organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1169

1-(2,3-Dimeth­­oxy­benzyl­­idene)-2-(2,4-di­nitro­phen­yl)hydrazine

aDepartment of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China, and bDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 29 March 2011; accepted 13 April 2011; online 16 April 2011)

In the title compound, C15H14N4O6, the dihedral angle between the aromatic rings is 3.7 (4)°. The nitro groups make dihedral angles of 6.0 (4) and 5.2 (4)° with the parent ring and are oriented at 6.0 (6)° with respect to each other. The meth­oxy groups are inclined at 54.0 (2) and 2.5 (3)° with respect to the benzene ring to which they are attached. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions. The mol­ecular conformation is consolidated by an intra­molecular N—H⋯O hydrogen bond.

Related literature

For general background to the properties of Schiff base compounds, see: Mufakkar et al. (2010[Mufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.]); Tahir et al. (2010[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817.]). For related structures, see: Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]); Tameem et al. (2008[Tameem, A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679-o680.]); Shao et al. (2008[Shao, J., Lin, I., Yu, M., Cai, Z. & Lin, I. (2008). Talanta, 75, 551-555.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O6

  • Mr = 346.30

  • Triclinic, [P \overline 1]

  • a = 7.8409 (8) Å

  • b = 7.9200 (9) Å

  • c = 13.8961 (14) Å

  • α = 85.038 (2)°

  • β = 82.773 (1)°

  • γ = 65.894 (1)°

  • V = 780.85 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.43 × 0.38 × 0.37 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.958

  • 4130 measured reflections

  • 2725 independent reflections

  • 1414 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.178

  • S = 1.06

  • 2725 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.99 2.625 (4) 130
C14—H14A⋯O4i 0.96 2.48 3.431 (4) 170
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In view of the importance of hydrazone derivatives in chemical and biological applications (Shao et al., 2008), a series of hydrazone derivatives has been prepared, and several X-ray structures have been reported (Salhin et al., 2007; Aameem et al., 2008). Here, we report the crystal structure of the title compound.

The bond distances and bond angles in the title compound (Fig. 1) are in agreement with the corresponding bond distances and angles reported in the crystale structures of closely related compounds, (Salhin et al., 2007; Tameem et al., 2008). In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1). The molecular conformation is consolidated by an intramolecular N—H···O hydrogen bonding interaction (Table 1).

Related literature top

For general background to the properties of Schiff base compounds, see: Mufakkar et al. (2010); Tahir et al. (2010). For related structures, see: Salhin et al. (2007); Tameem et al. (2008); Shao et al. (2008).

Experimental top

Equimolar quantities of 2,4-dinitrophenylhydrazine (0.99 g, 5.0 mmol) and 2,3-dimethoxybenzaldehyde (0.83 g, 5.0 mmol) were refluxed in ethanol (20 ml) for 30 min and rotary evaporated. The crystals of the title compound were growm by recrystallization from an ethanol solution.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 and 0.96 Å, for methylene and ary H-atoms, respectively, and N—H = 0.86 Å with Uiso(H)= 1.2Ueq(methylene C/N) and 1.5Ueq(aryl C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound; displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds drawn as dashed lines.
1-(2,3-Dimethoxybenzylidene)-2-(2,4-dinitrophenyl)hydrazine top
Crystal data top
C15H14N4O6Z = 2
Mr = 346.30F(000) = 360
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8409 (8) ÅCell parameters from 855 reflections
b = 7.9200 (9) Åθ = 2.8–22.8°
c = 13.8961 (14) ŵ = 0.12 mm1
α = 85.038 (2)°T = 298 K
β = 82.773 (1)°Block, orange
γ = 65.894 (1)°0.43 × 0.38 × 0.37 mm
V = 780.85 (14) Å3
Data collection top
Bruker SMART CCD
diffractometer
2725 independent reflections
Radiation source: fine-focus sealed tube1414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.952, Tmax = 0.958k = 99
4130 measured reflectionsl = 168
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0737P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2725 reflectionsΔρmax = 0.28 e Å3
229 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (5)
Crystal data top
C15H14N4O6γ = 65.894 (1)°
Mr = 346.30V = 780.85 (14) Å3
Triclinic, P1Z = 2
a = 7.8409 (8) ÅMo Kα radiation
b = 7.9200 (9) ŵ = 0.12 mm1
c = 13.8961 (14) ÅT = 298 K
α = 85.038 (2)°0.43 × 0.38 × 0.37 mm
β = 82.773 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2725 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1414 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.958Rint = 0.032
4130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2725 reflectionsΔρmin = 0.25 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6288 (3)0.1887 (3)0.55122 (17)0.0672 (7)
H10.72900.19950.52430.081*
N20.4685 (3)0.2598 (3)0.50406 (17)0.0627 (6)
N30.9691 (3)0.0341 (4)0.6504 (3)0.0789 (8)
N40.6248 (5)0.1660 (4)0.9164 (2)0.0889 (9)
O10.9777 (3)0.1238 (4)0.57412 (19)0.0936 (8)
O21.1061 (3)0.0474 (4)0.6963 (2)0.1191 (10)
O30.7741 (4)0.2406 (4)0.9539 (2)0.1259 (11)
O40.4763 (4)0.1674 (4)0.95499 (18)0.1107 (9)
O50.5156 (3)0.5336 (3)0.25258 (14)0.0734 (6)
O60.2347 (3)0.6845 (3)0.13346 (16)0.0810 (7)
C10.6302 (3)0.1025 (3)0.6391 (2)0.0549 (7)
C20.7926 (3)0.0256 (4)0.6903 (2)0.0626 (8)
C30.7883 (4)0.0608 (4)0.7802 (2)0.0681 (8)
H30.89560.10940.81300.082*
C40.6287 (4)0.0754 (4)0.8214 (2)0.0652 (8)
C50.4661 (4)0.0033 (4)0.7723 (2)0.0651 (8)
H50.35670.01360.80080.078*
C60.4688 (4)0.0809 (4)0.6841 (2)0.0609 (7)
H60.36090.12600.65180.073*
C70.4850 (4)0.3361 (4)0.4206 (2)0.0627 (7)
H70.60000.33940.39680.075*
C80.3275 (4)0.4181 (4)0.3620 (2)0.0588 (7)
C90.3505 (4)0.5101 (4)0.2741 (2)0.0602 (7)
C100.2012 (4)0.5909 (4)0.2156 (2)0.0641 (8)
C110.0346 (4)0.5735 (4)0.2461 (2)0.0744 (9)
H110.06430.62400.20740.089*
C120.0117 (4)0.4825 (4)0.3330 (3)0.0756 (9)
H120.10260.47400.35250.091*
C130.1564 (4)0.4046 (4)0.3907 (2)0.0684 (8)
H130.14040.34280.44880.082*
C140.6191 (4)0.4797 (5)0.1608 (2)0.0847 (10)
H14A0.57710.39910.13230.127*
H14B0.75030.41590.16910.127*
H14C0.59980.58770.11900.127*
C150.0951 (5)0.7525 (5)0.0675 (3)0.1016 (12)
H15A0.07180.65160.04720.152*
H15B0.13780.81070.01180.152*
H15C0.01870.84120.09870.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0509 (13)0.0903 (17)0.0649 (17)0.0324 (12)0.0047 (11)0.0079 (13)
N20.0547 (14)0.0696 (15)0.0639 (16)0.0245 (12)0.0081 (11)0.0030 (12)
N30.0472 (15)0.0818 (19)0.110 (2)0.0237 (14)0.0100 (15)0.0246 (16)
N40.117 (3)0.088 (2)0.081 (2)0.0550 (19)0.0386 (19)0.0088 (16)
O10.0661 (14)0.133 (2)0.0922 (18)0.0513 (14)0.0068 (12)0.0250 (15)
O20.0526 (13)0.124 (2)0.180 (3)0.0300 (13)0.0379 (16)0.0068 (18)
O30.136 (2)0.138 (2)0.114 (2)0.0557 (18)0.0725 (19)0.0353 (17)
O40.142 (2)0.140 (2)0.0873 (19)0.095 (2)0.0317 (16)0.0251 (15)
O50.0724 (13)0.0967 (15)0.0642 (13)0.0473 (12)0.0049 (10)0.0064 (10)
O60.0827 (14)0.0920 (15)0.0730 (15)0.0389 (12)0.0219 (11)0.0126 (12)
C10.0492 (15)0.0540 (15)0.0625 (19)0.0194 (13)0.0076 (12)0.0111 (13)
C20.0461 (16)0.0640 (18)0.080 (2)0.0201 (13)0.0103 (14)0.0183 (16)
C30.0621 (19)0.0584 (17)0.087 (2)0.0196 (15)0.0281 (16)0.0119 (16)
C40.077 (2)0.0615 (17)0.066 (2)0.0324 (15)0.0250 (15)0.0003 (14)
C50.0628 (18)0.0648 (18)0.076 (2)0.0329 (15)0.0142 (15)0.0020 (15)
C60.0515 (16)0.0651 (17)0.070 (2)0.0256 (13)0.0144 (13)0.0007 (15)
C70.0573 (17)0.0741 (19)0.0600 (19)0.0302 (15)0.0019 (13)0.0060 (15)
C80.0543 (16)0.0630 (17)0.0602 (18)0.0240 (14)0.0005 (13)0.0129 (13)
C90.0572 (17)0.0653 (17)0.0628 (19)0.0287 (14)0.0009 (13)0.0125 (14)
C100.0627 (18)0.0639 (18)0.067 (2)0.0250 (15)0.0085 (14)0.0074 (15)
C110.0620 (19)0.075 (2)0.089 (2)0.0260 (16)0.0185 (16)0.0074 (17)
C120.0578 (18)0.078 (2)0.095 (3)0.0327 (16)0.0006 (17)0.0115 (18)
C130.0627 (18)0.0689 (19)0.076 (2)0.0293 (15)0.0014 (15)0.0098 (15)
C140.080 (2)0.113 (3)0.072 (2)0.051 (2)0.0011 (16)0.0033 (18)
C150.095 (3)0.120 (3)0.084 (3)0.035 (2)0.032 (2)0.019 (2)
Geometric parameters (Å, º) top
N1—C11.345 (3)C5—C61.347 (4)
N1—N21.375 (3)C5—H50.9300
N1—H10.8600C6—H60.9300
N2—C71.278 (3)C7—C81.455 (4)
N3—O21.230 (3)C7—H70.9300
N3—O11.234 (3)C8—C131.395 (4)
N3—C21.451 (4)C8—C91.397 (4)
N4—O41.223 (3)C9—C101.408 (4)
N4—O31.236 (3)C10—C111.379 (4)
N4—C41.450 (4)C11—C121.382 (4)
O5—C91.375 (3)C11—H110.9300
O5—C141.420 (3)C12—C131.372 (4)
O6—C101.363 (3)C12—H120.9300
O6—C151.420 (3)C13—H130.9300
C1—C61.407 (4)C14—H14A0.9600
C1—C21.421 (4)C14—H14B0.9600
C2—C31.375 (4)C14—H14C0.9600
C3—C41.355 (4)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.404 (4)C15—H15C0.9600
C1—N1—N2120.6 (2)C8—C7—H7119.4
C1—N1—H1119.7C13—C8—C9119.6 (3)
N2—N1—H1119.7C13—C8—C7121.7 (3)
C7—N2—N1114.9 (2)C9—C8—C7118.7 (2)
O2—N3—O1122.2 (3)O5—C9—C8117.6 (2)
O2—N3—C2117.5 (3)O5—C9—C10121.8 (3)
O1—N3—C2120.3 (3)C8—C9—C10120.2 (3)
O4—N4—O3123.2 (3)O6—C10—C11125.7 (3)
O4—N4—C4119.1 (3)O6—C10—C9115.8 (3)
O3—N4—C4117.7 (3)C11—C10—C9118.4 (3)
C9—O5—C14118.8 (2)C10—C11—C12121.4 (3)
C10—O6—C15117.7 (2)C10—C11—H11119.3
N1—C1—C6120.8 (2)C12—C11—H11119.3
N1—C1—C2122.6 (3)C13—C12—C11120.4 (3)
C6—C1—C2116.5 (3)C13—C12—H12119.8
C3—C2—C1121.0 (3)C11—C12—H12119.8
C3—C2—N3117.3 (3)C12—C13—C8120.0 (3)
C1—C2—N3121.8 (3)C12—C13—H13120.0
C4—C3—C2120.4 (3)C8—C13—H13120.0
C4—C3—H3119.8O5—C14—H14A109.5
C2—C3—H3119.8O5—C14—H14B109.5
C3—C4—C5120.2 (3)H14A—C14—H14B109.5
C3—C4—N4120.1 (3)O5—C14—H14C109.5
C5—C4—N4119.6 (3)H14A—C14—H14C109.5
C6—C5—C4119.9 (3)H14B—C14—H14C109.5
C6—C5—H5120.0O6—C15—H15A109.5
C4—C5—H5120.0O6—C15—H15B109.5
C5—C6—C1121.9 (2)H15A—C15—H15B109.5
C5—C6—H6119.0O6—C15—H15C109.5
C1—C6—H6119.0H15A—C15—H15C109.5
N2—C7—C8121.3 (3)H15B—C15—H15C109.5
N2—C7—H7119.4
C1—N1—N2—C7179.1 (2)C2—C1—C6—C52.0 (4)
N2—N1—C1—C60.9 (4)N1—N2—C7—C8179.8 (2)
N2—N1—C1—C2179.5 (2)N2—C7—C8—C135.0 (4)
N1—C1—C2—C3179.7 (2)N2—C7—C8—C9175.9 (2)
C6—C1—C2—C31.7 (4)C14—O5—C9—C8129.0 (3)
N1—C1—C2—N30.4 (4)C14—O5—C9—C1057.3 (4)
C6—C1—C2—N3178.2 (2)C13—C8—C9—O5174.7 (2)
O2—N3—C2—C34.9 (4)C7—C8—C9—O56.3 (4)
O1—N3—C2—C3173.6 (3)C13—C8—C9—C100.9 (4)
O2—N3—C2—C1174.9 (3)C7—C8—C9—C10180.0 (2)
O1—N3—C2—C16.6 (4)C15—O6—C10—C117.7 (4)
C1—C2—C3—C40.6 (4)C15—O6—C10—C9173.9 (3)
N3—C2—C3—C4179.3 (2)O5—C9—C10—O63.7 (4)
C2—C3—C4—C50.3 (4)C8—C9—C10—O6177.2 (2)
C2—C3—C4—N4179.8 (2)O5—C9—C10—C11174.8 (2)
O4—N4—C4—C3175.4 (3)C8—C9—C10—C111.4 (4)
O3—N4—C4—C35.5 (4)O6—C10—C11—C12177.0 (3)
O4—N4—C4—C54.7 (4)C9—C10—C11—C121.3 (4)
O3—N4—C4—C5174.4 (3)C10—C11—C12—C130.9 (5)
C3—C4—C5—C60.0 (4)C11—C12—C13—C80.4 (5)
N4—C4—C5—C6179.9 (2)C9—C8—C13—C120.5 (4)
C4—C5—C6—C11.2 (4)C7—C8—C13—C12179.5 (3)
N1—C1—C6—C5179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.992.625 (4)130
N1—H1···N30.862.602.913 (4)103
C3—H3···O20.932.332.654 (4)100
C6—H6···N20.932.442.766 (4)100
C7—H7···O50.932.412.737 (4)101
C14—H14A···O4i0.962.483.431 (4)170
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N4O6
Mr346.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.8409 (8), 7.9200 (9), 13.8961 (14)
α, β, γ (°)85.038 (2), 82.773 (1), 65.894 (1)
V3)780.85 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.38 × 0.37
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.952, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
4130, 2725, 1414
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.178, 1.06
No. of reflections2725
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.992.625 (4)130
C14—H14A···O4i0.962.483.431 (4)170
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank Professor Daqi Wang, Liaocheng University, for use of the X-ray diffraction facility.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShao, J., Lin, I., Yu, M., Cai, Z. & Lin, I. (2008). Talanta, 75, 551–555.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTameem, A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679–o680.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1169
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds