4 mmol, 30 g) and NaBr (217.4 mmol, 22.17 g) in acetone (600 ml), a solution of oxone (200 g) in water (1 L) was added dropwise at 263 K within 3 h. The progress of the reaction was monitored by thin-layer chromatography (TLC, hexane/ethyl acetate 6:4), and when the reaction was over (complete consumption of the substrate), AcOEt (500 ml) was added to the mixture. The organic layer was separated, and the aqueous phase was extracted with two 300 mL portions of AcOEt. The combined organic solutions were washed with water (300 ml), dried over anhydrous Na2SO4 (100 g), and evaporated. The monobrominated product, obtained in almost quantitative yield (47.1 g), appeared to be spectroscopically pure, white solid (Bovicelli et al., 2007). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. A practical packing diagram of the title compound. Hydron bonds are shown as dashed lines.
Bis[2-bromo-4-(2-hydroxyethyl)phenol] monohydrate top
Crystal data top
2C8H9BrO2·H2OF(000) = 904
Mr = 452.14Dx = 1.645 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 5.9790 (12) Åθ = 9–13°
b = 18.396 (4) ŵ = 4.46 mm1
c = 16.801 (3) ÅT = 293 K
β = 98.83 (3)°Block, colorless
V = 1826.0 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.3°, θmin = 2.2°
ω/2θ scansh = 07
Absorption correction: ψ scan
(ψ-scans; North et al., 1968)
k = 2222
Tmin = 0.469, Tmax = 0.664l = 2019
3585 measured reflections3 standard reflections every 200 reflections
1827 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1827 reflectionsΔρmax = 0.32 e Å3
208 parametersΔρmin = 0.45 e Å3
2 restraintsAbsolute structure: Flack (1983), 746 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
2C8H9BrO2·H2OV = 1826.0 (6) Å3
Mr = 452.14Z = 4
Monoclinic, CcMo Kα radiation
a = 5.9790 (12) ŵ = 4.46 mm1
b = 18.396 (4) ÅT = 293 K
c = 16.801 (3) Å0.20 × 0.10 × 0.10 mm
β = 98.83 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1302 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ψ-scans; North et al., 1968)
Rint = 0.045
Tmin = 0.469, Tmax = 0.6643 standard reflections every 200 reflections
3585 measured reflections intensity decay: 1%
1827 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.32 e Å3
S = 1.01Δρmin = 0.45 e Å3
1827 reflectionsAbsolute structure: Flack (1983), 746 Friedel pairs
208 parametersAbsolute structure parameter: 0.00 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.98869 (14)0.25839 (6)0.74826 (7)0.0700 (4)
O30.7384 (12)0.5738 (3)0.6248 (4)0.0621 (18)
H3A0.83980.56530.59830.093*
O40.5409 (11)0.2412 (3)0.6368 (4)0.0566 (17)
H4B0.64420.21030.65230.068*
C90.827 (2)0.5705 (6)0.7086 (6)0.060 (3)
H9A0.85130.61940.72990.072*
H9B0.97180.54550.71610.072*
C100.6614 (18)0.5301 (5)0.7535 (6)0.061 (3)
H10A0.71930.52990.81070.073*
H10B0.51730.55540.74580.073*
C110.6262 (19)0.4526 (5)0.7238 (6)0.053 (3)
C120.4362 (16)0.4334 (5)0.6716 (5)0.048 (2)
H12A0.32480.46800.65600.058*
C130.4082 (16)0.3643 (5)0.6423 (5)0.051 (2)
H13A0.27810.35300.60660.062*
C140.5678 (14)0.3105 (5)0.6643 (5)0.044 (2)
C150.7609 (14)0.3305 (5)0.7164 (5)0.042 (2)
C160.7941 (16)0.3996 (5)0.7461 (6)0.052 (2)
H16A0.92600.41130.78070.062*
OW0.3419 (11)0.6470 (4)0.5757 (5)0.074 (2)
HWA0.26490.61290.54500.089*
HWB0.38570.67500.53830.089*
Br10.34194 (14)0.53555 (5)0.40416 (7)0.0640 (3)
O10.1966 (11)0.2167 (3)0.5222 (4)0.064 (2)
H1A0.31820.22610.55010.096*
C10.2190 (18)0.2218 (6)0.4413 (6)0.054 (3)
H1B0.22410.17340.41870.065*
H1C0.35970.24630.43610.065*
O20.0093 (10)0.5504 (3)0.5150 (4)0.0542 (17)
H2A0.08430.58140.50210.065*
C20.0224 (18)0.2636 (5)0.3950 (6)0.058 (3)
H2B0.03760.26440.33830.069*
H2C0.11780.23880.40020.069*
C30.0112 (17)0.3401 (5)0.4246 (5)0.049 (2)
C40.1511 (15)0.3940 (5)0.4051 (5)0.044 (2)
H4A0.25370.38340.37030.053*
C50.1449 (15)0.4620 (5)0.4346 (5)0.045 (2)
C60.0025 (16)0.4810 (5)0.4867 (5)0.044 (2)
C70.1492 (16)0.4280 (5)0.5058 (5)0.051 (2)
H7A0.25430.43960.53930.061*
C80.1427 (15)0.3594 (5)0.4767 (6)0.050 (2)
H8A0.24150.32460.49140.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0482 (5)0.0791 (8)0.0764 (7)0.0122 (6)0.0106 (5)0.0016 (7)
O30.073 (5)0.066 (4)0.054 (4)0.009 (4)0.032 (4)0.004 (3)
O40.045 (4)0.050 (4)0.072 (4)0.009 (4)0.002 (3)0.008 (4)
C90.070 (7)0.047 (6)0.066 (7)0.003 (5)0.018 (6)0.007 (5)
C100.064 (7)0.064 (7)0.058 (6)0.005 (6)0.019 (5)0.007 (5)
C110.065 (7)0.058 (6)0.039 (6)0.006 (6)0.017 (5)0.010 (5)
C120.038 (5)0.060 (6)0.046 (5)0.001 (5)0.002 (4)0.004 (5)
C130.033 (5)0.062 (7)0.057 (6)0.002 (5)0.001 (4)0.008 (5)
C140.035 (5)0.056 (6)0.040 (5)0.008 (4)0.001 (4)0.000 (4)
C150.032 (5)0.051 (6)0.043 (5)0.002 (4)0.004 (4)0.009 (4)
C160.043 (6)0.066 (7)0.046 (6)0.009 (5)0.005 (4)0.001 (5)
OW0.059 (5)0.071 (4)0.095 (5)0.010 (4)0.020 (4)0.024 (4)
Br10.0591 (6)0.0682 (6)0.0715 (7)0.0019 (6)0.0322 (5)0.0040 (6)
O10.054 (4)0.067 (4)0.062 (4)0.012 (4)0.020 (4)0.005 (3)
C10.054 (7)0.049 (6)0.058 (7)0.015 (5)0.004 (5)0.003 (5)
O20.043 (4)0.050 (4)0.074 (4)0.005 (3)0.022 (3)0.002 (3)
C20.059 (7)0.069 (7)0.045 (6)0.007 (6)0.006 (5)0.009 (5)
C30.051 (6)0.048 (6)0.044 (6)0.005 (5)0.008 (5)0.001 (5)
C40.041 (5)0.053 (6)0.039 (5)0.001 (5)0.005 (4)0.001 (5)
C50.044 (5)0.051 (5)0.042 (5)0.004 (4)0.009 (4)0.006 (5)
C60.039 (5)0.051 (7)0.042 (5)0.003 (5)0.009 (4)0.002 (5)
C70.038 (5)0.067 (7)0.050 (5)0.012 (5)0.013 (4)0.003 (5)
C80.037 (5)0.053 (6)0.059 (6)0.001 (5)0.007 (5)0.001 (5)
Geometric parameters (Å, º) top
Br2—C151.918 (8)OW—HWB0.8827
O3—C91.428 (11)Br1—C51.915 (9)
O3—H3A0.8200O1—C11.391 (12)
O4—C141.357 (11)O1—H1A0.8200
O4—H4B0.8500C1—C21.515 (14)
C9—C101.529 (14)C1—H1B0.9700
C9—H9A0.9700C1—H1C0.9700
C9—H9B0.9700O2—C61.365 (10)
C10—C111.515 (13)O2—H2A0.8500
C10—H10A0.9700C2—C31.497 (12)
C10—H10B0.9700C2—H2B0.9700
C11—C121.370 (14)C2—H2C0.9700
C11—C161.409 (14)C3—C41.370 (12)
C12—C131.364 (12)C3—C81.410 (13)
C12—H12A0.9300C4—C51.348 (11)
C13—C141.385 (12)C4—H4A0.9300
C13—H13A0.9300C5—C61.380 (12)
C14—C151.388 (11)C6—C71.382 (12)
C15—C161.368 (12)C7—C81.355 (12)
C16—H16A0.9300C7—H7A0.9300
OW—HWA0.8938C8—H8A0.9300
C9—O3—H3A109.5C1—O1—H1A109.5
C14—O4—H4B118.7O1—C1—C2110.7 (8)
O3—C9—C10109.7 (8)O1—C1—H1B109.5
O3—C9—H9A109.7C2—C1—H1B109.5
C10—C9—H9A109.7O1—C1—H1C109.5
O3—C9—H9B109.7C2—C1—H1C109.5
C10—C9—H9B109.7H1B—C1—H1C108.1
H9A—C9—H9B108.2C6—O2—H2A118.8
C11—C10—C9111.3 (8)C3—C2—C1112.2 (8)
C11—C10—H10A109.4C3—C2—H2B109.2
C9—C10—H10A109.4C1—C2—H2B109.2
C11—C10—H10B109.4C3—C2—H2C109.2
C9—C10—H10B109.4C1—C2—H2C109.2
H10A—C10—H10B108.0H2B—C2—H2C107.9
C12—C11—C16118.6 (9)C4—C3—C8116.5 (8)
C12—C11—C10120.8 (10)C4—C3—C2122.7 (9)
C16—C11—C10120.5 (10)C8—C3—C2120.7 (9)
C13—C12—C11121.0 (10)C5—C4—C3122.1 (9)
C13—C12—H12A119.5C5—C4—H4A119.0
C11—C12—H12A119.5C3—C4—H4A119.0
C12—C13—C14121.9 (9)C4—C5—C6121.8 (8)
C12—C13—H13A119.1C4—C5—Br1120.2 (6)
C14—C13—H13A119.1C6—C5—Br1118.0 (7)
O4—C14—C13122.7 (8)O2—C6—C5121.0 (8)
O4—C14—C15120.5 (8)O2—C6—C7121.7 (8)
C13—C14—C15116.8 (9)C5—C6—C7117.2 (8)
C16—C15—C14122.5 (8)C8—C7—C6121.3 (9)
C16—C15—Br2118.9 (7)C8—C7—H7A119.4
C14—C15—Br2118.6 (7)C6—C7—H7A119.4
C15—C16—C11119.2 (9)C7—C8—C3121.1 (9)
C15—C16—H16A120.4C7—C8—H8A119.5
C11—C16—H16A120.4C3—C8—H8A119.5
HWA—OW—HWB100.5
O3—C9—C10—C1161.5 (11)O1—C1—C2—C361.7 (11)
C9—C10—C11—C12101.5 (11)C1—C2—C3—C477.6 (11)
C9—C10—C11—C1675.1 (12)C1—C2—C3—C8100.6 (11)
C16—C11—C12—C130.7 (14)C8—C3—C4—C50.8 (14)
C10—C11—C12—C13177.4 (9)C2—C3—C4—C5177.4 (8)
C11—C12—C13—C140.6 (15)C3—C4—C5—C60.3 (14)
C12—C13—C14—O4178.9 (9)C3—C4—C5—Br1179.2 (7)
C12—C13—C14—C151.3 (13)C4—C5—C6—O2178.8 (8)
O4—C14—C15—C16179.4 (8)Br1—C5—C6—O20.7 (12)
C13—C14—C15—C160.8 (13)C4—C5—C6—C71.8 (13)
O4—C14—C15—Br20.2 (11)Br1—C5—C6—C7177.7 (7)
C13—C14—C15—Br2179.6 (6)O2—C6—C7—C8179.3 (8)
C14—C15—C16—C110.5 (14)C5—C6—C7—C82.3 (14)
Br2—C15—C16—C11179.2 (7)C6—C7—C8—C31.2 (14)
C12—C11—C16—C151.2 (14)C4—C3—C8—C70.3 (14)
C10—C11—C16—C15177.9 (8)C2—C3—C8—C7177.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···Br10.892.863.537 (8)134
OW—HWA···O20.892.002.820 (10)151
O1—H1A···O40.821.842.633 (9)163
OW—HWB···O1i0.882.072.745 (10)133
O2—H2A···Br10.852.563.026 (6)115
O2—H2A···OW0.852.182.820 (9)131
O3—H3A···O2ii0.821.802.592 (9)162
O4—H4B···Br20.852.573.039 (7)116
O4—H4B···OWiii0.852.212.804 (10)127
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula2C8H9BrO2·H2O
Mr452.14
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)5.9790 (12), 18.396 (4), 16.801 (3)
β (°) 98.83 (3)
V3)1826.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.46
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(ψ-scans; North et al., 1968)
Tmin, Tmax0.469, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
3585, 1827, 1302
Rint0.045
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.095, 1.01
No. of reflections1827
No. of parameters208
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.45
Absolute structureFlack (1983), 746 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···Br10.892.863.537 (8)134
OW—HWA···O20.892.002.820 (10)151
O1—H1A···O40.821.842.633 (9)163
OW—HWB···O1i0.882.072.745 (10)133
O2—H2A···Br10.852.563.026 (6)115
O2—H2A···OW0.852.182.820 (9)131
O3—H3A···O2ii0.821.802.592 (9)162
O4—H4B···Br20.852.573.039 (7)116
O4—H4B···OWiii0.852.212.804 (10)127
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z.
 

Acknowledgements

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and the `863′ project (2007 A A02Z211) of the Ministry of Science and Technology of China.

References

First citationBovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245–4252.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMewett, K. N., Fernandez, S. P., Pasricha, A. K., Pong, A., Devenish, S. O., Hibbs, D. E., Chebib, M., Johnston, G. A. & Hanrahan, J. R. (2009). Bioorg. Med. Chem. 17, 7156–7173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1109
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds